
117-214/514

Principles of Software Construction: 
Objects, Design, and Concurrency

Specifications and unit testing, 
exceptions

Christian Kästner Vincent Hellendoorn



217-214/514

Explicit over Implicit

Can anything go wrong with this?

int add(int a, int b) {
  return a + b;
}



317-214/514

Explicit over Implicit

Can anything go wrong with this?

How about this:

int divide(int a, int b) {
  return a / b;
}

int add(int a, int b) {
  return a + b;
}



417-214/514

Explicit over Implicit

Can anything go wrong with this?

How about this:

int divide(int a, int b) {
  return a / b;
}
divide(4, 3); // 1

int add(int a, int b) {
  return a + b;
}



517-214/514

Explicit over Implicit

Can anything go wrong with this?

How about this:

int divide(int a, int b) {
  return a / b;
}
divide(4, 3); // 1
divide(2, 0); // Exception  
  java.lang.ArithmeticException: / by zero

int add(int a, int b) {
  return a + b;
}



617-214/514

Explicit over Implicit

BTW, harder to force in TS*:

*Compile with: --target es2020

function divide(a: bigint, b: bigint): bigint {
    return a / b;
}
divide(4n, 3n); // 1
divide(2n, 0n); // RangeError: Division by zero



717-214/514

Explicit over Implicit

Most real-world code has a contract.

● It might not be obvious to you!
● This is why we:

○ Encode specifications
○ Test
○ Use exceptions

● Imperative to build systems that scale



817-214/514

Today

1. Exception Handling
2. Unit Testing
3. Specifications



917-214/514

Exceptions

● Inform caller of problem by transfer of control
○ They split control-flow into a “normal” and an “erroneous” branch
○ Compare “if/else”

● Semantics
○ Propagates up the call stack until exception is caught, or main method is reached

■ So, it can terminate the program!
● Where do exceptions come from?



1017-214/514

Just try:

String read(String path) {
  return Files.lines(Path.of(path))
              .collect(Collectors.joining(“\n”));
}

Exceptions



1117-214/514

String read(String path) {
  try {
     return Files.lines(Path.of(path))
              .collect(Collectors.joining(“\n”));
  }
  catch (IOException e) {

// implement fall-back behavior.
  }
}

Handling Exceptions



1217-214/514

String read(String path) throws IOException {
  return Files.lines(Path.of(path))
            .collect(Collectors.joining(“\n”));
}

Handling Exceptions



1317-214/514

● You can’t forget to handle common failure modes
○ Explicit > implicit

○ Compare: using a flag or special return value

● Provide high-level summary of error
○ Compare: core dump in C/C++

● Improve code structure
○ Separate normal code path from exceptional

○ Error handling code is segregated in catch blocks

● Ease task of writing robust, maintainable code

Benefits of exceptions



1417-214/514

Exception Handling

Undeclared vs. Declared

int divide(int a, int b) {
  return a / b;
}

String read(String path) throws
                       IOException {
  return Files.lines(Path.of(path))
     .collect(Collectors.joining(“\n”));
}



1517-214/514

Exception Handling

Undeclared vs. Declared

Unchecked vs. Checked

int divide(int a, int b) {
  return a / b;
}

String read(String path) throws
                       IOException {
  return Files.lines(Path.of(path))
     .collect(Collectors.joining(“\n”));
}

divide(4, 3); // Compiles 
                 fine

read(“test.txt”); // Unhandled
  exception: java.io.IOException



1617-214/514

Exception Handling

Handling unchecked exceptions is not enforced by the compiler

These are quite common

● E.g., all exceptions in C++
● In Java: any exception that extends Error or RuntimeException



1717-214/514

Exception Handling

Handling unchecked exceptions is not enforced by the compiler

These are quite common

● E.g., all exceptions in C++
● In Java: any exception that extends Error or RuntimeException

○ E.g.:

○ Note: we don’t typically declare unchecked exceptions.

int divide(int a, int b) throws ArithmeticException {
  return a / b;
}
divide(4, 3); // Compiles fine



1817-214/514

Throwable

Exception

RuntimeException
IOException

EOFException

FileNotFoundException

NullPointerException

IndexOutOfBoundsException

ClassNotFoundException

Object

Error

StackOverflowError

…

…

…

…

Checked Exceptions

Java’s exception hierarchy (messy)



1917-214/514

● Unchecked exception
○ Programming error, other unrecoverable failure

● Checked exception
○ An error that every caller should be aware of and handle

● Special return value (e.g., null from Map.get)
○ Common but atypical result (not erroneous!) 

● Do not use error codes – too easy to ignore
● Avoid null return values

○ Never return null  instead of zero-length list or array

Design choice: checked vs. unchecked



2017-214/514

class BufferBoundsException extends Throwable {
  public BufferBoundsException(String message) {
    ...
  }
}

void atIndex(int[] buff, int i) throws CustomException {
  if (buff.length <= i)
    throw new BufferBoundsException(“...”);
  return buff[i];
}

Defining & using Exception Types



2117-214/514

Exception Handling

● It’s still wise to guard for “obvious” unchecked exceptions

● Or explicitly signal the problem, recall:

● Why is this better than letting the index fail?

if (arr.length > 10)
  return arr[10];

if (buff.length <= i)
  throw new BufferBoundsException(“...”);
return buff[i];



2217-214/514

Exception Handling

● It’s still wise to guard for “obvious” unchecked exceptions

● Or explicitly signal the problem, recall:

● Why is this better than letting the index fail?
○ BufferBoundsException can be a checked exception!
○ Which forces someone to handle it
○ Here, we declared: atIndex(int[] buff, int i) throws BufferBoundsException
○ So every calling method must handle it, or throw it on

if (arr.length > 10)
  return arr[10];

if (buff.length <= i)
  throw new BufferBoundsException(“...”);
return buff[i];



2317-214/514

Guidelines for using exceptions (1)

● Avoid unnecessary checked exceptions (EJ Item 71)
● Favor standard exceptions (EJ Item 72)

○ IllegalArgumentException – invalid parameter value
○ IllegalStateException – invalid object state
○ NullPointerException – null param where prohibited
○ IndexOutOfBoundsException – invalid index param
○ IOException -- and its subclasses, mostly for File-related actions

● Throw exceptions appropriate to abstraction (EJ Item 73)



2417-214/514

● Document all exceptions thrown by each method
○ Unchecked as well as checked (EJ Item 74)

○ But don’t declare unchecked exceptions!

● Include failure-capture info in detail message (Item 75)

throw new IlegalArgumentException(
    "Quantity must be positive: " + quantity);

Guidelines for using exceptions



2517-214/514

● Document all exceptions thrown by each method
○ Unchecked as well as checked (EJ Item 74)

○ But don’t declare unchecked exceptions!

● Include failure-capture info in detail message (Item 75)

● Don’t ignore exceptions (EJ Item 77)

throw new IllegalArgumentException(
    "Quantity must be positive: " + quantity);

Guidelines for using exceptions (2)

try {
   processPayment(payment);
}
catch (Exception e) {  // BAD!
}



2617-214/514

Cleanup

Exception handling often also supports cleaning up

openMyFile();
try {
  writeMyFile(theData); // This may throw an error
} catch(e) {
  handleError(e); // If an error occurred, handle it
} finally {
  closeMyFile(); // Always close the resource
}

https://developer.mozilla.org/en-US/docs/Web/JavaScript/Guide/Control_flow_and_error_handling



2717-214/514

Manual Resource Termination

Is ugly and error-prone, especially for multiple resources

● Even good programmers usually get it wrong
○ Sun’s Guide to Persistent Connections got it wrong in code that claimed to be exemplary

○ Solution on page 88 of Bloch and Gafter’s Java Puzzlers is badly broken; no one noticed 
for years

● 70% of the uses of close in the JDK itself were wrong in 2008!
● Even the “correct” idioms for manual resource management are deficient



2817-214/514

Automatically closes resources!

try (DataInputStream dataInput = 
        new DataInputStream(new FileInputStream(fileName))) {
    return dataInput.readInt();
} catch (IOException e) {
    ...
}

The solution: try-with-resources



2917-214/514

Exceptions Across Languages

Alas, try-with-resources does not exist in JS/TS

● Neither does ‘throws’

Exception structures differ radically across languages

● Most languages have ‘try/catch’ and ‘throw’
○ Some have ‘finally’

● Python has ‘with’ for resource management (since 2006)
○ C# has ‘using’

○ Java’s try-with-resources was added in 2011

● Go returns an error-typed value, to be checked for nullity



3017-214/514

Exceptions Across Languages

Use what you have

● When possible, be explicit
○ Use the compiler to enforce, where possible

○ Pro-actively pre-empt corner-cases, where not

■ Unchecked exceptions, JS/TS

● Make exceptions part of your contract



3117-214/514

Outline

1. Exception Handling
2. Unit Testing
3. Specifications



3217-214/514

Testing

How do we know
this works?

int isPos(int x) {
  return x >= 1;
}



3317-214/514

Testing

How do we know
this works?

Testing

Are we done?

int isPos(int x) {
  return x >= 1;
}

@Test
void testIsPos() {
  assertTrue(isPos(1));
}



3417-214/514

Testing

How do we know
this works?

Testing

Are we done?

int isPos(int x) {
  return x >= 1;
}

@Test
void testIsPos() {
  assertTrue(isPos(1));
}

@Test
void testNotPos() {
  assertFalse(isPos(-1));
}



3517-214/514

Testing

How do we know
this works?

Testing

Are we done?

int isPos(int x) {
  return x >= 0;  // What if?
}

@Test
void testIsPos() {
  assertTrue(isPos(1));
}

@Test
void testNotPos() {
  assertFalse(isPos(-1));
}



3617-214/514

Testing

How do we know
this works?

Testing

Are we done?

int isPos(int x) {
  return x >= 0;  // What if?
}

@Test
void test1IsPos() {
  assertTrue(isPos(1));
}

@Test
void test0IsNotPos() {
  assertFalse(isPos(0)); // Fails
}



3717-214/514

Testing

How do we know a program is correct?

● In a perfect world (maybe): formal verification
○ Easy enough for proving that isPos(x) -- the implementation is the definition

○ Tedious, cannot be done automatically

● Hence, testing



3817-214/514

Testing

● Execute the program with selected inputs in a controlled environment
○ Why is this related to contracts?



3917-214/514

Testing

● Execute the program with selected inputs in a controlled environment
○ Why is this related to contracts?

○ Because we need to know what to test!



4017-214/514

Testing

● Execute the program with selected inputs in a controlled environment
○ Why is this related to contracts?

○ Because we need to know what to test!

● Goals
○ Reveal bugs, so they can be fixed (primary goal)

○ Clarify the specification, documentation



4117-214/514

Unit Tests

● For “small” units: methods, classes, subsystems
○ Unit is smallest testable part of system

○ Test the parts before assembling them

○ Intended to catch local bugs

● Typically (but not always) written by developers
● Many small, fast-running, independent tests
● Few dependencies on other system parts or environment
● Insufficient, but a good starting point



4217-214/514

For Java: JUnit

● Popular unit-testing framework for Java
● Easy to use
● Tool support available, e.g., IntelliJ integration



4317-214/514

For Java: JUnit

Syntax: import static org.junit.Assert.*;

class PosTests {

  @Before
  void setUp() {
    // Anything you want to run 
       before each test
  }

  @Test
  void test1IsPos() {
    assertTrue(isPos(1));
  }
}



4417-214/514

For TS: Jest

● In particular, ts-jest
○ Many other options; your choice

● Requires a few files:
○ jest.config.js, to specify testing mode

○ package.json with (ts-)jest dependencies

● Provides useful features:
○ ‘test’, ‘expect’ (= ‘assert’)

○ ‘toBe’, ‘toEqual’

○ ‘fn’, for Mocking (later)



4517-214/514

Writing Testable Code

● Think about testing when writing code
○ Unit testing encourages you to write testable code

● Modularity and testability go hand in hand
○ Same test can be used on multiple implementations of an interface!

● Test-Driven Development
○ A design and development method in which you write tests before you write the code

○ Writing tests can expose API weaknesses!



4617-214/514

Run Tests Often

● You should only commit code that passses all tests…
● So run tests before every commit
● If test suite becomes too large & slow for rapid feedback

○ Run local package-level tests (“smoke tests”) frequently

○ Run all tests nightly

○ Medium sized projects often have thousands of test cases

● Continuous integration (CI) servers help to scale testing



4717-214/514

Reflections on Testing

“Testing shows the presence, not the absence of bugs.”

Edsger W. Dijkstra, 1969

“Functionality that can’t be demonstrated by automated test simply don't exist.”

Kent Beck



4817-214/514

Boundary Value Testing

We cannot test for every integer.

Choose representative values:
1 for positives, -1 for negatives

And boundary cases: 0 is a likely
candidate for mistakes

● Think like an attacker

int isPos(int x) {
  return x >= 0;  // What if?
}

@Test
void test1IsPos() {
  assertTrue(isPos(1));
}

@Test
void test0IsNotPos() {
  assertFalse(isPos(0)); // Fails
}



4917-214/514

Outline

1. Exception Handling
2. Unit Testing
3. Specifications



5017-214/514

So what exactly do you test?

● What it claims to do: specification testing
● What it does: structural testing

Specifications



5117-214/514

What is a contract?

● Agreement between an object and its user
○ What object provides, and user can count on

● Includes:
○ Method signature (type specifications)

○ Functionality and correctness expectations

○ Sometimes: performance expectations

● What the method does, not how it does it
○ Interface (API), not implementation

● “Focus on concepts rather than operations”



5217-214/514

Method contract details

● Defines method’s and caller’s responsibilities
● Analogy: legal contract

○ If you pay me this amount on this schedule…

○ I will build a room with the following detailed spec

○ Some contracts have remedies for nonperformance

● Method contract structure
○ Preconditions: what method requires for correct operation

○ Postconditions: what method establishes on completion

○ Exceptional behavior: what it does if precondition violated

● Defines correctness of implementation



5317-214/514

How to Encode Specifications?

Formal frameworks exist, to capture pre- and post-conditions

● E.g., ‘requires arr != null’
● Useful for formal verification
● But rarely used

○ Takes a lot of effort, and doesn’t scale well



5417-214/514

How to Encode Specifications?

More common: prose specification. Document:

● Every parameter
● Return value
● Every exception (checked and unchecked)
● What the method does, including

○ Primary purpose

○ Any side effects

○ Any thread safety issues

○ Any performance issues



5517-214/514

How to Encode Specifications?

More common: prose specification. Document

● Every parameter
● Return value
● Every exception (checked and unchecked)
● What the method does, including

○ Primary purpose

○ Any side effects

○ Any thread safety issues

○ Any performance issues

● Do not document implementation details
○ Known as overspecification



5617-214/514

Docstring Specification
class RepeatingCardOrganizer {
  ...

  public boolean isComplete(CardStatus card) {
    return card.getResults().stream()
      .filter(isSuccess -> isSuccess)
      .count() >= this.repetitions;
  }
}



5717-214/514

Docstring Specification
class RepeatingCardOrganizer {
  ...
  /**
   * Checks if the provided card has been answered correctly the required 
number of times.
   * @param card The {@link CardStatus} object to check.
   * @return {@code true} if this card has been answered correctly at least 
{@code this.repetitions} times.
   */
  public boolean isComplete(CardStatus card) {
    return card.getResults().stream()
      .filter(isSuccess -> isSuccess)
      .count() >= this.repetitions;
  }
}



5817-214/514

Docstring Specification
class RepeatingCardOrganizer {
  ...
  /**
   * Checks if the provided card has been answered correctly the required 
number of times.
   * @param card The {@link CardStatus} object to check.
   * @return {@code true} if this card has been answered correctly at least 
{@code this.repetitions} times.
   */
  public boolean isComplete(CardStatus card) {
    // IGNORE THIS WHEN SPECIFICATION TESTING!
  }
}



5917-214/514

Docstring Specification
  /**
   * Checks if the provided card has been answered correctly the required 
number of times.
   * @param card The {@link CardStatus} object to check.
   * @return {@code true} if this card has been answered correctly at least 
{@code this.repetitions} times.
   */
  public boolean isComplete(CardStatus card);

  // What is specified?



6017-214/514

Docstring Specification
  /**
   * Checks if the provided card has been answered correctly the required 
number of times.
   * @param card The {@link CardStatus} object to check.
   * @return {@code true} if this card has been answered correctly at least 
{@code this.repetitions} times.
   */
  public boolean isComplete(CardStatus card);

  // What is specified?
  // - Parameter type (no constraints)



6117-214/514

Docstring Specification
  /**
   * Checks if the provided card has been answered correctly the required 
number of times.
   * @param card The {@link CardStatus} object to check.
   * @return {@code true} if this card has been answered correctly at least 
{@code this.repetitions} times.
   */
  public boolean isComplete(CardStatus card);

  // What is specified?
  // - Parameter type (no constraints)
  // - Return constraints: “at least” this.repetitions correct answers



6217-214/514

Docstring Specification
  /**
   * Checks if the provided card has been answered correctly the required 
number of times.
   * @param card The {@link CardStatus} object to check.
   * @return {@code true} if this card has been answered correctly at least 
{@code this.repetitions} times.
   */
  public boolean isComplete(CardStatus card);

  // What is specified?
  // - Parameter type (no constraints)
  // - Return constraints: “at least” this.repetitions correct answers
  // So what do we test?



6317-214/514

Docstring Specification
  /**
   * Checks if the provided card has been answered correctly the required 
number of times.
   * @param card The {@link CardStatus} object to check.
   * @return {@code true} if this card has been answered correctly at least 
{@code this.repetitions} times.
   */
  public boolean isComplete(CardStatus card);

@Test
public void testIsCompleteSingleSuccess() {
  CardRepeater repeater = new RepeatingCardOrganizer(1); // Single repetition
  CardStatus cs = new CardStatus(new FlashCard(“”, “”));
  cs.recordResult(true); // Single Success
  assert???(repeater.isComplete(cs));
}



6417-214/514

Docstring Specification
  /**
   * Checks if the provided card has been answered correctly the required 
number of times.
   * @param card The {@link CardStatus} object to check.
   * @return {@code true} if this card has been answered correctly at least 
{@code this.repetitions} times.
   */
  public boolean isComplete(CardStatus card);

@Test
public void testIsCompleteSingleSuccess() {
  CardRepeater repeater = new RepeatingCardOrganizer(1); // Single repetition
  CardStatus cs = new CardStatus(new FlashCard(“”, “”));
  cs.recordResult(true); // Single Success
  assertTrue(repeater.isComplete(cs));
}



6517-214/514

Docstring Specification
  /**
   * Checks if the provided card has been answered correctly the required 
number of times.
   * @param card The {@link CardStatus} object to check.
   * @return {@code true} if this card has been answered correctly at least 
{@code this.repetitions} times.
   */
  public boolean isComplete(CardStatus card);

@Test
public void testIsNotCompleteSingleFailure() {
  CardRepeater repeater = new RepeatingCardOrganizer(1); // Single repetition
  CardStatus cs = new CardStatus(new FlashCard(“”, “”));
  cs.recordResult(false); // Single failure
  assertFalse(repeater.isComplete(cs));
}



6617-214/514

Docstring Specification
class RepeatingCardOrganizer {
  ...
  /**
   * Checks if the provided card has been answered correctly the required 
number of times.
   * @param card The {@link CardStatus} object to check.
   * @return {@code true} if this card has been answered correctly at least 
{@code this.repetitions} times.
   */
  public boolean isComplete(CardStatus card) {
    return card.getResults().stream()
      .filter(isSuccess -> isSuccess)
      .count() >= this.repetitions;
  }
}

We’ve now run this twice. 
Are we done testing?



6717-214/514

Specification vs. Structural Testing

You can test for different objectives

● Specification-based testing: test solely the specification
○ Ignores implementation, use inputs/outputs only
○ Cover all specified behavior

● Structural Testing: consider implementation
○ Optimize for various kinds of code coverage

■ Line, Statement, Data-flow, etc. -- More next week



6817-214/514

Specification vs. Structural Testing

You can test for different objectives

● Structural Testing:
○ By some definitions, we are done. Full line coverage, branch coverage.

○ Rarely enough, but often adequate

● Specification Testing:
○ Do not rely on code; need to consider corner-cases

○ Think like an attacker



6917-214/514

Specification vs. Structural Testing
  /**
   * Checks if the provided card has been answered correctly the required 
number of times.
   * @param card The {@link CardStatus} object to check.
   * @return {@code true} if this card has been answered correctly at least 
{@code this.repetitions} times.
   */
  public boolean isComplete(CardStatus card) {
    return card.getSuccesses.get(0);  // <-- Bad, but passes both tests
  }



7017-214/514

Outlook

Homework 2 is all about testing

● Specification-testing the FlashCard system
● Some structural testing as well

○ More next Tuesday, also on coverage, test-case design

● To be released fairly soon



7117-214/514

Summary

● Being explicit about program behavior is ideal
○ Helps you detect bugs

○ Forces handling of special cases -- a key source of bugs

○ Increases transparency of your program’s interface

● Specification comes in multiple forms
○ Explicit contracts, formal or informal

○ Compile-time signals, e.g. through exceptions

○ Testing helps clarify, often improve specifications

■ TDD takes this to the extreme

■ You rarely know your code until you test it


