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Explicit over Implicit

Can anything go wrong with this?

int add(int a, int b) {
  return a + b;
}
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Explicit over Implicit

Can anything go wrong with this?

How about this:

int divide(int a, int b) {
  return a / b;
}

int add(int a, int b) {
  return a + b;
}
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Explicit over Implicit

Can anything go wrong with this?

How about this:

int divide(int a, int b) {
  return a / b;
}
divide(4, 3); // 1

int add(int a, int b) {
  return a + b;
}
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Explicit over Implicit

Can anything go wrong with this?

How about this:

int divide(int a, int b) {
  return a / b;
}
divide(4, 3); // 1
divide(2, 0); // Exception  
  java.lang.ArithmeticException: / by zero

int add(int a, int b) {
  return a + b;
}
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Explicit over Implicit

BTW, harder to force in TS*:

*Compile with: --target es2020

function divide(a: bigint, b: bigint): bigint {
    return a / b;
}
divide(4n, 3n); // 1
divide(2n, 0n); // RangeError: Division by zero
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Explicit over Implicit

Most real-world code has a contract.

● It might not be obvious to you!
● This is why we:

○ Encode specifications
○ Test
○ Use exceptions

● Imperative to build systems that scale
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Today

1. Exception Handling
2. Unit Testing
3. Specifications
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Exceptions

● Inform caller of problem by transfer of control
○ They split control-flow into a “normal” and an “erroneous” branch
○ Compare “if/else”

● Semantics
○ Propagates up the call stack until exception is caught, or main method is reached

■ So, it can terminate the program!
● Where do exceptions come from?
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Just try:

String read(String path) {
  return Files.lines(Path.of(path))
              .collect(Collectors.joining(“\n”));
}

Exceptions
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String read(String path) {
  try {
     return Files.lines(Path.of(path))
              .collect(Collectors.joining(“\n”));
  }
  catch (IOException e) {

// implement fall-back behavior.
  }
}

Handling Exceptions
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String read(String path) throws IOException {
  return Files.lines(Path.of(path))
            .collect(Collectors.joining(“\n”));
}

Handling Exceptions
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● You can’t forget to handle common failure modes
○ Explicit > implicit

○ Compare: using a flag or special return value

● Provide high-level summary of error
○ Compare: core dump in C/C++

● Improve code structure
○ Separate normal code path from exceptional

○ Error handling code is segregated in catch blocks

● Ease task of writing robust, maintainable code

Benefits of exceptions
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Exception Handling

Undeclared vs. Declared

int divide(int a, int b) {
  return a / b;
}

String read(String path) throws
                       IOException {
  return Files.lines(Path.of(path))
     .collect(Collectors.joining(“\n”));
}
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Exception Handling

Undeclared vs. Declared

Unchecked vs. Checked

int divide(int a, int b) {
  return a / b;
}

String read(String path) throws
                       IOException {
  return Files.lines(Path.of(path))
     .collect(Collectors.joining(“\n”));
}

divide(4, 3); // Compiles 
                 fine

read(“test.txt”); // Unhandled
  exception: java.io.IOException
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Exception Handling

Handling unchecked exceptions is not enforced by the compiler

These are quite common

● E.g., all exceptions in C++
● In Java: any exception that extends Error or RuntimeException
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Exception Handling

Handling unchecked exceptions is not enforced by the compiler

These are quite common

● E.g., all exceptions in C++
● In Java: any exception that extends Error or RuntimeException

○ E.g.:

○ Note: we don’t typically declare unchecked exceptions.

int divide(int a, int b) throws ArithmeticException {
  return a / b;
}
divide(4, 3); // Compiles fine
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Throwable

Exception

RuntimeException
IOException

EOFException

FileNotFoundException

NullPointerException

IndexOutOfBoundsException

ClassNotFoundException

Object

Error

StackOverflowError

…

…

…

…

Checked Exceptions

Java’s exception hierarchy (messy)
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● Unchecked exception
○ Programming error, other unrecoverable failure

● Checked exception
○ An error that every caller should be aware of and handle

● Special return value (e.g., null from Map.get)
○ Common but atypical result (not erroneous!) 

● Do not use error codes – too easy to ignore
● Avoid null return values

○ Never return null  instead of zero-length list or array

Design choice: checked vs. unchecked
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class BufferBoundsException extends Throwable {
  public BufferBoundsException(String message) {
    ...
  }
}

void atIndex(int[] buff, int i) throws CustomException {
  if (buff.length <= i)
    throw new BufferBoundsException(“...”);
  return buff[i];
}

Defining & using Exception Types
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Exception Handling

● It’s still wise to guard for “obvious” unchecked exceptions

● Or explicitly signal the problem, recall:

● Why is this better than letting the index fail?

if (arr.length > 10)
  return arr[10];

if (buff.length <= i)
  throw new BufferBoundsException(“...”);
return buff[i];
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Exception Handling

● It’s still wise to guard for “obvious” unchecked exceptions

● Or explicitly signal the problem, recall:

● Why is this better than letting the index fail?
○ BufferBoundsException can be a checked exception!
○ Which forces someone to handle it
○ Here, we declared: atIndex(int[] buff, int i) throws BufferBoundsException
○ So every calling method must handle it, or throw it on

if (arr.length > 10)
  return arr[10];

if (buff.length <= i)
  throw new BufferBoundsException(“...”);
return buff[i];
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Guidelines for using exceptions (1)

● Avoid unnecessary checked exceptions (EJ Item 71)
● Favor standard exceptions (EJ Item 72)

○ IllegalArgumentException – invalid parameter value
○ IllegalStateException – invalid object state
○ NullPointerException – null param where prohibited
○ IndexOutOfBoundsException – invalid index param
○ IOException -- and its subclasses, mostly for File-related actions

● Throw exceptions appropriate to abstraction (EJ Item 73)
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● Document all exceptions thrown by each method
○ Unchecked as well as checked (EJ Item 74)

○ But don’t declare unchecked exceptions!

● Include failure-capture info in detail message (Item 75)

throw new IlegalArgumentException(
    "Quantity must be positive: " + quantity);

Guidelines for using exceptions
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● Document all exceptions thrown by each method
○ Unchecked as well as checked (EJ Item 74)

○ But don’t declare unchecked exceptions!

● Include failure-capture info in detail message (Item 75)

● Don’t ignore exceptions (EJ Item 77)

throw new IllegalArgumentException(
    "Quantity must be positive: " + quantity);

Guidelines for using exceptions (2)

try {
   processPayment(payment);
}
catch (Exception e) {  // BAD!
}
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Cleanup

Exception handling often also supports cleaning up

openMyFile();
try {
  writeMyFile(theData); // This may throw an error
} catch(e) {
  handleError(e); // If an error occurred, handle it
} finally {
  closeMyFile(); // Always close the resource
}

https://developer.mozilla.org/en-US/docs/Web/JavaScript/Guide/Control_flow_and_error_handling
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Manual Resource Termination

Is ugly and error-prone, especially for multiple resources

● Even good programmers usually get it wrong
○ Sun’s Guide to Persistent Connections got it wrong in code that claimed to be exemplary

○ Solution on page 88 of Bloch and Gafter’s Java Puzzlers is badly broken; no one noticed 
for years

● 70% of the uses of close in the JDK itself were wrong in 2008!
● Even the “correct” idioms for manual resource management are deficient
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Automatically closes resources!

try (DataInputStream dataInput = 
        new DataInputStream(new FileInputStream(fileName))) {
    return dataInput.readInt();
} catch (IOException e) {
    ...
}

The solution: try-with-resources
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Exceptions Across Languages

Alas, try-with-resources does not exist in JS/TS

● Neither does ‘throws’

Exception structures differ radically across languages

● Most languages have ‘try/catch’ and ‘throw’
○ Some have ‘finally’

● Python has ‘with’ for resource management (since 2006)
○ C# has ‘using’

○ Java’s try-with-resources was added in 2011

● Go returns an error-typed value, to be checked for nullity
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Exceptions Across Languages

Use what you have

● When possible, be explicit
○ Use the compiler to enforce, where possible

○ Pro-actively pre-empt corner-cases, where not

■ Unchecked exceptions, JS/TS

● Make exceptions part of your contract
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Outline

1. Exception Handling
2. Unit Testing
3. Specifications
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Testing

How do we know
this works?

int isPos(int x) {
  return x >= 1;
}
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Testing

How do we know
this works?

Testing

Are we done?

int isPos(int x) {
  return x >= 1;
}

@Test
void testIsPos() {
  assertTrue(isPos(1));
}
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Testing

How do we know
this works?

Testing

Are we done?

int isPos(int x) {
  return x >= 1;
}

@Test
void testIsPos() {
  assertTrue(isPos(1));
}

@Test
void testNotPos() {
  assertFalse(isPos(-1));
}
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Testing

How do we know
this works?

Testing

Are we done?

int isPos(int x) {
  return x >= 0;  // What if?
}

@Test
void testIsPos() {
  assertTrue(isPos(1));
}

@Test
void testNotPos() {
  assertFalse(isPos(-1));
}
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Testing

How do we know
this works?

Testing

Are we done?

int isPos(int x) {
  return x >= 0;  // What if?
}

@Test
void test1IsPos() {
  assertTrue(isPos(1));
}

@Test
void test0IsNotPos() {
  assertFalse(isPos(0)); // Fails
}
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Testing

How do we know a program is correct?

● In a perfect world (maybe): formal verification
○ Easy enough for proving that isPos(x) -- the implementation is the definition

○ Tedious, cannot be done automatically

● Hence, testing
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Testing

● Execute the program with selected inputs in a controlled environment
○ Why is this related to contracts?
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Testing

● Execute the program with selected inputs in a controlled environment
○ Why is this related to contracts?

○ Because we need to know what to test!
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Testing

● Execute the program with selected inputs in a controlled environment
○ Why is this related to contracts?

○ Because we need to know what to test!

● Goals
○ Reveal bugs, so they can be fixed (primary goal)

○ Clarify the specification, documentation
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Unit Tests

● For “small” units: methods, classes, subsystems
○ Unit is smallest testable part of system

○ Test the parts before assembling them

○ Intended to catch local bugs

● Typically (but not always) written by developers
● Many small, fast-running, independent tests
● Few dependencies on other system parts or environment
● Insufficient, but a good starting point
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For Java: JUnit

● Popular unit-testing framework for Java
● Easy to use
● Tool support available, e.g., IntelliJ integration
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For Java: JUnit

Syntax: import static org.junit.Assert.*;

class PosTests {

  @Before
  void setUp() {
    // Anything you want to run 
       before each test
  }

  @Test
  void test1IsPos() {
    assertTrue(isPos(1));
  }
}
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For TS: Jest

● In particular, ts-jest
○ Many other options; your choice

● Requires a few files:
○ jest.config.js, to specify testing mode

○ package.json with (ts-)jest dependencies

● Provides useful features:
○ ‘test’, ‘expect’ (= ‘assert’)

○ ‘toBe’, ‘toEqual’

○ ‘fn’, for Mocking (later)
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Writing Testable Code

● Think about testing when writing code
○ Unit testing encourages you to write testable code

● Modularity and testability go hand in hand
○ Same test can be used on multiple implementations of an interface!

● Test-Driven Development
○ A design and development method in which you write tests before you write the code

○ Writing tests can expose API weaknesses!
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Run Tests Often

● You should only commit code that passses all tests…
● So run tests before every commit
● If test suite becomes too large & slow for rapid feedback

○ Run local package-level tests (“smoke tests”) frequently

○ Run all tests nightly

○ Medium sized projects often have thousands of test cases

● Continuous integration (CI) servers help to scale testing
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Reflections on Testing

“Testing shows the presence, not the absence of bugs.”

Edsger W. Dijkstra, 1969

“Functionality that can’t be demonstrated by automated test simply don't exist.”

Kent Beck
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Boundary Value Testing

We cannot test for every integer.

Choose representative values:
1 for positives, -1 for negatives

And boundary cases: 0 is a likely
candidate for mistakes

● Think like an attacker

int isPos(int x) {
  return x >= 0;  // What if?
}

@Test
void test1IsPos() {
  assertTrue(isPos(1));
}

@Test
void test0IsNotPos() {
  assertFalse(isPos(0)); // Fails
}
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Outline

1. Exception Handling
2. Unit Testing
3. Specifications
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So what exactly do you test?

● What it claims to do: specification testing
● What it does: structural testing

Specifications
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What is a contract?

● Agreement between an object and its user
○ What object provides, and user can count on

● Includes:
○ Method signature (type specifications)

○ Functionality and correctness expectations

○ Sometimes: performance expectations

● What the method does, not how it does it
○ Interface (API), not implementation

● “Focus on concepts rather than operations”
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Method contract details

● Defines method’s and caller’s responsibilities
● Analogy: legal contract

○ If you pay me this amount on this schedule…

○ I will build a room with the following detailed spec

○ Some contracts have remedies for nonperformance

● Method contract structure
○ Preconditions: what method requires for correct operation

○ Postconditions: what method establishes on completion

○ Exceptional behavior: what it does if precondition violated

● Defines correctness of implementation
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How to Encode Specifications?

Formal frameworks exist, to capture pre- and post-conditions

● E.g., ‘requires arr != null’
● Useful for formal verification
● But rarely used

○ Takes a lot of effort, and doesn’t scale well
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How to Encode Specifications?

More common: prose specification. Document:

● Every parameter
● Return value
● Every exception (checked and unchecked)
● What the method does, including

○ Primary purpose

○ Any side effects

○ Any thread safety issues

○ Any performance issues
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How to Encode Specifications?

More common: prose specification. Document

● Every parameter
● Return value
● Every exception (checked and unchecked)
● What the method does, including

○ Primary purpose

○ Any side effects

○ Any thread safety issues

○ Any performance issues

● Do not document implementation details
○ Known as overspecification
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Docstring Specification
class RepeatingCardOrganizer {
  ...

  public boolean isComplete(CardStatus card) {
    return card.getResults().stream()
      .filter(isSuccess -> isSuccess)
      .count() >= this.repetitions;
  }
}
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Docstring Specification
class RepeatingCardOrganizer {
  ...
  /**
   * Checks if the provided card has been answered correctly the required 
number of times.
   * @param card The {@link CardStatus} object to check.
   * @return {@code true} if this card has been answered correctly at least 
{@code this.repetitions} times.
   */
  public boolean isComplete(CardStatus card) {
    return card.getResults().stream()
      .filter(isSuccess -> isSuccess)
      .count() >= this.repetitions;
  }
}
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Docstring Specification
class RepeatingCardOrganizer {
  ...
  /**
   * Checks if the provided card has been answered correctly the required 
number of times.
   * @param card The {@link CardStatus} object to check.
   * @return {@code true} if this card has been answered correctly at least 
{@code this.repetitions} times.
   */
  public boolean isComplete(CardStatus card) {
    // IGNORE THIS WHEN SPECIFICATION TESTING!
  }
}
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Docstring Specification
  /**
   * Checks if the provided card has been answered correctly the required 
number of times.
   * @param card The {@link CardStatus} object to check.
   * @return {@code true} if this card has been answered correctly at least 
{@code this.repetitions} times.
   */
  public boolean isComplete(CardStatus card);

  // What is specified?
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Docstring Specification
  /**
   * Checks if the provided card has been answered correctly the required 
number of times.
   * @param card The {@link CardStatus} object to check.
   * @return {@code true} if this card has been answered correctly at least 
{@code this.repetitions} times.
   */
  public boolean isComplete(CardStatus card);

  // What is specified?
  // - Parameter type (no constraints)
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Docstring Specification
  /**
   * Checks if the provided card has been answered correctly the required 
number of times.
   * @param card The {@link CardStatus} object to check.
   * @return {@code true} if this card has been answered correctly at least 
{@code this.repetitions} times.
   */
  public boolean isComplete(CardStatus card);

  // What is specified?
  // - Parameter type (no constraints)
  // - Return constraints: “at least” this.repetitions correct answers
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Docstring Specification
  /**
   * Checks if the provided card has been answered correctly the required 
number of times.
   * @param card The {@link CardStatus} object to check.
   * @return {@code true} if this card has been answered correctly at least 
{@code this.repetitions} times.
   */
  public boolean isComplete(CardStatus card);

  // What is specified?
  // - Parameter type (no constraints)
  // - Return constraints: “at least” this.repetitions correct answers
  // So what do we test?
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Docstring Specification
  /**
   * Checks if the provided card has been answered correctly the required 
number of times.
   * @param card The {@link CardStatus} object to check.
   * @return {@code true} if this card has been answered correctly at least 
{@code this.repetitions} times.
   */
  public boolean isComplete(CardStatus card);

@Test
public void testIsCompleteSingleSuccess() {
  CardRepeater repeater = new RepeatingCardOrganizer(1); // Single repetition
  CardStatus cs = new CardStatus(new FlashCard(“”, “”));
  cs.recordResult(true); // Single Success
  assert???(repeater.isComplete(cs));
}
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Docstring Specification
  /**
   * Checks if the provided card has been answered correctly the required 
number of times.
   * @param card The {@link CardStatus} object to check.
   * @return {@code true} if this card has been answered correctly at least 
{@code this.repetitions} times.
   */
  public boolean isComplete(CardStatus card);

@Test
public void testIsCompleteSingleSuccess() {
  CardRepeater repeater = new RepeatingCardOrganizer(1); // Single repetition
  CardStatus cs = new CardStatus(new FlashCard(“”, “”));
  cs.recordResult(true); // Single Success
  assertTrue(repeater.isComplete(cs));
}
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Docstring Specification
  /**
   * Checks if the provided card has been answered correctly the required 
number of times.
   * @param card The {@link CardStatus} object to check.
   * @return {@code true} if this card has been answered correctly at least 
{@code this.repetitions} times.
   */
  public boolean isComplete(CardStatus card);

@Test
public void testIsNotCompleteSingleFailure() {
  CardRepeater repeater = new RepeatingCardOrganizer(1); // Single repetition
  CardStatus cs = new CardStatus(new FlashCard(“”, “”));
  cs.recordResult(false); // Single failure
  assertFalse(repeater.isComplete(cs));
}
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Docstring Specification
class RepeatingCardOrganizer {
  ...
  /**
   * Checks if the provided card has been answered correctly the required 
number of times.
   * @param card The {@link CardStatus} object to check.
   * @return {@code true} if this card has been answered correctly at least 
{@code this.repetitions} times.
   */
  public boolean isComplete(CardStatus card) {
    return card.getResults().stream()
      .filter(isSuccess -> isSuccess)
      .count() >= this.repetitions;
  }
}

We’ve now run this twice. 
Are we done testing?
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Specification vs. Structural Testing

You can test for different objectives

● Specification-based testing: test solely the specification
○ Ignores implementation, use inputs/outputs only
○ Cover all specified behavior

● Structural Testing: consider implementation
○ Optimize for various kinds of code coverage

■ Line, Statement, Data-flow, etc. -- More next week
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Specification vs. Structural Testing

You can test for different objectives

● Structural Testing:
○ By some definitions, we are done. Full line coverage, branch coverage.

○ Rarely enough, but often adequate

● Specification Testing:
○ Do not rely on code; need to consider corner-cases

○ Think like an attacker
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Specification vs. Structural Testing
  /**
   * Checks if the provided card has been answered correctly the required 
number of times.
   * @param card The {@link CardStatus} object to check.
   * @return {@code true} if this card has been answered correctly at least 
{@code this.repetitions} times.
   */
  public boolean isComplete(CardStatus card) {
    return card.getSuccesses.get(0);  // <-- Bad, but passes both tests
  }
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Outlook

Homework 2 is all about testing

● Specification-testing the FlashCard system
● Some structural testing as well

○ More next Tuesday, also on coverage, test-case design

● To be released fairly soon
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Summary

● Being explicit about program behavior is ideal
○ Helps you detect bugs

○ Forces handling of special cases -- a key source of bugs

○ Increases transparency of your program’s interface

● Specification comes in multiple forms
○ Explicit contracts, formal or informal

○ Compile-time signals, e.g. through exceptions

○ Testing helps clarify, often improve specifications

■ TDD takes this to the extreme

■ You rarely know your code until you test it


