
117-214/514

Principles of Software Construction: 
Objects, Design, and Concurrency

IDEs, Build system, Continuous 
Integration, Libraries

Christian Kästner Vincent Hellendoorn



217-214/514

● On Homework 1
● Abstraction, Reuse, and Programming Tools
● For each in {IDE, Build systems, libraries, CI}:

○ What is it today?
○ What is under the hood?
○ What is next?

Outline



317-214/514

Homework 1

Welcome to the deep end!

● Java/TS + IDE + Maven/Npm + GitHub + Travis + linter!?



417-214/514

Welcome to the deep end!

● Java/TS + IDE + Maven/Npm + GitHub + Travis + linter!?
● We’re here to help:

○ Recitation tomorrow, walks through all this setup
○ Find some clarifications on Piazza

■ E.g., only implement what is asked for; all other functionality (repeating, flipping 
question/answer) is already there.

○ Use office hours (see course calendar)

Homework 1



517-214/514

Welcome to the deep end!

● Java/TS + IDE + Maven/Npm + GitHub + Travis + linter!?
● We’re here to help:

○ Recitation tomorrow, walks through all this setup
○ Find some clarifications on Piazza

■ E.g., only implement what is asked for; all other functionality (repeating, flipping 
question/answer) is already there.

○ Use office hours (see course calendar)
● Actual coding effort is small -- reading & setting up is the point
● Small typo detected on Piazza in `mostmistakes.ts`; fixed now. Not essential 

to your HW.

Homework 1



617-214/514

Mini-quiz

https://forms.gle/9tnB5BszVz9KTY7r5

https://forms.gle/9tnB5BszVz9KTY7r5


717-214/514

● On Homework 1
● Abstraction, Reuse, and Programming Tools
● For each in {IDE, Build systems, libraries, CI}:

○ What is it today?
○ What is under the hood?
○ What is next?

Outline



817-214/514

Automation Requires Abstraction



917-214/514

Automation Requires Abstraction



1017-214/514

Automation Requires Abstraction

We all treat familiar levels of abstraction as normal/natural

● That’s fine if you only drive your car
○ Not so much if you are a mechanic
○ How to debug a broken transmission?

● Also slow to evolve
○ Conf. people adamantly refusing to use an automatic

● Engineers seek out abstractions that simplify their work, help focus on the 
hard parts

○ They also know what is beneath the abstractions



1117-214/514

Automation Requires Abstraction

Today’s “normal”:

● Integrated-development environments (IDEs) galore
○ Web-based too! Press “.” on a GitHub (file) page 😲

● Frequent build, test, release
○ In some companies, every commit is a “release”

● Never write code for which there is a useful library
○ Define “useful” (we will)

● All of the above, entangled



1217-214/514

● On Homework 1
● Abstraction, Reuse, and Programming Tools
● For each in {IDE, Build systems, libraries, CI}:

○ What is it today?
○ What is under the hood?
○ What is next?

Outline



1317-214/514

Today’s toolchain: a quick overview

IDEs:

● Integrated Development Environments, bundle development workflows in a 
single UI

○ Editing, refactoring, running & debugging, adding dependencies, compiling, deploying, plugins, 
you name it

○ They often try to be everything, with mixed results
○ Leverage them to the fullest extent, to automate and check your work



1417-214/514

Today’s toolchain: a quick overview

IDEs:

● Eclipse was the dominant player in Java for 20-odd years, owing to its 
powerful backbone and plugin architecture



1517-214/514

Today’s toolchain: a quick overview

IDEs:

● Recently, IntelliJ has been more dominant
○ Packs a lot of “recipes” to create certain types of projects (e.g., web-app with Spring & Maven)



1617-214/514

Today’s toolchain: a quick overview

IDEs:

● Recently, IntelliJ has been more dominant
○ Packs a lot of “recipes” to create certain types of projects (e.g., web-app with Spring & Maven)

● VSCode is surging in popularity
○ Local & web, lightweight but with a massive plugin ecosystem

■ Quick tangent: if you can build either a large product or a platform, build a platform



1717-214/514

Today’s toolchain: a quick overview

IDEs:

● Recently, IntelliJ has been more dominant
○ Packs a lot of “recipes” to create certain types of projects (e.g., web-app with Spring & Maven)

● VSCode is surging in popularity
○ Local & web, lightweight but with a massive plugin ecosystem

■ Quick tangent: if you can build either a large product or a platform, build a platform
● But choose based on need!

○ You can relearn key-bindings; “killer features” are rare and temporary
○ E.g., Android: might want Android Studio (itself built on IntelliJ) since Google supports it
○ For this homework, choose what you’d like. We suggest IntelliJ for Java, VSCode for TS



1817-214/514

Today’s toolchain: a quick overview

Build Systems:

● How does this happen?



1917-214/514

Today’s toolchain: a quick overview

Build Systems:

● Compiling is “easy” when all your source code is here
○ (Please don’t tell a compiler expert I said that)

● Nowadays, your code is not “here”
○ Even libraries that you use in the IDE!
○ Interfaces make that possible



2017-214/514

Today’s toolchain: a quick overview

Build Systems:

● Compiling is “easy” when all your source code is here
○ (Please don’t tell a compiler expert I said that)

● Nowadays, your code is not “here”
○ Even libraries that you use in the IDE!
○ Interfaces make that possible

● Study the Travis log:
○ What is it doing?
○ Downloading, compiling, running checks
○ Most of this is “building”, using Maven
○ More on Travis later



2117-214/514

Today’s toolchain: a quick overview

Build Systems:

● Has a few basic tasks:
○ Compiling & linking, to produce an executable
○ Creating secondary artifacts, e.g. documentation-pages, linter reports, test suite reports
○ Different levels of “depth” may be appropriate, for large code bases (e.g. Google)



2217-214/514

Today’s toolchain: a quick overview

Build Systems:

● Has a few basic tasks:
○ Compiling & linking, to produce an executable
○ Creating secondary artifacts, e.g. documentation-pages, linter reports, test suite reports
○ Different levels of “depth” may be appropriate, for large code bases (e.g. Google)

● Popular options:
○ For Java: Maven and Gradle -- historically Ant.

■ You could do any homework in either; we’re not attached to one
○ For JS/TS: Node(JS)

■ Generally coupled with the Node Package Manager (NPM)
○ Often built into IDEs, as plugins



2317-214/514

Today’s toolchain: a quick overview

Libraries:

● Myriad. Publicly hosted on various package managers
○ Often tied, but not inextricably linked, to build tools, and languages
○ Maven/Gradle for Java, NPM for JS/TS, Nuget for C#, ...
○ Registries of managers, e.g., GitHub Packages



2417-214/514

Today’s toolchain: a quick overview

Libraries:

● Myriad. Publicly hosted on various managers
○ Often tied, but not inextricably linked, to build tools, and languages
○ Maven, Gradle, NPM, Nuget, Docker, …
○ Registries of managers, e.g., GitHub Packages

● Releases are generally fast-paced or frigid
○ Almost all volunteer-based, so support waivers, as does documentation quality
○ Often open-source, so you can check out the status & details on GitHub
○ Beware of vulnerabilities and bugs, esp. with minor-releases and nightly’s, old packages



2517-214/514

Today’s toolchain: a quick overview

Libraries:

● A Case-Study:
○ ‘pac-resolver’ (3M weekly downloads) has a major security vulnerability

■ Uses ‘degenerator’ (same author), which misuses a Node module
■ “The vm module is not a security mechanism. Do not use it to run untrusted code.”
■ (a mistake that’s been made before: people rarely read disclaimers)

○ ‘pac-proxy-agent’ (2M weekly downloads, same author) uses the above
■ Is widely popular, the main reason people use ‘degenerator’
■ Most people using this package have never heard of the latter -- many never will

https://nodejs.org/api/vm.html#vm_vm_executing_javascript


2617-214/514

Today’s toolchain: a quick overview

Continuous Integration:

● Automates standard build, test, deploy pipelines
○ Technically, the latter is “CD”
○ Typically builds from scratch in a clean container
○ Often tied to code-review; triggers on new commits, pull requests

■ Ideally, official releases pass the build
○ Produces (long) logs with debugging outputs



2717-214/514

Today’s toolchain: a quick overview

Not mentioned:

● Docker: containerize applications for coarse-grained reuse
● Cloud: deploy and scale rapidly, release seamlessly
● Bug/Issue trackers, often integrated with reviews



2817-214/514

● On Homework 1
● Abstraction, Reuse, and Programming Tools
● For each in {IDE, Build systems, libraries, CI}:

○ What is it today?
○ What is under the hood?
○ What is next?

Outline



2917-214/514

Behind the Abstraction

First, a bit of nuance:

● Automation vs. Reuse
○ We tend to automate common chains of actions

■ Gear-up := {Press clutch, switch gear, release clutch
while accelerating}

○ To facilitate reusing such “subroutines”, we introduce abstractions
■ Accelerate in ‘D’ => Gear-up when needed



3017-214/514

Behind the Abstraction

First, a bit of nuance:

● Automation vs. Reuse
○ We tend to automate common chains of actions

■ Gear-up := {Press clutch, switch gear, release clutch
while accelerating}

○ To facilitate reusing such “subroutines”, we introduce abstractions
■ Accelerate in ‘D’ => Gear-up when needed

● Reuse vs. Interfaces
○ Interfaces facilitate reuse through abstraction

■ Allow upgrading implementation without breaking things
■ Provide explicit & transparent contract



3117-214/514

Behind the Abstraction

First, a bit of nuance:

● Most tools are abstractions of common commands
○ Typically operated via GUI and/or a DSL
○ Obvious for Travis: just read the Yaml

■ Script-like languages are common
■ Involving a vocabulary of “targets”
■ E.g., `mvn site`



3217-214/514

Behind the Abstraction

First, a bit of nuance:

● Most tools are abstractions of common commands
○ Typically operated via GUI and/or a DSL
○ Obvious for Travis: just read the Yaml

■ Script-like languages are common
■ Involving a vocabulary of “targets”
■ E.g., `mvn site`

● Abstraction can also “trap” us
○ When/how do we leave the abstraction?
○ Command-line comes built into IDEs for a reason
○ Non-trivial in general! May require switching/“patching” libraries

■ E.g., Maven → Gradle for more unusual build routines



3317-214/514

● On Homework 1
● Abstraction, Reuse, and Programming Tools
● For each in {IDE, Build systems, libraries, CI}:

○ What is it today?
○ What is under the hood?
○ What is next?

Outline



3417-214/514

IDEs

Automate common programming actions:

● Handy refactorings, suggestions
○ E.g., just press `alt+enter` in IntelliJ while highlighting nearly any code

■ Keyboard shortcuts are super useful: explore your IDE!
○ These can make you a better programmer: encode a lot of best-practices

■ Though, don’t read into them too much



3517-214/514

IDEs

● The engine: continuous parsing, building
○ Key feature: most partial programs don’t parse, but IDEs make sense of them
○ That allows quickly relaying compile warnings/errors and useful suggestions
○ Same with API resolution

● Powered by rapid incremental compilation
○ Only build what has been updated

■ Virtually every edit you make triggers a compilation, re-linking
■ Of just the changed code and its dependencies

○ Works because very little of the code changes most of the time
■ But no free lunch: tends to drop optimizations (mostly fine), may struggle with big 

projects
○ Just try it: call an API with the wrong parameters & see how fast it triggers an alert; contrast 

with running a full Maven build (e.g., with `mvn install`)



3617-214/514

IDEs

Automate common programming actions:

● Debugging
○ Often the default mode when you run in the IDE



3717-214/514

IDEs

Automate common programming actions:

● Debugging
○ Often the default mode when you run in the IDE
○ Allows setting breakpoints

■ Which give you rich insight into execution



3817-214/514

IDEs

Automate common programming actions:

● Debugging
○ Often the default mode when you run in the IDE
○ Allows setting breakpoints

■ Which give you rich insight into execution



3917-214/514

IDEs

● IDE designers spend a lot of time automating common development tasks
○ Sometimes they get a little too helpful (modifying pom’s)
○ Many plugins provide customized experience
○ Mostly evolve with new tools, prioritizing emerging routines

● Useful to know how these actions work
○ Often not much more than invoking commands for you

■ VSCode, IntelliJ are very explicit about this in the terminal -- great for customization



4017-214/514

Build Systems

● These days: intricately tied with IDEs, package managers
● Projects often come with a build config file or two

○ ‘pom.xml’ for Maven
○ ‘tsconfig.json’ + ‘package.json’ for TypeScript+NPM -- the second deals with packages
○ These can be nested, one per (sub-)directory, to compose larger systems

■ On GitHub, you can create links across repositories



4117-214/514

Build Systems

● These days: intricately tied with IDEs, package managers
● Projects often come with a build config file or two

○ ‘pom.xml’ for Maven
○ ‘tsconfig.json’ + ‘package.json’ for TypeScript+NPM -- the second deals with packages
○ These can be nested, one per (sub-)directory, to compose larger systems

■ On GitHub, you can create links across repositories
○ Specifies:

■ Compilation source and target version
■ High-level configuration options
■ Targets for various phases in development

● “lifecycle” in Maven; e.g. ‘compile’, ‘test’, ‘deploy’
■ Often involving plugins
■ Dependencies with versions

● Not shown: in package.json



4217-214/514

Libraries & Frameworks

Packages can be either:

● Libraries:
○ A set of classes and methods that provide reusable functionality
○ Typically: programmer calls, library returns data, that’s it.



4317-214/514

Libraries & Frameworks

Packages can be either:

● Libraries:
○ A set of classes and methods that provide reusable functionality
○ Typically: programmer calls, library returns data, that’s it.

● Frameworks:
○ Reusable skeleton code that can be customized into an application
○ Framework calls back into client code

■ The Hollywood principle: “Don’t call us. We’ll call you.”
○ E.g., Android development: you declare your UI elements, activities to be composed
○ Principle: inversion of control

https://martinfowler.com/bliki/InversionOfControl.html


4417-214/514

Libraries & Frameworks

Packages can be either:

● Libraries:
○ A set of classes and methods that provide reusable functionality
○ Typically: programmer calls, library returns data, that’s it.

● Frameworks:
○ Reusable skeleton code that can be customized into an application
○ Framework calls back into client code

■ The Hollywood principle: “Don’t call us. We’ll call you.”
○ E.g., Android development: you declare your UI elements, activities to be composed
○ Principle: inversion of control

● You typically use zero/one framework and many libraries
○ Frameworks might be especially constraining, but for good reason.
○ Some tools are a bit of both, and not all frameworks quite invert control

https://martinfowler.com/bliki/InversionOfControl.html


4517-214/514

Libraries & Frameworks

Which kind is a command-line parsing package?

http://tom.lokhorst.eu/2010/09/why-libraries-are-better-than-frameworks`



4617-214/514

Libraries & Frameworks

Which kind is a command-line parsing package?

How about a tool that runs tests based on annotations you add in your code?

● More on Thursday

http://tom.lokhorst.eu/2010/09/why-libraries-are-better-than-frameworks`



4717-214/514

Libraries

Look into:

● Stated Goal:
○ A simple interface (“get started in one line!”) also means lots of abstraction
○ That’s neither good nor bad; know what you need
○ Docs with “advanced use cases” are always neat

● Maintenance:
○ Active release cycle, recent updates to documentation
○ GitHub build status, issue tracker (filled with unmerged ‘dependabot’ PRs?)
○ Lots of companies deliberately lag by one minor (or even major) version

● Recursive dependencies
○ Myriad, beyond inspection. Using OSS in corporate environments is a headache



4817-214/514

Frameworks

Whitebox:

● Extension via subclassing and overriding methods
● Common design pattern(s): 

○ Template method
● Subclass has main method but gives control to framework

Blackbox:

● Extension via implementing a plugin interface
● Common design pattern(s):

○ Command
○ Observer

● Plugin-loading mechanism loads plugins and gives control to the framework



4917-214/514

Defines a series of actions to be run in a clean build:

● Actions start from the very top:
○ Clone repository, checkout branch
○ Download & install Java/Node
○ Invoke commands with timeouts

● Travis allocates a new (Docker) container for each build
○ Think of this like a fresh, temporary computer
○ Usually with a few default libraries present (i.e., based on an image)

● That means: fully replicable builds

Continuous Integration



5017-214/514



5117-214/514

Continuous integration – Travis CI

Automatically builds, tests,
and displays the result



5217-214/514

Continuous integration – Travis CI

You can see the results of builds
over time



5317-214/514

● On Homework 1
● Abstraction, Reuse, and Programming Tools
● For each in {IDE, Build systems, libraries, CI}:

○ What is it today?
○ What is under the hood?
○ What is next?

Outline



5417-214/514

What’s Next

Anyone care to guess?

● Can be based on something you’ve seen, but think will boom



5517-214/514

What’s Next

AI Powered Programming

● Easier in Web IDEs
○ Which are themselves

“next”



5617-214/514

What’s Next

Collaborative online coding

● Think: Google Docs for code
● E.g. VS Life Share
● How will this change “commits”?



5717-214/514

What’s Next

Tighter IDE-to-cloud integration

● Google Cloud is pushing on this
with VSCode

● We will (lightly) touch on Containers &
Clouds in this course



5817-214/514

Summary

● Programming Tools are abundant, and rapidly evolving
○ Learn multiple; you will have to inevitably

● They rely on abstractions through interfaces to facilitate reuse
○ Which come in many shapes: GUI, API, DSL
○ And can be a limitation -- choose wisely

● Your HW1 toolchain sets you up for all homeworks
○ With modest variations (frameworks, new build targets)
○ Self-discovery is a big asset
○ Tomorrow’s recitation offers help


