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Last Week

e Unit testing: small, simple, per-method tests
e Specification vs. Structural testing
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Little Quiz
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https://forms.gle/Am48bu6avqLh7ytb9

Note on Precondition Testing

EJ auestion @175 .

HW2 - Testing constructor for RepeatingCardOrganizer
How should | test the constructor for RepeatingCardOrganizer?

The javadoc mentions that repetitions must be positive, but it doesn’t explicitly say that an exception / error will be thrown (like AssertionError) if that is violated.

[
* Creates a RepeatingCardSorter instance.
*
* @param repetitions The number of repetitions to require of each card. Must be positive.
Xy
public RepeatingCardOrganizer(int repetitions) {
assert repetitions >= 1;

this.repetitions = repetitions;

p;

Visit “Manage Class’ to disable runnable code snippets €9

| understand that we shouldn’t assume anything not stated (an exception / error will be thrown). But if we don’t do that, the behavior of the RepeatingCardOrganizer will be undefined if we pass an
invalid value.

How should we deal with that?
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Today

e Structural Testing Strategies
o Statement, branch, path coverage; limitations

e \Writing testable code & good tests

e Specification Testing Strategies
o Boundary value analysis, combinatorial testing, decision tables

e Bit of both
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Structural Testing: a closer look

Takes into account the internal mechanism of a system (IEEE, 1990).
e Approaches include tracing data and control flow through a program
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Case Study

Assume various Wallets

public interface Wallet {
boolean pay(int cost);

int getValue();
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DebitWallet.pay()

What should we test in this code?
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public boolean pay(int cost) {
if (cost <= this.money) {
this.money -= cost;
return true;

}

return false;




DebitWallet.pay()
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public boolean pay(int cost) {
if (cost <= this.money) {
this.money -= cost;
return true;

}

return false;

}

new DebitWallet(160).pay(10);
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DebitWallet.pay()
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public boolean pay(int cost) {
if (cost <= this.money) {
this.money -= cost;
return true;

}

return false;

}

new DebitWallet(0).pay(10);
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CreditWallet.pay()

How about now?
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public boolean pay(int cost, boolean useCredit) {
if (useCredit) {
if (this.credit + cost <= this.maxCredit) {
this.credit += cost;
return true;

}

}

if (cost <= this.cash) {
this.cash -= cost;
return true;

}

return false;
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CreditWallet.pay()

public boolean pay(int cost, boolean useCredit) {
if (useCredit) {
if (enoughCredit) {
return true;
}
}

if (enoughCash) {
return true;
}

return false;

Exercise: think about as many test scenarios as you can
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CreditWallet.pay()

public boolean pay(int cost, boolean useCredit) {
if (useCredit) {
if (enoughCredit) {
return true;

}
Enough [Enough
) Credit Coverage
if (enoughCash) { . HSERIEEt Credit | Cash 8

return true;
} Pass

return false; ‘
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CreditWallet.pay()

public boolean pay(int cost, boolean useCredit) {
if (useCredit) {
if (enoughCredit) {
return true;
}
}

Enough [Enoug
Credit Coverage
if (enoughCash) { .M

return true;

) Pass
; return false; 2 = ) n Pass B
3 F - F Fails Statement
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Coverage
We have tested every statement; are we done?
Depends on desired coverage:

e Provide at least one test for distinct types of behavior
e Typically on control flow paths through the program
e Statement, branch, basis paths, MC/DC

17-214/514 15 Sf 2?}3}&{%



Structures in Code

® ®
®
®
® L]
sequence If .. then If .. then .. else
9
L
Do .. While While .. Do Switch
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Control-Flow of CreditCard.pay()

true

enough
Credit

pay
w/credit
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Control-Flow of CreditCard.pay()

false
Enough [Enough
. useCredit Credit | Cash M Coverage

true

enough
Credit

Pass enough pay
w/credit
2 F - T Pass =
3 F - F Fails Statement
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Control-Flow of CreditCard.pay()

false
Enough [Enough
. useCredit Credit | Cash M Coverage

true

enough
Credit

Pass enough pay
w/credit
2 F - T Pass =
3 F - F Fails Statement
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CreditWallet.pay()

public boolean pay(int cost, boolean useCredit) {

Enough [Enoug
IIIIIIIHHH!IHHHIII!!!!!III!!!!IIII!’I!IIIIHHIHHH%HIII

if (useCredit) {
if (enoughCredit) {
return true;
}
}

if (enoughCash) {
return true;

}
return false;
2
}
3
4
17-214/514
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Pass
Pass
Fails

Pass

Statement .
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Path Coverage

We have seen every condition ... what else is missing?
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Path Coverage

We have seen every condition ... but not every path.

e 3 conditions, each with two values = 8 permutations
e Some permutations are impossible
e Still one path left
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Control-Flow of CreditCard.pay()

Paths:

e {true, true}. pay w/credit
e {false, true}: pay w/cash
e {false, false}: fail
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Control-Flow of CreditCard.pay()

Paths:

{true, true}: pay w/credit

{false, true}: pay w/cash

{false, false}: fail

{true, false, true}: pay w/cash
after failing credit

e {true, false, false}: try credit, but
fail, and no cash
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CreditWallet.pay()

public boolean pay(int cost, boolean useCredit) {
if (useCredit) {
if (enoughCredit) {
return true;

}
} Enough Enough

return true,

} T Pass
} return false; ) - i T Pass
3 F - F Fails
4 T F T Pass
5 T F F Fails
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BitCoinWallet.pay()
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public boolean pay(int cost) {
int currValue;
while ((currValue = getValue()) < cost) {
// Just wait.
}

this.btc -= cost / currValue;
return true;

}

public int getValue() {
return (int)
(this.btc * Math.pow(2, 206*Math.random()));
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Control-flow of BitCoinWallet.pay()

BTC value
enough?
true

What are all the paths?
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Control-flow of BitCoinWallet.pay()

What are all the paths?

BTC value
{true}
{false, true} true
{false, false, true} false

{false, false, false, true}
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Control-flow of BitCoin\Wallet.pay()

Perfect “general” path coverage is elusive

But “adequate” coverage criteria exist:

BTC value
‘ enough?

false

e Basis paths: each path must cover one new edge

o {true} and {false, true} are sufficient
o Asisjust {false, true}

e Loop adequacy: iterate each loop zero, one, and 2+ times
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More Coverage

Many more criteria exist:

e For branches with multiple conditions
o Modified Condition/Decision Coverage is quite popular

e Forloops
o Boundary Interior Testing

e Branch coverage is by far the most common
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Coverage and Quality

e Question 1: Is there a defect?

else
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Coverage and Quality

e Question 2: Can we achieve 100%
statement coverage and miss the

defect?
then @
else
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Coverage and Quality

Question 3: Can we achieve 100%
branch coverage and miss the defect?
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Outline

e Structural Testing Strategies
e Writing testable code & good tests
e Specification Testing Strategies
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Writing Testable Code

What is the problem with this?

public boolean hasHeader(String path) throws IOException {
List<String> lines = Files.readAllLines(Path.of(path));
return !lines.get(0).isEmpty()

}

// complete control-flow coverage!
hasHeader(“cards.csv”) // true
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Writing Testable Code

What is the problem with this?

17-214/514

public boolean hasHeader(String path) throws IOException {
List<String> lines = Files.readAllLines(Path.of(path));
return !lines.get(0).isEmpty()

}

// to achieve a ‘false’ output:

try {
Path tempFile = Files.createTempFile(null, null);
Files.write(tempFile, "\n".getBytes(StandardCharsets.UTF_8));
hasHeader (tempFile.toFile().getAbsolutePath()); // false

} catch (IOException e) {
e.printStackTrace();

}




Writing Testable Code

Exercise: rewrite to make this easier

e And: what would you test?

public boolean hasHeader(String path) throws IOException {
List<String> lines = Files.readAllLines(Path.of(path));
return !lines.get(0).isEmpty()

}
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Writing Testable Code

Aim to write easily testable code

e \Which is almost by definition more modular

public List<String> getlLines(String path) throws IOException {
return Files.readAllLines(Path.of(path));
}

public boolean hasHeader(List<String> lines) {
return !lines.get(0).isEmpty()
}

// Test:
// - hasHeader with empty, non-empty first line
// - getLines (if you must) with null, real path
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Writing Testable Code

What is the problem with this?

public String[] getHeaderParts(List<String> lines) {
if (!'lines.isEmpty()) {
String header = lines.get(9);
if (header.contains(",")) {
return header.split(",");
} else {
return new String[0];
}

} else {
return null;
}
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Writing Testable Code

Split functionality into easily testable units

public String getFirstLine(List<String> lines) {
if (!lines.isEmpty()) {
return lines.get(0);
} else {
return null;
}

}

public String[] getHeaderParts(String header) {
if (header.contains(",")) {
return header.split(",");
} else {

return new String[0];
}
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Clean Testing

What is the problem with this?

public String[] getHeaderParts(String header) {
if (header.contains(",")) {
return header.split(",");
} else {
return null;
}
}
@Test
public void testGetHeaderParts() {
for (String header : List.of("line", "", "one,two")) {
String[] parts = getHeaderParts(line);
if (header.contains(",")) assertNull(parts);
else assertEqual(header.split(","), parts.length);
}
17-214/514 ;
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Clean Testing

Keep tests simple, small

public String[] getHeaderParts(String header) {
if (header.contains(",")) {
return header.split(",");
} else {
return null;
}

}

@Test
public void testGetHeaderPartsNoComma() {

String[] parts = getHeaderParts("line");
assertNull(parts);

}

@Test
17-214/514 "~ a2 @i




Testing Best Practices

Coverage is useful, but no substitute for your insight

e Cannot capture all paths
o Especially beyond “unit”
o  Write testable code

e You may be testing buggy code

o (add regression tests)

e Aim for at least branch coverage
o And think through scenarios that demand more

17-214/514
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Outline

e Structural Testing Strategies
e \Writing testable code & good tests
e Specification Testing Strategies
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Back to Specification Testing

What would you test differently in this situation?

e Previously identified five paths through the code. Are there still?
e Should we test anything new?

/** Pays with credit if useCredit is set and enough
* credit is available; otherwise, pays with cash if

v
public boolean pay(int cost, boolean useCredit);

* enough cash is available; otherwise, returns false.

17-214/514
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Back to Specification Testing

What would you test differently in this situation?

e ‘“if useCredit is set and enough credit is available”:
o Test both true, either/both false

e “pays with cash if enough cash is available; otherwise”:
o Test true, false

e Could to this with three test cases

/** Pays with credit if useCredit is set and enough
* credit is available; otherwise, pays with cash if

v
public boolean pay(int cost, boolean useCredit);

* enough cash is available; otherwise, returns false.

17-214/514
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Specification Testing

We need a strategy to identify plausible mistakes
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Specification Testing

We need a strategy to identify plausible mistakes

e Random: avoids bias, but inefficient
o Yet potentially very valuable, because automatable
o Not for today
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Boundary Value Testing

We need a strategy to identify plausible mistakes

e Boundary Value Testing: errors often occur at boundary conditions

o E.qg.

*/
public boolean pay(int cost) {
if (cost | this.money) {
this.money -= cost;
return true;

}

return false;

/** Returns true and subtracts cost if enough
* money is available, false otherwise.

17-214/514
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Boundary Value Testing

We need a strategy to identify plausible mistakes

e Boundary Value Testing: errors often occur at boundary conditions
o ldentify equivalence partitions: regions where behavior should be the same
m cost <= money: true, cost > money: false
m Boundary value: cost == money

/** Returns true and subtracts cost if enough
* money is available, false otherwise.
%)
public boolean pay(int cost) {
if (cost | this.money) {
this.money -= cost;
return true;

}

return false;
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Boundary Value Testing

We need a strategy to identify plausible mistakes

e Boundary Value Testing: errors often occur at boundary conditions

o Select: a nominal/normal case, a boundary value, and an abnormal case
o Useful for few categories of behavior (e.g., null/not-null) per value

e Test:cost < credit, cost == credit, cost > credit,
cost < cash, cost == cash, cost > cash

/** Pays with credit if useCredit is set and enough
* credit is available; otherwise, pays with cash if

v
public boolean pay(int cost, boolean useCredit);

* enough cash is available; otherwise, returns false.

17-214/514

o
1 institute for
5 | S SOFTWARE
RESEARCH



Combinatorial Testing

We need a strategy to identify plausible mistakes

e Combinatorial Testing: focus on tuples of boundary values
o Captures bugs in interactions between risky inputs
o Rarely need to test pairs of “invalid” values (cost too high for credit & cash)

/** Pays with credit if useCredit is set and enough
* credit is available; otherwise, pays with cash if

v
public boolean pay(int cost, boolean useCredit);

* enough cash is available; otherwise, returns false.

17-214/514
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Combinatorial Testing

We need a strategy to identify plausible mistakes

e Combinatorial Testing: focus on tuples of boundary values
o Captures bugs in interactions between risky inputs
o Rarely need to test pairs of “invalid” values (cost too high for credit & cash)

e Include: {cost > credit && cost == cash}
e Maybe: {cost < credit && cost == cash}

/** Pays with credit if useCredit is set and enough
* credit is available; otherwise, pays with cash if

v
public boolean pay(int cost, boolean useCredit);

* enough cash is available; otherwise, returns false.

17-214/514
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Decision Tables

We need a strategy to identify plausible mistakes

e Decision Tables

o You've seen one already U useCredit Enough | Enough
o Enumerate condition options case
m Leave outimpossibles 1 T T _ Pass
m Identify “don’t-matter” values
o  Useful for redundant input domains 2 F - T Pass
3 F - F Fails
4 T F T Pass
5 T F F Fails
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Specification Tests

So what is the right granularity?

e Itdepends

e \We are still aiming for coverage

o Just of specifications, and their innumerable implementations
o BVA (& its cousins), decision tables tend to provide good coverage

17-214/514 55 sl

RESEARCH



Structural Testing vs. Specification Testing

You will typically have both code & (prose) specification

e Test specification, but know that it can be underspecified
e TJest implementation, but not to the point that it cannot change

e Use testing strategies that leverage both
o There is a fair bit of overlap; e.g., BVA yields useful branch coverage
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Further Testing Strategies

Many more aspects, some later in this course:

e Stubbing/Mocking, to avoid testing dependencies
e Integration testing: scenarios that span units
e Beyond correctness: performance, security
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Summary

Testing comprehensively is hard

e Tailor to your task: specification vs. structural testing

o Do not assume unstated specifications for part 2; spend your energy wisely in part 3
e Pick a strategy, or a few

o Be systematic; defend your decisions
e Tomorrow’s recitation covers:

o Unit test best practices

o Test organization
o Running tests, coverage; Travis setup
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Bonus: Coding like the tour the france

public boolean foo() {
try
synchronized () {
if
}else {

%or 0{
if () {

https://thedailywtf.com/articles/coding-like-the-tour-de-france
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