Principles of Software Construction:
Objects, Design, and Concurrency

Assigning Responsibilities

Christian Kastner Vincent Hellendoorn

gl; lllllll gie Mellon University
School of Computer Science
. . .
institute for
I S SOFTWARE
RESEARCH

17-214/514

Reading Quiz:

https://bit.1ly/2VUhx3B

17-214/514 2 [|g s

RRRRRRRR

https://bit.ly/2VUhx3B

function newGame() {
Aside: Program Core return newBoard(new Array(9).fill(-1,0,9),0)
without a GUI? }

function newBoard(state, nextPlayer) {
return {
play: function(x, y) {
state[y*3+x] = nextPlayer
1 - nextPlayer

nextPlayer

}s

winner: function() { .. }

17-214/514 IS [ERs

Aside: Program Core
without a GUI?

g = newGame();

expect(g.winner()).toBe(-1);

g.play(1,1);
expect(g.state[4]).toBe(0);

g.play(...)

g.play(...)

expect(g.winner()).toBe(1);

function newGame() {

return newBoard(new Array(9).fill(-1,0,9),0)

function newBoard(state, nextPlayer) {
return {
play: function(x, y) {
state[y*3+x] = nextPlayer

nextPlayer = 1 - nextPlayer

}s

winner: function() { .. }

Sy § sormvare

5 [o
17-214/514

RESEARCH

Learning Goals

o Apply GRASP patterns to assign responsibilities in
designs

o Use UML notation for sequence and object models

o Reason about tradeoffs among designs

o Discuss tradeoffs in terms of coupling and cohesion

17-214/514

o
6 I S r institute for

SSSSSSSS
RRRRRRRR

-

\

User needs

~

(Requirements)

Miracle?

/

17-214/514

Code

Solution
Space

Problem
Space S

-
e Real-world concepts e System implementation

e Requirements, Concepts e (lasses, objects

e Relationships among concepts e References among objects and
e Solving a problem inheritance hierarchies

e Building a vocabulary e Computing a result

e Finding a solution
17-214/514 8 [s

RRRRRRRR

An object-oriented design process

—

Model / diagram the problem, define concepts

e Domain model (a.k.a. conceptual model), glossary OO Analysis:
Define system behaviors - Understanding
e System sequence diagram the problem

e System behavioral contracts

J \

Assign object responsibilities, define interactions

e Object interaction diagrams OO Design:
Model / diagram a potential solution - Defining d
e Object model solution

17'2 14/5 14 9 Sf ::::::iior

SSSSSSSS
H

Modeling Implementations
with UML

17-214/514 10 [Hi Ll

RRRRRRRR

A Word on UML

UML is a standard, established notation
Most software engineers can read it, many tools support it
Few practitioners use is rigorously

Commonly used informally for sketching, communication,
documentation, wall art

In this course: Use UML for communication; follow notation somewhat
rigorously, but won’t care about all details

17-214/514 11 [e

Object Diagrams

Objects/classes with
fields and methods

Interfaces with
methods

Associations,
visibility, types

17-214/514

—
L ”C)(<F7 §7ﬂlcr"\ {~

- C‘Arf\d* S“Sl\oﬂ‘ Lf‘)ﬁ(‘y A(m«r\‘\'

+ login Memker{ ey Cedl ke
+ bocrow (Them ¢ L‘Lrﬁr\/nm)
+)og,ou'\- f‘\em\zef‘()

& poflete Fee [corls: k)

LS
L;L“‘?WAc(mﬁ}’

—~bo ﬁ'ow\r‘\'ﬂ\g

0%

B ,;L“ (crd Number: '\"*
- L\rshv ane 1 gsm\,a/

~ JasHNeoe = St

— lade Foes Owal I\{ﬁ_

5,Q,+ F)\r ﬁ'Nu\ (_) 4 S‘}y‘r

~ o Per(od
- late Fee

—dueD«‘)‘(v Dade
~ felurred © Date

+ éasgaah Pobuned): beokesy

+ 1§ Overdlue (correntDie: Dife)
. \ book<n

SSSSSSSS
H

Object Diagram Notation: Classes/Objects

Classname
ggxzrg?se ——— | LibraryAccount class LibraryAccount {
objects) e id: int;
Id: in .
Fiods — lateFees: int LElEFEEse LS
boolean borrow(Book b) {..}
borrow(Book): bool void returnItem(Book b) {..}
Methods rpeat;;g;esr(?rg?)oom void payFees(int payment) {..}
}

17-214/514 13 [v

Object Diagram Notation: Interfaces

Interface name —— | LjbraryAccount interface LibraryAccount {

boolean borrow(Book b);
borrow(Book): bool

Methods — | returnltem(Book)
payFees(int) void payFees(int payment);

vold returnItem(Book b);

17'2 14/5 14 14 Sf :;:t:\tibr

SSSSSSSS
H

Object Diagram Notation: Associations

LibraryAccount

id; int
lateFees: int

borrowed

Book

borrow(Book)

17-214/514

1

*

author: String

class LibraryAccount {
List<Book> borrowedBooks;
}

class Book {

LibraryAccount borrowedBy;

Object Diagram Notation: Associations

LibraryAccount

id; int
lateFees: int

borrowed

Book

borrow(Book)

17-214/514

1

*

author: String

class LibraryAccount {

List<Book> borrowedBooks;

}

class Book {

Object Diagram Notation: Associations

LibraryAccount ook
id: int uthor: String
lateFees: int borrowed: LibraryAccount

borrowed: List<Book>

borrow(Book)

Don’t use fields instead or in
addition to associations. Use
fields only for basic types

17-214/514 17§ e

Class Diagram vs Object Diagram

Can model both classes and objects
Terms often used interchangeably

If specific objects should be modeled use “objectld: Class” notation

a: LibAccount account: : LibAccount
id: int id: int id: int
lateFees: int lateFees: int lateFees: int
borrow(Book) borrow(Book) borrow(Book)

17-214/514

Class Diagrams and JavaScript/TypeScript

Even when not using classes, use the notation for
representing the same idea: many objects sharing a shape

TypeScript interfaces match to class diagram notation

LibraryAccount

id: int
lateFees: int

17-214

borrow(Book): bool
returnltem(Book)
payFees(int)

function newLibraryAccount(id, lateFees) {
return {
borrow: function(book) {..},

returnItem: function(book) {..},

payFees: function(payment) {..}

17-214/514

—

L{Br<r7 §'7<4cm
- Cuf f‘d\AY Sesciint Li Lﬁry A(cmn“‘

+ login Memke beey et ke]
+ borrow (hem L.‘Lr«ryllm)
+]ogp&l‘\e«\\w‘()

+ el Fee [cerks k)

x
L.'va Pombe=/) k-)

- L‘Lm e It '-\:orroch\‘fi-c“\S

~ 7(x\rx ate | g-k.‘,a/
~ fasTINa%e * S{T;
’ -;_FL\IC:LW i l"a—

gt BN () 1 Shag

h___,f’_-ﬁ
—dueD«‘J‘(Due

— oy PZF(Od

~late Fee
\2 of ! r‘bw(—d _.[“-q'l\ \" ;"'4V\

~ fehared 1 Date

+ é«s%\ Potred(): ook
4 15 Overetue (curert Dife: D)

; or)é &M

20 [Hi

institute for
SOFTWARE
RESEARCH

Object diagram notation requirements

We won't be very picky on notation, but:

e Use boxes with 2 or 3 parts for fields, methods as
appropriate for classes/objects, interfaces, concepts

e Include types for fields and methods

e Use associations, not fields, where appropriate

e Use association names and cardinalities (we don't
care about arrow types, except “is-a”

17-214/514 21 [e

RRRRRRRR

Interaction Diagrams

Interactions between objects

Two common notations: sequence
diagrams and communication
diagrams

Sequence diagrams like system
sequence diagrams, but depicting
Interactions between
objects/classes

17-214/514

window |
I] |
— Prepare () | | |
* are ()
Object prepare0 | |
hasStock !
Message check () |
Condition
lteration
[hasStock]
remove() | needsReorder:=
. needsToReorder()
~a— Self-Call
Return
[needsReorder]
2 Reorder
Item
< - — — ;
' |
[hasStock] new! | _ |aDelivery
! |’|:jm
! |
i | | I
L] | I | /) !
Creation
| | | | I |
1 I) \
Deletion
PPy institute for
22 [H]j o

Libesey Sy sher L o }

| OJx\t\M‘m\h((m’ﬁry C-rd\ i |
v

et (ibeacy o 8 Mumbec)

(ériewA(‘c

i

GCCM‘\' i
5 [
¢t Cugreny fasm(““°°‘“’D i

E—< e e s = S T 1
\

17-214/514 . |
IS Eaa

Interaction Diagram Practice:

Use case scenario: ...and borrow a book. After confirming
that the member has no unpaid late fees, the library system
should determine the book’s due date by adding its loan
period to the current day, and record the book and its due
date as a borrowed item in the member’s library account.

17-214/514 24 [i

LL7 Systen |

(_: SesionMn i

"OOCFoul (bo&.k}
—7

17-214/514

t
4
4

]

{

l ; |

{ ; x

'
< £\ {
' 0Kurf‘en\?~§€ sSIG q(} —]

9¢] | ’

{ |

l l ;

S ! | !

" x A

PR ',_ (\ {

ElC'j-‘(Eﬁfs '

| I

\" 7 !
| | .7

F’ H J—. - i (;
| lateteec O _J . I | |
(=
[

{oen Pec % S 9,?,1(Lefm Peri

o

o
2 institute for
5 I S SOFTWARE

RESEARCH

Interaction diagrams help evaluate design
alternatives

e EXxplicitly consider design alternatives
e For each, sketch the interactions implied by the

design choice
o Interactions correspond to the components' APls

17-214/514

Object-Level Design

17-214/514 27 [

RRRRRRRR

THem

cental Pecioed

o
I ;

L L Coed | |
K;/j’w

\’ 1\0\3 M\.f“\w E/L
_//—/[

17-214/514

Considering the Library problem, which
class should know which items have been
borrowed by a user?

Which should compute late fees?

RRRRRRRR

Doing and Knowing Responsibilities

Responsibilities are related to the obligations of an object in terms of its
behavior.
Doing responsibilities of an object include:
» doing something itself, such as creating an object or doing a calculation
 initiating action in other objects
« controlling and coordinating activities in other objects
Knowing responsibilities of an object include:

o knowing about private encapsulated data
» knowing about related objects
o knowing about things it can derive or calculate

17-214/514 29 Lo

THem

cental Pecioed

o
I ;

L L Coed | |
K;/j’w

\’ 1\0\3 M\.f“\w E/L
_//—/[

17-214/514

Considering the Library problem, which
class should know which items have been
borrowed by a user?

Which should compute late fees?

RRRRRRRR

Design Goals, Principles, and Patterns

® Design Goals
O Design for change, understanding, reuse, division of labor, ...
® Design Principle

O Low coupling, high cohesion

O | (o) re IeSelltat ona ga Oa
O LaW Ol de|||ete|

® Design Heuristics (GRASP) A

O Information expert

Principles

O Creator /\

O Controller ¢ i

Heuristics Patterns

31
17-214/514

Design Heuristic:
Low Representational Gap

17-214/514 32 [i

RRRRRRRR

Low Representational Gap

|dentified concepts provide inspiration for classes in the implementation

Classes mirroring domain concepts often
intuitive to understand, rarely change
(low representational gap)

Library Account

accountlD
lateFees

borrow

Book

17-214/514

*

title
author

class Account {

id: Int;
lateFees: Int;

borrowed: List<Book>;

boolean borrow(Book) { ..

void save();

}
class Book { .. }

Low Representational Gap

|dentified concepts provide inspiration for classes in the implementation

Classes mirroring domain concepts often
intuitive to understand, rarely change
(low representational gap)

Library Account

accountlD
lateFees

borrow

Book

17-214/514

*

title
author

class LibraryDatabase {

Map<Int, List<Int>>
borrowedBookIds;
Map<Int, Int> lateFees;
Map<Int, String>
bookTitles;
}

class DatabaseRow { .. }

Designs with
Low Representational Gap

o Create software class for each domain class, create
corresponding relationships

o Design goal: Design for change
o This is only a starting point!
o Not all domain classes need software correspondence

o Pure fabrications might be needed

o Other principles often more important

35 .
17-2 14/5 14 35 I Sf gégi{%

¥ Problem

Cla (Domain Model)

intuitiv

(low representational gap)

Library Account

accountlD
lateFees

Space

borrow

cepts often "

Book

17-214/514

*

title
author

\[elstF-1IK7” Solution

\

lateFees: Int;

borrowed: List<Book>;

boolean borrow(Book) { .. }

void save();

}
class Book { .. }

o
institute for
| S [sorrware
RRRRRRR H

DESIGN PRINCIPLE:
LOW COUPLING

17-214/514 37 [Hi Ll

RRRRRRRR

Design Principle: Low Coupling

A module should depend on as few other modules as possible
® Enhances understandability (design for underst.)
O Limited understanding of context, easier to understand in isolation

® Reduces the cost of change (design for change)
O Little context necessary to make changes

O When a module interface changes, few modules are affected (reduced rippling
effects)

® Enhances reuse (design for reuse)

O Fewer dependencies, easier to adapt to a new context

17-2 14/5 14 38 Sf gg’t{{"?’i%

Topologies with different coupling

Types of module
interconnection

Structures

(A) (B) (C)

17-214/514 39 Lo

High Coupling is undesirable

e Element with low coupling depends on only few other elements
(classes, subsystems, ...)

o “few" is context-dependent

e A class with high coupling relies on many other classes

o Changes in related classes force local changes; changes in local
class forces changes in related classes (brittle, rippling effects)

o Harder to understand in isolation.

o Harder to reuse because requires additional presence of other
dependent classes

o Difficult to extend — changes in many places

17'2 14/5 14 40 Sf :::::;For

SSSSSSSS
H

class Shipment {
private List<Box> boxes;
int getWeight() {
int w=0;
for (Box box: boxes)
for (Item item: box.getItems())
w += item.weight;
return w;

Which classes are coupled?
How can coupling be improved?

}

class Box {

private List<Item> items;

Iterable<Item> getItems() { return items;}
}
class Item {

Box containedIn;

int weight;

Draw an interaction diagram to
illustrate what’s happening.

class Box { How can coupling be improved?

private List<Item> items;
private Map<Item,Integer> weights;

Iterable<Item> getItems() { return items;}

int getWeight(Item item) { return weights.get(item);}

}

class Item {
private Box containedIn;
int getWeight() { return containedIn.getWeight(this);}

17-214/514 42 [H s

Design Heuristic: Law of Demeter

® EFach module should have only limited knowledge

about other units: only units "closely” related to the
current unit

® |n particular: Don't talk to strangers!

® Forinstance, no a.getB().getC().foo()

for (let 1 of shipment.getBox().getItems())

shipmentWeight += i.getWeight() ..

17-214/514

Coupling: Discussion

® High coupling to very stable elements is usually not problematic
O A stable interface is unlikely to change, and likely well-understood

O Prefer coupling to interfaces over coupling to implementations
® (Details next week:) Subclass/superclass coupling is particularly strong

O protected fields and methods are visible

O subclass is fragile to many superclass changes, e.g. change in method signatures,
added abstract methods

O Guideline: prefer composition to inheritance, to reduce coupling
® Coupling is one principle among many

O Consider cohesion, low repr. gap, and other principles

17-214/514 a4 [

Coupling to “non-standards”

® Libraries or platforms may include non-standard features or extensions

® Example: JavaScript support across Browsers

O <div id=“e1”>o0ld content</div>

® [n JavaScript...

3C-compliant
O MSIE: el.innerText = “new content”
K/ngM standard
O Firefox: e1.textContent = “new content”

17'214/514 45 Sf géﬁi{%

Design Goals

® Explain how low coupling supports
O design for change
O design for understandability
O design for division of labor

O design for reuse

O ...

17-214/514 46 Lo

Design Goals

® design for change
O changes easier because fewer dependencies on fewer other objects
O changes are less likely to have rippling effects
® design for understandability
O fewer dependencies to understand (e.g., a.getB().getC().foo())
® design for division of labor
O smaller interfaces, easier to divide
® design for reuse

O easier to reuse without complicated dependencies

47 .
17-214/514 47 Lo

Design Heuristic: CONTROLLER

(also DESIGN PATTERN: FACADE)

17-214/514 48 [Hi Ll

RRRRRRRR

Controller (Design Heuristic)

o Problem: What object receives and coordinates a system
operation (event)?

o Solution: Assign the responsibility to an object representing

o the overall system, device, or subsystem (facade controller), or

o a use case scenario within which the system event occurs (use case
controller)

o Process: Derive from system sequence diagram (key
principles: Low representational gap and high cohesion)

17-214/514 49

x

: Student : System
login(id)
checkout(bookid) :

(_________________ d_u_e__c_l_a_t_e______________________E
logout() :
IR receipt]

17-214/514

SSSSSSSS
RRRRRRRR

x

: Student : System
login(id)
checkout(bookid) :

(_________________ d_u_e__c_l_a_t_e______________________E
logout() :
IR receipt |

17-214/514

CheckoutController

login(id: Int)
checkout(bid: Int)
logout()

RRRRRRRR

Requirements Analysis Object-Level Design

_ : UserDB
2: check(uid) L

Stu d e nt . Syste m 1: Iogin(uid)~.[: CheckoutController

3: setUser(uid)

i quln(ld) - A : Session

checkout(bookid) .

D duedate |

i | P : BookDB
: 3: b=findBook()

\ \ 1: -[: CheckoutController

i logout() =i checkout(bid) Sisgelisert

i . : : Session

| €mmmmeeeeeeeee] r_ e_C_E_I_D_t _____________________ 3 4: setBorrowedBy(uid)

i i \ b: Book

52
17-214/514 52 [Hi Ll

RESEARCH

Controller: Discussion

® A Controller is a coordinator
O does not do much work itself

O delegates to other objects
® Facade controllers suitable when not "too many" system events
O ->one overall controller for the system

® Use case controller suitable when facade controller "bloated" with excessive
responsibilities (low cohesion, high coupling)

O ->several smaller controllers for specific tasks

® Closely related to Facade design pattern (future lecture)

17-214/514 53 sl

RESEARCH

Controller: Design Tradeoffs

Decreases coupling

o User interface and domain logic are decoupled from each other
o Understandability: can understand these in isolation, leading to:
o Evolvability: both the Ul and domain logic are easier to change

« Both are coupled to the controller, which serves as a mediator, but this coupling is

less harmful
o The controller is a smaller and more stable interface
o Changes to the domain logic affect the controller, not the Ul
o The Ul can be changed without knowing the domain logic design

Supports reuse

» Controller serves as an interface to the domain logic
o Smaller, explicit interfaces support evolvability

But, bloated controllers increase coupling and decrease cohesion; split if applicable

17-214/514 54 sl

RESEARCH

Controller in Flash Cards Project?

17-214/514 55 [[j o

RRRRRRRR

DESIGN PRINCIPLE:
HIGH COHESION

(OR SINGLE RESPONSIBILITY PRINCIPLE)

17-214/514 56 [Hi Ll

RRRRRRRR

Design Principle: Cohesion

A module should have a small set of related responsibilities

® Enhances understandability (design for
understandability)

O A small set of responsibilities is easier to understand

® Enhances reuse (design for reuse)

O A cohesive set of responsibilities is more likely to recur in
another application

17-214/514 57 [s

=

Y

class DatabaseApplication

public void authorizeOrder(Data data, User currentUser,
// check authorization
// lock objects for synchronization
// validate buffer
// log start of operation
/] perform operation
// log end of operation
// release lock on objects

}

public void startShipping(OtherData data, User currentUser,
/| check authorization
// lock objects for synchronization
// validate buffer
// log start of operation
/] perform operation
// log end of operation
// release lock on objects

SO

-

-

institute for
SOFTWARE
RESEARCH

Anti-Pattern:
God Object

17-214/514

| class Chat {

List<String> channels;
Map<String, List<Msg>> messages;
Map<String, String> accounts;
Set<String> bannedUsers;

File logFile;

File bannedWords;

URL serverAddress;

Map<String, Int> globalSettings;
Map<String, Int> userSettings;
Map<String, Graphic> smileys;
CryptStrategy encryption;

Widget sendButton, messagelist;

| class Chat {

Antl_Pattern List<String> channels;
GOd ObJeCt Map<String, List<Msg>> messages;

Map<String, String> accounts;

class Chat { Set<String> bannedUsers;
Content content;

AccountMgr accounts;

File logFile;

File logFile; File bannedWords;
ConnectionMgr conns; URL serverAddress;

ilass ChatUT { Map<String, Int> globalSettings;
Chat chat: Map<String, Int> userSettings;
Widget sendButton, ..; Map<String, Graphic> smileys;

} CryptStrategy encryption;

class AccountMgr {

. acounts, bannedUsr.. Widget sendButton, messagelist;

}

17-29

Facade vs God Object?

62 .
17-214/514 62 [s

RRRRRRRR

Cohesion in Graph Implementations

class Graph {
Node[] nodes;

Is this a good
' ion?
boolean[] isVisited; implementation®

}
class Algorithm {

int shortestPath(Graph g, Node n, Node m) {
for (int i; ..)
if (!g.isVisited[1]) {

g.isVisited[i] = true;
}
}

return v;

Cohesion in Graph Implementations

class Graph { Graph is tasked with
Node[] nodes;

L not just data, but also
boolean[] isVisited; :) e
} algorithmic responsibilities
class Algorithm {
int shortestPath(Graph g, Node n, Node m) {
for (int i; ..)
if (!'g.isVisited[i]) {

g.isVisited[i1] = true;
}
}

return v;

1}

class Player {

MonOpOIy Board board;

/* in code somewhere.. */ this.getSquare(n);
Example Square getSquare(String name) { // named monopoly squares
for (Square s: board.getSquares())
if (s.getName().equals(name))
return s;
return null;

Which design has ¥

higher cohesion? [ppesarcymer

Board board;
/* in code somewhere.. */ board.getSquare(n);
}
class Board{
List<Square> squares;
Square getSquare(String name) {
for (Square s: squares)
if (s.getName().equals(name))
return s;
return null;

17-214/514

11

Hints for ldentifying Cohesion

® Use one color per concept

® Highlight all code of that concept with the color

® => (Classes/methods
should have few colors

17-214/514 ge

Hints for ldentifying Cohesion

® There is no clear definition of what is a “concept”

® Concepts can be split into smaller concepts

O Graph with search vs. Basic Graph + Search Algorithm vs.

Basic Graph + Search Framework + Concrete Search
Algorithm etc

® Requires engineering judgment

17-214/514 g

Cohesion: Discussion

Very Low Cohesion: A Class is solely responsible for many things in very different
functional areas

Low Cohesion: A class has sole responsibility for a complex task in one functional area

High Cohesion: A class has moderate responsibilities in one functional area and
collaborates with classes to fulfil tasks

Advantages of high cohesion

o Classes are easier to maintain

o FEasier to understand

o Often support low coupling

o Supports reuse because of fine grained responsibility

Rule of thumb: a class with high cohesion has relatively few methods of highly related
functionality; does not do too much work

17-2 14/5 14 68 Sf g’g’%ﬁ’?’f&

Coupling vs Cohesion (Extreme cases)

Think about extreme
cases:

® \ery low coupling?

® \ery high cohesion?

17-214/514 £Y

class Graph {

Node[] nodes;

boolean[] isVisited;
}
class Algorithm {

int shortestPath(Graph g, Node n, Node m) {

for (int i; ..)
if (!g.isVisited[1]) {

g.isVisited[i] = true;
}
}

return v;

Coupling vs Cohesion (Extreme cases)

All code in one class/method

e very low coupling, but very low cohesion
Every statement separated

e Vvery high cohesion, but very high coupling

Find good tradeoff; consider also other principles, e.g.,
low representational gap

70 = f
17-214/514 70 [s

RRRRRRRR

Design Heuristic:
INFORMATION EXPERT

17-214/514 71 [Hi Ll

RRRRRRRR

Information Expert (Design Heuristic)

o Heuristic: Assign a responsibility to the class that has the
information necessary to fulfill the responsibility

o Typically follows common intuition

o Software classes instead of Domain Model classes

o If software classes do not yet exist, look in Domain Model for fitting
abstractions (-> correspondence)

o Design process: Derive from domain model (key principles:
Low representational gap and low coupling)

17-214/514 72 iy

class Shipment {
private List<Box> boxes;
int getWeight() {
int w=0;
for (Box box: boxes)
for (Item item: box.getItems())
w += item.weight;
return w;

Which class has all the information
to compute the shipment’s weight?

}

class Box {

private List<Item> items;

Iterable<Item> getItems() { return items;}
}
class Item {

Box containedIn;

int weight;

SSSSSSSS
RRRRRRRR

Who should be responsible for
knowing the grand total of a sale?

getTotal(...) ?27?? | e

) | RETURN BEFORE 10/18/02

GIVING A GIFT? Include » 217t recelet!
A receipt deted vithin 50 dovs is
reaired for all refurne § exchenses

TO1 21246034 GENERAL MILL #N
£02 Q71100015 RITZ CRONERS FN
203 212480045 PILLSBLSY PN
304 212140335 8 CHON HUPR FN
305 071100039 WHEAT THINS FH
206 203700125 DCEAN SPRAY FN
L] 00T 212080143 ¥ BONE DRSNG FN
e Is e r 008 204010136 DICIORNO FN
09 003060057 DAUN 1
070 071050122 CHIPS AHGY FK

swroTAL 2

Sale s
Lineltem
Product Decr.

B Phensese—oaw
HaemldBLIBBIURS

~

17-214/514 74 o

RESEARCH

Sale

Who should be responsible for
knowing the grand total of a sale?

_Captured-on

Register

time

1..%

Contains

Sales
Lineltem

*

Pa

id by

Customer

name

Described-by

1

Product
Description

© TARGET

7/20/02 10:40 AN
RETURN BEFORE 10/18/02

GIVING R GIFT? Include » 317t receirt!
A receipt detad vithin 50 dovs s
reqired for all returne § exchonses

CO1 21246034' GENERAL MILL FN 288
202 071100015 RIT2 CRCMERS PN
203 212480045 PILLSBLAY PN
204 212140336 8C CHN HLPR FN
205 071100099 WHEAT THINS FN
206 203700129 DCEAN SPRAY FN
00T 212080143 ¥ BONE DRSNG FN
Q08 204010136 DIDIORNO N
209 003060057 DAUN 1
070 071050122 CHIPS AHEY FN

SUBTOTAL H

Te 5.000% TAx

ToTAL

Tl ol e T 2 o
NaenmL3LIBZBIUN

~

quantity

17-214/514

description
price
temID

75 [Hi

Who should be responsible for
knowing the grand total of a sale?

Sale ~Captured-on Register © TARGET

07720702 10:40 AN
RETURN BEFORE 10/18/02

time id | U100

GIVING R GIFT? Include » 317t receirt!

Pa d by ‘ A receipt detad vithin 50 days is

required for all refurns § exchanses

Customer TO1 21246034! GENERAL MILL PN 2 B9

202 071100015 RIT2 CRNERS PN 2 54
S0) 212480045 PILLSBLRY PN 1 29

1 304 212140335 BC CHCN HUPR N) 69
Contains o5 071100009 WEAT DX £ 1 99
206 203700125 DCEAN SPRAY FN 189

00T 212080143 ¥ BONE DRSNG FN L]
Q08 204010136 DIDIORNO N 2.54
. . ' 909 003060057 DAUN T 1.95
Design Class Responsibility 010 071090122 HIPS WY FH 254
SUBTOTAL Q.18

Te 5.000% TAx A8

TOTAL 2.5

Sale knows sale total

Linelter] [SalesLineltem knows line item subtotal

quantity J |ProductSpecification knows product price

17-214/514 76 [Iq it

RESEARCH

—

t =getTotal

17-214/514

: Sale

—

1 * st =getSubtotal

Sale

1.1: p :=getPrice()

lineltems[i]:
SalesLineltem

time

getTotal()

SalesLineltem

:Product
Description

quantity

getSubtotal()

New method T AAAAAAAAAAAAAAAAAAAAAAAAA

Product
Description

description
price
itemlD

getPrice()

77 [Hi

institute for
SOFTWARE
RESEARCH

Information Expert ->
"Do It Myself Strategy”

Expert usually leads to designs where a software object
does those operations that are normally done to the
iInanimate real-world thing it represents

o a sale does not tell you its total; it is an inanimate thing

In OO design, all software objects are "alive" or "animated,”
and they can take on responsibilities and do things.

They do things related to the information they know.

17-214/514 78 Lo

Information Expert in Flash Cards Prj.

Who knows the text on a card?

Nno checks correctness of an answer?

no processes command-line options?

W
W
Who stores past answers?
W

no knows how to flip cards?

Who tracks which achievements have been achieved?

17-214/514 79 Lo

Design Heuristic: CREATOR

17-214/514 80 [|f s

RRRRRRRR

Creator (Design Heuristic)

Problem: Who creates an A?
Solution: Assign class responsibility of creating instance of class Ato B if

o B aggregates A objects, B contains A objects, B records instances of A objects, B
closely uses A objects, B has the initializing data for creating A objects (the more the

better)

o Wwhere there is a choice, prefer B aggregates or contains A objects

Key idea: Creator needs to keep reference anyway and will frequently use the created
object

Process: Extract from domain model, interaction diagrams (key principles: Low
coupling and low representational gap)

17-2 14/5 14 81 Sf g\é}}:i{%

Creator heuristic

e Design process: Extract from domain model, interaction
diagrams

o Key principles: Low coupling and low representational gap

17'214/514 82 Sf gé;{"u;“a%

Creator (GRASP)

® \Who is responsible for creating Beetle objects?

Tree objects?

17-214/514

Simulation

<>—contains

step()

simulates

Ranger

harvest()

Tree

size
age

<>_

grow()
isInfested()

infested
by

Beetle

step()

Creator : Example

® \Who is responsible for creating Beetle objects?

O Creator pattern suggests Tree

® |nteraction diagram:

1: init)—e : Simulation 2: createlnfected() i (-1 -3

3:
cregte()

b: Beetle

OOOOOOO

Creator (GRASP)

® Problem: Assigning responsibilities for creating
objects

O Who creates Nodes in a Graph?
O Who creates instances of Salesltem?
O Who creates Children in a simulation?

O Who creates Tiles in a Monopoly game?

B Al? Player? Main class? Board? Meeple (Dog)?

17-214/514 85 Sf 2?:‘2’&1{‘2%

Creator: Discussion of Design
Goals/Principles

Promotes low coupling, high cohesion

e class responsible for creating objects it needs to reference

e creating the objects themselves avoids depending on another class to create the object
Promotes evolvability (design for change)

e Object creation is hidden, can be replaced locally

Contra: sometimes objects must be created in special ways
e complex initialization
e instantiate different classes in different circumstances

e then cohesion suggests putting creation in a different object. see design patterns such as
builder, factory method

17-214/514 86 sl

RESEARCH

Creator in Flash Cards Project

Who creates cards?

Who creates a card deck?

Who creates achievements?

llllllllllll

17-214/514 87 [5

Which design is better? Argue with design goals,

principles, heuristics, and patterns that you know

CustomerManagementDialog

< ui
Customer CustomerlList L GUI stuff
customers

addCustomer(Customer)
‘changeAddress(Customer, String) "
e - - g marl1etmg

MarketingLetters

'
b
L

customers.add(customer) customerAdded(Customer)

marketing.customerAdded(customer)
qui.list.add(customer.name)

CustomerlList | «interface»
Customer | i omers CustomerEventHandler
handler

addCustomer(Customer)
_tthangeAddress(Customer, String) customeraAdded(Customer)

.-~ |addHandler(CustomerEventHandler), customerUpdated(Customer)
-~ removeHandler(CustomerEventHandler) customerDeleted(Customer)

.

customers.add(customer)
foreachilh handlen handlers.add(handler) j

h.customerAdded(customer)

CustomerMgmtDialog
MarketingLetters CustomerListListener _I.; GUI stuff

| customerAdded(Customer) customerAdded(Customer)
/| customerUpdated(Customer) customerUpdated(Customer)™{,
/7 |customerDeleted(Customer) customerDeleted(Customer) | ™.

customer.sendWelcomeLetter(...)B‘ qui.list.add(customer.name) j

17-214/514 * old midterm question 88 [|j s

Other Design Heuristics

In future lectures:

* Minimize mutability

* Minimize conceptual weight

* Favor composition/delegation over inheritance

* Use indirection to reduce coupling

17-214/514 89 [|j s

RRRRRRRR

Object-level artifacts of this design process

e Object interaction diagrams add methods to objects

o Can infer additional data responsibilities
o Can infer additional data types and architectural patterns

e Object model aggregates important design decisions

o Is an implementation guide

17-214/514 90 [i

RRRRRRRR

LL7 Systen |

(_: SesionMn i

"OOCFoul (bo&.k}
—7

17-214/514

t
4
4

]

{

l ; |

{ ; x

'
< £\ {
' 0Kurf‘en\?~§€ sSIG q(} —]

9¢] | ’

{ |

l l ;

S ! | !

" x A

PR ',_ (\ {

ElC'j-‘(Eﬁfs '

| I

\" 7 !
| | .7

F’ H J—. - i (;
| lateteec O _J . I | |
(=
[

{oen Pec % S 9,?,1(Lefm Peri

o

.
i institute for
I S SOFTWARE

RESEARCH

THem
cental Perivdd

heg

Y B offo wed T 1L€(Y\

Dof@wel ~TEY
\ L;\o(oy Cacd | o e
TS L/—fiw

\ 100N

1

\L_,///‘/[Considering the Library problem, which class should

know which items have been borrowed by a user?
9 Which should compute late fees?

17-214/514 97 [=i

Design Goals, Principles, and Patterns

® Design Goals
O Design for change, understanding, reuse, division of labor, ...
® Design Principle

O Low coupling, high cohesion

O | (o) re IeSelltat ona ga Oa
O LaW Ol de|||ete|

® Design Heuristics (GRASP) A

O Information expert

Principles

O Creator /\

O Controller ¢ i

Heuristics Patterns

93
17-214/514

HW 2 Feedback

We try to improve...

Feedback optional,
but appreciated

https://bit.1ly/3nPIgBx

17-214/514

https://bit.ly/3nPIqBx

Take-Home Messages

Design is driven by quality attributes

o Evolvability, separate development, reuse, performance, ...
Design principles provide guidance on achieving qualities

o Low coupling, high cohesion, high correspondence, ...
GRASP design heuristics promote these principles

o Creator, Expert, Controller, ...

17-214/514 95 Sf Z?;‘i’f{z{%

