
117-214/514

Principles of Software Construction: 
Objects, Design, and Concurrency

Object-oriented analysis

Christian Kästner Vincent Hellendoorn



217-214/514

Administrativa
Recitations C and E overloaded, please consider 
alternatives if not registered for this one

● Next week’s recitation is not language-specific

hw3 to be released soon (modeling + coding), covers 
material from today, Tuesday, readings, and Wednesday

Expect hw1 grades mid next week



317-214/514
3



417-214/514

Some Testing Hints
Code may be used in many 
contexts, don’t make 
assumptions based on one 
client

q = new Queue();

last = 0;

for (...) {

value = read();

if (value > last)

q.push(value);

}

Code only pushes 
values larger than 
prior ones in this 
implementation.

Is this true for all 
users of Queue?



517-214/514

Some Testing Hints
Testing code with dependencies @Test ...

Comparator x =

myComplexImpl();

List l = 

loadFromFile();

l.sort(x);

If testing sort, avoid unnecessary 
dependencies. Simple implementations 
of other objects sufficient.



617-214/514

Learning Goals
● High-level understanding of requirements challenges

● Use basic UML notation to communicate designs

● Identify the key abstractions in a domain, model them as a 
domain model

● Identify the key interactions within a system, model them as 
system sequence diagram

● Discuss benefits and limitations of the design principle low 
representational gap



717-214/514

User needs
(Requirements) CodeMiracle? 



817-214/514

REQUIREMENTS



917-214/514



1017-214/514

Requirements say what the system will do 
(and not how it will do it).
The hardest single part of building a software system is deciding 
precisely what to build.  
No other part of the conceptual work is as difficult as 
establishing the detailed technical requirements ... 
No other part of the work so cripples the resulting system if done 
wrong.  
No other part is as difficult to rectify later.

— Fred Brooks



1117-214/514

Requirements
● What does the customer want?

● What is required, desired, not necessary? Legal, policy constraints?

● Customers often do not know what they really want; vague, biased 
by what they see; change their mind; get new ideas…

● Difficult to define requirements precisely

● (Are we building the right thing? Not: Are we building the thing 
right?)

11

Human and social 
issues 

beyond our scope (see 
17-313)



1217-214/514

Lufthansa Flight 2904 
● The Airbus A320-200 

airplane has a 
software-based braking 
system

● Engaging reverse thrusters 
while in the air is very 
dangerous: Only allow 
breaking when on the 
ground

12



1317-214/514

Lufthansa Flight 2904 
Two conditions needed to “be on the ground”:

1. Both shock absorber bear a load of 6300 kgs
2. Both wheels turn at 72 knots (83 mph) or faster

13



1417-214/514
14



1517-214/514

Requirements
● What does the customer want?

● What is required, desired, not necessary? Legal, policy constraints?

● Customers often do not know what they really want; vague, biased 
by what they see; change their mind; get new ideas…

● Difficult to define requirements precisely

● (Are we building the right thing? Not: Are we building the thing 
right?)

15

Human and social 
issues 

beyond our scope (see 
17-313)

Assumption in this course: 
Somebody has gathered most 
requirements (mostly text). 

Challenges:
How do we start implementing 

them? 
How do we cope with changes?



1617-214/514

This lecture
Understand functional requirements

Understand the problem’s vocabulary (domain model)

Understand the intended behavior (system sequence diagrams; 
contracts)

UML as a design language

16



1717-214/514

Problem 
Space
(Domain 
Model)

Solution
Space

(Object Model)

● Real-world concepts

● Requirements, Concepts

● Relationships among concepts

● Solving a problem

● Building a vocabulary

● System implementation

● Classes, objects

● References among objects and 
inheritance hierarchies

● Computing a result

● Finding a solution



1817-214/514

An object-oriented design process
Model / diagram the problem, define concepts

● Domain model (a.k.a. conceptual model), glossary

Define system behaviors

● System sequence diagram
● System behavioral contracts

Assign object responsibilities, define interactions

● Object interaction diagrams

Model / diagram a potential solution

● Object model

OO Analysis:
Understanding 
the problem

OO Design:
Defining a 
solution



1917-214/514

A design process
Object-Oriented Analysis

● Understand the problem
● Identify the key concepts and their relationships
● Build a (visual) vocabulary
● Create a domain model (aka conceptual model)

Object-Oriented Design
● Identify software classes and their relationships with class diagrams
● Assign responsibilities (attributes, methods)
● Explore behavior with interaction diagrams
● Explore design alternatives
● Create an object model (aka design model) and interaction models

Implementation
● Map designs to code, implementing classes and methods



2017-214/514

A high-level software design process
● Project inception

● Gather requirements

● Define actors, and use cases

● Model / diagram the problem, define objects

● Define system behaviors

● Assign object responsibilities

● Define object interactions

● Model / diagram a potential solution

● Implement and test the solution

● Maintenance, evolution, …

17-313

17-214

…



2117-214/514

DOMAIN MODELS

Chapter 9



2217-214/514

Object-Oriented Analysis
Find the concepts in the problem domain

● Real-world abstractions, not necessarily software objects
Understand the problem
Establish a common vocabulary
Common documentation, big picture
For communication!
Often using UML class diagrams as (informal) notation

Starting point for finding classes later (low representational gap)



2317-214/514

Input to the analysis process:  
Requirements and use cases



2417-214/514

Modeling a problem domain
Identify key concepts of the domain description
● Identify nouns, verbs, and relationships between 

concepts
● Avoid non-specific vocabulary, e.g. "system"
● Distinguish operations and concepts
● Brainstorm with a domain expert



2517-214/514

Concepts in a library system
A public library typically stores a collection of books, movies, or other 
library items available to be borrowed by people living in a community.  
Each library member typically has a library account and a library card with 
the account’s ID number, which she can use to identify herself to the 
library.  
A member’s library account records which items the member has borrowed 
and the due date for each borrowed item.  Each type of item has a default 
rental period, which determines the item’s due date when the item is 
borrowed.  If a member returns an item after the item’s due date, the 
member owes a late fee specific for that item, an amount of money 
recorded in the member’s library account.



2617-214/514

Glossary
Identify and define key concepts

Ensure shared understanding between developers and 
customers

Library item: Any item that is indexed and can be 
borrowed from the library
Library member: Person who can borrow from a 
library, identified by a card with an ID number
Book

Define 
potentially 
ambiguous 
concepts

No need to 
expand on 
obvious 
concepts



2717-214/514

Visual notation: UML

Library Account

accountID
lateFees

Name of 
real-world 
concept
(not software class)

Properties 
of concept

Book

title
author

borrow

1 *

Associations 
between 
concepts

Multiplicities/cardinalities
indicate “how many”



2817-214/514

Reading associations

Library Account

accountID
lateFees

Book

title
author

borrow

1 *

One library account can borrow many books

One book can be borrowed by one library account



2917-214/514

Reading associations

Book

title
author

Library Account

accountID
lateFees

borrowed-by

* 1



3017-214/514

Specialization

Book

title
author

Video

title
director

Library Item

id
More specialized 
version of general 
concept.
Every video is a 
library item



3117-214/514

Concepts vs. Attributes

● "If we do not think of some conceptual class X as text or a number 
in the real world, it's probably a concept, not an attribute"

● Avoid type annotations

Library Account

accountID
lateFees
borrowedBooks

Library Account

accountID
lateFees

Book

title
author

borrow

1 *vs.



3217-214/514

One domain model for the library system



3317-214/514

Modeling a problem domain
A domain model is a living document

Used for communication

Focus on real-world concepts, 

● Not abstract implementation concerns (e.g., database)

● No methods/operations

● Show relationships and cardinalities



3417-214/514

Identifying concepts
A public library typically stores a collection of books, movies, or other 
library items available to be borrowed by people living in a community.  
Each library member typically has a library account and a library card 
with the account’s ID number, which she can use to identify herself to 
the library.  
A member’s library account records which items the member has 
borrowed and the due date for each borrowed item.  Each type of item 
has a default rental period, which determines the item’s due date when 
the item is borrowed.  If a member returns an item after the item’s due 
date, the member owes a late fee specific for that item, an amount of 
money recorded in the member’s library account.



3517-214/514

Identifying concepts
A public library typically stores a collection of books, movies, or other 
library items available to be borrowed by people living in a community.  
Each library member typically has a library account and a library card 
with the account’s ID number, which she can use to identify herself to 
the library.  
A member’s library account records which items the member has 
borrowed and the due date for each borrowed item.  Each type of item 
has a default rental period, which determines the item’s due date when 
the item is borrowed.  If a member returns an item after the item’s due 
date, the member owes a late fee specific for that item, an amount of 
money recorded in the member’s library account.



3617-214/514

Hints for Identifying Concepts
Read the requirements description, look for nouns

Reuse existing models

Use a category list

● tangible things: cars, telemetry data, terminals, …
● roles: mother, teacher, researcher
● events: landing, purchase, request
● interactions: loan, meeting, intersection, …
● structure, devices, organizational units, …

Analyze typical use scenarios, analyze behavior

Brainstorming

Collect first; organize, filter, and revise later 



3717-214/514

One domain model for the library system



3817-214/514

Notes on the library domain model
● All concepts are accessible to a non-programmer
● UML notation somewhat informal; relationships often described with 

words
● Real-world "is-a" relationships are appropriate for a domain model
● Real-word abstractions are appropriate for a domain model
● Iteration is important: This example is a first draft.  Some terms (e.g. Item 

vs. LibraryItem, Account vs. LibraryAccount) would likely be revised in a 
real design.

● Aggregate types are usually modeled as separate concepts
● Basic attributes (numbers, strings) are usually modeled as attributes



3917-214/514

Why domain modeling?
Understand the domain

● Details matter! Are books different from videos for the system?

Ensure completeness

● Late fees considered?

Agree on a common set of terms

● library item vs collection entry vs book

Prepare to design

● Domain concepts are good candidates for OO classes (-> low representational gap)



4017-214/514

Hints for Object-Oriented Analysis
(see textbook for details)
● A domain model provides vocabulary

○ for communication among developers, testers, clients, domain experts, …

○ Agree on a single vocabulary, visualize it

● Focus on concepts, not software classes, not data
○ ideas, things, objects

○ Give it a name, define it and give examples (symbol, intension, extension)

○ Add glossary

○ Some might be implemented as classes, other might not

● There are many choices

● The model will never be perfectly correct
○ that’s okay

○ start with a partial model, model what's needed

○ extend with additional information later

○ communicate changes clearly

○ otherwise danger of "analysis paralysis"



4117-214/514

Domain Model Distinctions

● Vs. data model (solution space)

○ Not necessarily data to be stored

● Vs. object model and Java classes (solution space)

○ Only includes real domain concepts (real objects or 
real-world abstractions)

○ No “UI frame”, no database, etc.



4217-214/514

Outlook: Build a domain model for Homework 3



4317-214/514

Outlook: Low Representational Gap
Identified concepts provide inspiration for classes in the implementation

Classes mirroring domain concepts often 
intuitive to understand 
(low representational gap)

Library Account

accountID
lateFees

Book

title
author

borrow

1 *

class Account {

id: Int;

lateFees: Int;

borrowed: List<Book>;

    boolean borrow(Book) { … }

    void save();

}

class Book { … }



4417-214/514

System Sequence Diagram

Chapter 10



4517-214/514

Understanding system behavior 
A system sequence diagram is a model that shows, for 
one scenario of use, the sequence of events that occur 
on the system’s boundary
Design goal: Identify and define the interface of the 
system
● System-level components only:  e.g., A user and the 

overall system



4617-214/514

One example for the library system
Use case scenario:  A library member 
should be able to use her library card 
to log in at a library system kiosk and 
borrow a book.  After confirming that 
the member has no unpaid late fees, 
the library system should determine 
the book’s due date by adding its 
rental period to the current day, and 
record the book and its due date as a 
borrowed item in the member’s 
library account.



4717-214/514

One example for the library system
Use case scenario:  A library member 
should be able to use her library card 
to log in at a library system kiosk and 
borrow a book.  After confirming that 
the member has no unpaid late fees, 
the library system should determine 
the book’s due date by adding its 
rental period to the current day, and 
record the book and its due date as a 
borrowed item in the member’s 
library account.



4817-214/514

UML Sequence Diagram Notation
User System Actors in this 

use case 
(systems and 
real-world 
objects/people)

Messages and 
responses for 
interactions,
text describes what 
happens conceptually

Time proceeds 
from top to 
bottom

login(card)

borrow(book)

success?, due date



4917-214/514

Outlook: System Sequence Diagrams to 
Tests

s = new System();

a = s.makeNewSale();

t = a.enterItem(…);

assert(50.30, t);

tt = a.endSale();

assert(52.32, tt);

…

49

: Cashier : System
makeNewSale

enterItem(itemID, quantity)

description, total

endSale

total with taxes

makePayment(amount)

change due, receipt



5017-214/514

Behavioral Contracts

Chapter 11



5117-214/514

Formalize system at boundary

A system behavioral contract 
describes the pre-conditions and 
post-conditions for some operation 
identified in the system sequence 
diagrams

○ System-level textual specifications, 
like software specifications



5217-214/514

System behavioral contract example
Operation:  borrow(item)

Pre-conditions: Library member has already logged in to the system.
Item is not currently borrowed by another member.

Post-conditions: Logged-in member's account records the
newly-borrowed item, or the member is warned she has an
outstanding late fee.
The newly-borrowed item contains a future due date,
computed as the item's rental period plus the current date.



5317-214/514

Distinguishing domain vs. implementation 
concepts



5417-214/514

Distinguishing domain vs. implementation 
concepts
● Domain-level concepts:

○ Almost anything with a real-world analogue

● Implementation-level concepts:
○ Implementation-like method names
○ Programming types
○ Visibility modifiers
○ Helper methods or classes
○ Artifacts of design patterns



5517-214/514

Recommended Reading: 
Applying UML and Patterns

Detailed coverage of modeling steps

Explains UML notation

Many examples

Chapter 9



5617-214/514

Summary: Understanding the problem domain

Know your tools to build domain-level representations
● Domain models
● System sequence diagrams
● System behavioral contracts
Be fast and (sometimes) loose
● Elide obvious(?) details
● Iterate, iterate, iterate, …
Get feedback from domain experts
● Use only domain-level concepts



5717-214/514

Take-Home Messages
● To design a solution, problem needs to be understood

● Know your tools to build domain-level representations

○ Domain models – understand domain and vocabulary

○ System sequence diagrams + behavioral contracts – understand interactions with environment

● Be fast and (sometimes) loose

○ Elide obvious(?) details

○ Iterate, iterate, iterate, …

● Domain classes often turn into Java classes

○ Low representational gap principle to support design for understanding and change

○ Some domain classes don’t need to be modeled in code; other concepts only live at the code level

● Get feedback from domain experts

○ Use only domain-level concepts


