Principles of Software Construction:
Objects, Design, and Concurrency

Test case design

Christian Kastner Vincent Hellendoorn

Carnegie Mellon University
School of Computer Science

institute for
I S SOFTWARE
RESEARCH

17-214/514 1 [s

Last Week

e Unit testing: small, simple, per-method tests
e Specification vs. Structural testing

17-214/514 2 Sf 2?:‘2’&1{‘2%

Little Quiz

(@)
O
-
>
N~
L
—
O
>
o
O
-
O
(00
4
&
<
b
O
7p)
&
o
@)
|
=
7p]
(@]
=
L

17-214/514

https://forms.gle/Am48bu6avqLh7ytb9

Note on Precondition Testing

EJ auestion @175 .

HW2 - Testing constructor for RepeatingCardOrganizer
How should | test the constructor for RepeatingCardOrganizer?

The javadoc mentions that repetitions must be positive, but it doesn’t explicitly say that an exception / error will be thrown (like AssertionError) if that is violated.

[
* Creates a RepeatingCardSorter instance.
*
* @param repetitions The number of repetitions to require of each card. Must be positive.
Xy
public RepeatingCardOrganizer(int repetitions) {
assert repetitions >= 1;

this.repetitions = repetitions;

p;

Visit “Manage Class’ to disable runnable code snippets €9

| understand that we shouldn’t assume anything not stated (an exception / error will be thrown). But if we don’t do that, the behavior of the RepeatingCardOrganizer will be undefined if we pass an
invalid value.

How should we deal with that?

17-214/514 4 sl

RESEARCH

Today

e Structural Testing Strategies
o Statement, branch, path coverage; limitations

e \Writing testable code & good tests

e Specification Testing Strategies
o Boundary value analysis, combinatorial testing, decision tables

e Bit of both

17-214/514 5 initte for

SOFTWARE
RESEARCH

Structural Testing: a closer look

Takes into account the internal mechanism of a system (IEEE, 1990).
e Approaches include tracing data and control flow through a program

17-214/514 6 Sf 225’2;*;"%{%

Case Study

Assume various Wallets

public interface Wallet {
boolean pay(int cost);

int getValue();

17-214/514 7 Lo

DebitWallet.pay()

What should we test in this code?

17-214/514

public boolean pay(int cost) {
if (cost <= this.money) {
this.money -= cost;
return true;

}

return false;

DebitWallet.pay()

17-214/514

public boolean pay(int cost) {
if (cost <= this.money) {
this.money -= cost;
return true;

}

return false;

}

new DebitWallet(160).pay(10);

||||||||||||
SSSSSSSS
E H

DebitWallet.pay()

17-214/514

public boolean pay(int cost) {
if (cost <= this.money) {
this.money -= cost;
return true;

}

return false;

}

new DebitWallet(0).pay(10);

||||||||||||
SSSSSSSS
E H

CreditWallet.pay()

How about now?

17-214/514

public boolean pay(int cost, boolean useCredit) {
if (useCredit) {
if (this.credit + cost <= this.maxCredit) {
this.credit += cost;
return true;

}

}

if (cost <= this.cash) {
this.cash -= cost;
return true;

}

return false;

11 [

institute for
SOFTWARE
RESEARCH

CreditWallet.pay()

public boolean pay(int cost, boolean useCredit) {
if (useCredit) {
if (enoughCredit) {
return true;
}
}

if (enoughCash) {
return true;
}

return false;

Exercise: think about as many test scenarios as you can

17-214/514 12 Lo

CreditWallet.pay()

public boolean pay(int cost, boolean useCredit) {
if (useCredit) {
if (enoughCredit) {
return true;

}
Enough [Enough
) Credit Coverage
if (enoughCash) { . HSERIEEt Credit | Cash 8

return true;
} Pass

return false; ‘

17-214/514 13 [v

CreditWallet.pay()

public boolean pay(int cost, boolean useCredit) {
if (useCredit) {
if (enoughCredit) {
return true;
}
}

Enough [Enoug
Credit Coverage
if (enoughCash) { .M

return true;

) Pass
; return false; 2 =) n Pass B
3 F - F Fails Statement

17-214/514 14 Lo

Coverage
We have tested every statement; are we done?
Depends on desired coverage:

e Provide at least one test for distinct types of behavior
e Typically on control flow paths through the program
e Statement, branch, basis paths, MC/DC

17-214/514 15 Sf 2?}3}&{%

Structures in Code

® ®
®
®
® L]
sequence If .. then If .. then .. else
9
L
Do .. While While .. Do Switch

17-214/514 16 [s

RESEARCH

Control-Flow of CreditCard.pay()

true

enough
Credit

pay
w/credit

17-214/514 17 [s

Control-Flow of CreditCard.pay()

false
Enough [Enough
. useCredit Credit | Cash M Coverage

true

enough
Credit

Pass enough pay
w/credit
2 F - T Pass =
3 F - F Fails Statement

17-214/514 18 [s

Control-Flow of CreditCard.pay()

false
Enough [Enough
. useCredit Credit | Cash M Coverage

true

enough
Credit

Pass enough pay
w/credit
2 F - T Pass =
3 F - F Fails Statement

17-214/514 19 [B s

CreditWallet.pay()

public boolean pay(int cost, boolean useCredit) {

Enough [Enoug
IIIIIIIHHH!IHHHIII!!!!!III!!!!IIII!’I!IIIIHHIHHH%HIII

if (useCredit) {
if (enoughCredit) {
return true;
}
}

if (enoughCash) {
return true;

}
return false;
2
}
3
4
17-214/514

-4 m =™ o+

- =m o

Pass
Pass
Fails

Pass

Statement .

o
20 institute for
| S SOFTWARE
RESEARCH

Path Coverage

We have seen every condition ... what else is missing?

17-214/514 21 o

RESEARCH

Path Coverage

We have seen every condition ... but not every path.

e 3 conditions, each with two values = 8 permutations
e Some permutations are impossible
e Still one path left

17-214/514 22 iy

Control-Flow of CreditCard.pay()

Paths:

e {true, true}. pay w/credit
e {false, true}: pay w/cash
e {false, false}: fail

17-214/514 23 |[Hj o

Control-Flow of CreditCard.pay()

Paths:

{true, true}: pay w/credit

{false, true}: pay w/cash

{false, false}: fail

{true, false, true}: pay w/cash
after failing credit

e {true, false, false}: try credit, but
fail, and no cash

17-214/514 24 [|{ i

RRRRRRRR

CreditWallet.pay()

public boolean pay(int cost, boolean useCredit) {
if (useCredit) {
if (enoughCredit) {
return true;

}
} Enough Enough

return true,

} T Pass
} return false;) - i T Pass
3 F - F Fails
4 T F T Pass
5 T F F Fails

17-214/514 25 Sf 2?}3}{1{%

BitCoinWallet.pay()

17-214/514

public boolean pay(int cost) {
int currValue;
while ((currValue = getValue()) < cost) {
// Just wait.
}

this.btc -= cost / currValue;
return true;

}

public int getValue() {
return (int)
(this.btc * Math.pow(2, 206*Math.random()));

||||||||||||
SSSSSSSS
E H

Control-flow of BitCoinWallet.pay()

BTC value
enough?
true

What are all the paths?

17-214/514 27 [Hj s

RRRRRRRR

Control-flow of BitCoinWallet.pay()

What are all the paths?

BTC value
{true}
{false, true} true
{false, false, true} false

{false, false, false, true}

17'214/514 28 Sf gé}?i{%

Control-flow of BitCoin\Wallet.pay()

Perfect “general” path coverage is elusive

But “adequate” coverage criteria exist:

BTC value
‘ enough?

false

e Basis paths: each path must cover one new edge

o {true} and {false, true} are sufficient
o Asisjust {false, true}

e Loop adequacy: iterate each loop zero, one, and 2+ times

17-2 14/5 14 29 Sf géﬁi{%

More Coverage

Many more criteria exist:

e For branches with multiple conditions
o Modified Condition/Decision Coverage is quite popular

e Forloops
o Boundary Interior Testing

e Branch coverage is by far the most common

17-214/514 30 sl

RESEARCH

Coverage and Quality

e Question 1: Is there a defect?

else

17-214/514 31 [

Coverage and Quality

e Question 2: Can we achieve 100%
statement coverage and miss the

defect?
then @
else

17-214/514 32 [s

Coverage and Quality

Question 3: Can we achieve 100%
branch coverage and miss the defect?

17-214/514 33 [s

Outline

e Structural Testing Strategies
e Writing testable code & good tests
e Specification Testing Strategies

17-214/514 34 Sf 2?;“5*}{1{%

Writing Testable Code

What is the problem with this?

public boolean hasHeader(String path) throws IOException {
List<String> lines = Files.readAllLines(Path.of(path));
return !lines.get(0).isEmpty()

}

// complete control-flow coverage!
hasHeader(“cards.csv”) // true

17-214/514

Writing Testable Code

What is the problem with this?

17-214/514

public boolean hasHeader(String path) throws IOException {
List<String> lines = Files.readAllLines(Path.of(path));
return !lines.get(0).isEmpty()

}

// to achieve a ‘false’ output:

try {
Path tempFile = Files.createTempFile(null, null);
Files.write(tempFile, "\n".getBytes(StandardCharsets.UTF_8));
hasHeader (tempFile.toFile().getAbsolutePath()); // false

} catch (IOException e) {
e.printStackTrace();

}

Writing Testable Code

Exercise: rewrite to make this easier

e And: what would you test?

public boolean hasHeader(String path) throws IOException {
List<String> lines = Files.readAllLines(Path.of(path));
return !lines.get(0).isEmpty()

}

17-214/514 37 o

Writing Testable Code

Aim to write easily testable code

e \Which is almost by definition more modular

public List<String> getlLines(String path) throws IOException {
return Files.readAllLines(Path.of(path));
}

public boolean hasHeader(List<String> lines) {
return !lines.get(0).isEmpty()
}

// Test:
// - hasHeader with empty, non-empty first line
// - getLines (if you must) with null, real path

17-214/514 38 Lo

Writing Testable Code

What is the problem with this?

public String[] getHeaderParts(List<String> lines) {
if (!'lines.isEmpty()) {
String header = lines.get(9);
if (header.contains(",")) {
return header.split(",");
} else {
return new String[0];
}

} else {
return null;
}

17-214/514 39 S3F st

Writing Testable Code

Split functionality into easily testable units

public String getFirstLine(List<String> lines) {
if (!lines.isEmpty()) {
return lines.get(0);
} else {
return null;
}

}

public String[] getHeaderParts(String header) {
if (header.contains(",")) {
return header.split(",");
} else {

return new String[0];
}

17-214/514 }

Clean Testing

What is the problem with this?

public String[] getHeaderParts(String header) {
if (header.contains(",")) {
return header.split(",");
} else {
return null;
}
}
@Test
public void testGetHeaderParts() {
for (String header : List.of("line", "", "one,two")) {
String[] parts = getHeaderParts(line);
if (header.contains(",")) assertNull(parts);
else assertEqual(header.split(","), parts.length);
}
17-214/514 ;

||||||||||||
SSSSSSSS
E H

Clean Testing

Keep tests simple, small

public String[] getHeaderParts(String header) {
if (header.contains(",")) {
return header.split(",");
} else {
return null;
}

}

@Test
public void testGetHeaderPartsNoComma() {

String[] parts = getHeaderParts("line");
assertNull(parts);

}

@Test
17-214/514 "~ a2 @i

Testing Best Practices

Coverage is useful, but no substitute for your insight

e Cannot capture all paths
o Especially beyond “unit”
o Write testable code

e You may be testing buggy code

o (add regression tests)

e Aim for at least branch coverage
o And think through scenarios that demand more

17-214/514

43 [Hi

institute for
SOFTWARE
RESEARCH

Outline

e Structural Testing Strategies
e \Writing testable code & good tests
e Specification Testing Strategies

17-2 14/5 14 44 Sf gé}?i{%

Back to Specification Testing

What would you test differently in this situation?

e Previously identified five paths through the code. Are there still?
e Should we test anything new?

/** Pays with credit if useCredit is set and enough
* credit is available; otherwise, pays with cash if

v
public boolean pay(int cost, boolean useCredit);

* enough cash is available; otherwise, returns false.

17-214/514

o
institute for
45 [H] s

Back to Specification Testing

What would you test differently in this situation?

e ‘“if useCredit is set and enough credit is available”:
o Test both true, either/both false

e “pays with cash if enough cash is available; otherwise”:
o Test true, false

e Could to this with three test cases

/** Pays with credit if useCredit is set and enough
* credit is available; otherwise, pays with cash if

v
public boolean pay(int cost, boolean useCredit);

* enough cash is available; otherwise, returns false.

17-214/514

o
institute for
46 [H]

Specification Testing

We need a strategy to identify plausible mistakes

17-214/514 47 [q o

RRRRRRRR

Specification Testing

We need a strategy to identify plausible mistakes

e Random: avoids bias, but inefficient
o Yet potentially very valuable, because automatable
o Not for today

17-214/514 48 Lo

Boundary Value Testing

We need a strategy to identify plausible mistakes

e Boundary Value Testing: errors often occur at boundary conditions

o E.qg.

*/
public boolean pay(int cost) {
if (cost | this.money) {
this.money -= cost;
return true;

}

return false;

/** Returns true and subtracts cost if enough
* money is available, false otherwise.

17-214/514

o
institute for
49 [H] e

Boundary Value Testing

We need a strategy to identify plausible mistakes

e Boundary Value Testing: errors often occur at boundary conditions
o ldentify equivalence partitions: regions where behavior should be the same
m cost <= money: true, cost > money: false
m Boundary value: cost == money

/** Returns true and subtracts cost if enough
* money is available, false otherwise.
%)
public boolean pay(int cost) {
if (cost | this.money) {
this.money -= cost;
return true;

}

return false;

17-214/514 50 sl

RESEARCH

Boundary Value Testing

We need a strategy to identify plausible mistakes

e Boundary Value Testing: errors often occur at boundary conditions

o Select: a nominal/normal case, a boundary value, and an abnormal case
o Useful for few categories of behavior (e.g., null/not-null) per value

e Test:cost < credit, cost == credit, cost > credit,
cost < cash, cost == cash, cost > cash

/** Pays with credit if useCredit is set and enough
* credit is available; otherwise, pays with cash if

v
public boolean pay(int cost, boolean useCredit);

* enough cash is available; otherwise, returns false.

17-214/514

o
1 institute for
5 | S SOFTWARE
RESEARCH

Combinatorial Testing

We need a strategy to identify plausible mistakes

e Combinatorial Testing: focus on tuples of boundary values
o Captures bugs in interactions between risky inputs
o Rarely need to test pairs of “invalid” values (cost too high for credit & cash)

/** Pays with credit if useCredit is set and enough
* credit is available; otherwise, pays with cash if

v
public boolean pay(int cost, boolean useCredit);

* enough cash is available; otherwise, returns false.

17-214/514

52 [Hj

institute for
SOFTWARE
RESEARCH

Combinatorial Testing

We need a strategy to identify plausible mistakes

e Combinatorial Testing: focus on tuples of boundary values
o Captures bugs in interactions between risky inputs
o Rarely need to test pairs of “invalid” values (cost too high for credit & cash)

e Include: {cost > credit && cost == cash}
e Maybe: {cost < credit && cost == cash}

/** Pays with credit if useCredit is set and enough
* credit is available; otherwise, pays with cash if

v
public boolean pay(int cost, boolean useCredit);

* enough cash is available; otherwise, returns false.

17-214/514

o
institute for
53 [H] o

Decision Tables

We need a strategy to identify plausible mistakes

e Decision Tables

o You've seen one already U useCredit Enough | Enough
o Enumerate condition options case
m Leave outimpossibles 1 T T _ Pass
m Identify “don’t-matter” values
o Useful for redundant input domains 2 F - T Pass
3 F - F Fails
4 T F T Pass
5 T F F Fails

17-214/514 54 Lo

Specification Tests

So what is the right granularity?

e Itdepends

e \We are still aiming for coverage

o Just of specifications, and their innumerable implementations
o BVA (& its cousins), decision tables tend to provide good coverage

17-214/514 55 sl

RESEARCH

Structural Testing vs. Specification Testing

You will typically have both code & (prose) specification

e Test specification, but know that it can be underspecified
e TJest implementation, but not to the point that it cannot change

e Use testing strategies that leverage both
o There is a fair bit of overlap; e.g., BVA yields useful branch coverage

17-214/514

Further Testing Strategies

Many more aspects, some later in this course:

e Stubbing/Mocking, to avoid testing dependencies
e Integration testing: scenarios that span units
e Beyond correctness: performance, security

17-214/514

Summary

Testing comprehensively is hard

e Tailor to your task: specification vs. structural testing

o Do not assume unstated specifications for part 2; spend your energy wisely in part 3
e Pick a strategy, or a few

o Be systematic; defend your decisions
e Tomorrow’s recitation covers:

o Unit test best practices

o Test organization
o Running tests, coverage; Travis setup

17-214/514 58 sl

RESEARCH

Bonus: Coding like the tour the france

public boolean foo() {
try
synchronized () {
if
}else {

%or 0{
if () {

https://thedailywtf.com/articles/coding-like-the-tour-de-france

59 [Hi

institute for
SOFTWARE
RESEARCH

https://thedailywtf.com/articles/coding-like-the-tour-de-france

