
117-214/514

Principles of Software Construction: 
Objects, Design, and Concurrency

Design Patterns

Christian Kästner Vincent Hellendoorn



217-214/514

Administrativa
HW1 grades out, use Gradescope regrade request mechanism if needed 
(with concrete reference to rubric)

Midterm next week Thursday during class

● Covers all lecture, recitation, and reading content with emphasis on 
topics you had opportunities to practice

● Coding, design, and discussion questions
● Bring up to 4 pages of notes (both sides, handwritten or printed)

Reading on design patterns



317-214/514

HW2 Feedback Feedback
Thanks for your responses!

Ambiguous specifications? Clarifications needed on Piazza? What do real 
specifications look like?

Too many tests? For EVERY method? Testing constructors and trivial methods? 
How many tests would you write in practice?

“Were our expectations clearly described in the rubric? (if not, please suggest 
improvements)”

Other: More interactions in recitations. Solutions for recitations. Classes in Java. 
Heavy Readings.



417-214/514



517-214/514

One design scenario
● Amazon.com processes millions of orders each year, 

selling in 75 countries, all 50 states, and thousands of 
cities worldwide.  These countries, states, and cities 
have hundreds of distinct sales tax policies and, for 
any order and destination, Amazon.com must be able 
to compute the correct sales tax for the order and 
destination.



617-214/514

Another design scenario
● A vision processing system must detect lines in an 

image.  For different applications the line detection 
requirements vary.  E.g., for a vision system in a 
driverless car the system must process 30 images per 
second, but it's OK to miss some lines in some 
images.  A face recognition system can spend 3-5 
seconds analyzing an image, but requires accurate 
detection of subtle lines on a face.



717-214/514

A third design scenario
● Suppose we need to sort a list in different orders…

const ASC = function(i: number, j: number): boolean { 
return i < j; 

}
const DESC = function(i: number, j: number): boolean { 

return i > j; 
}

function sort(
list: number[], 
order: (number, number) => boolean) {

  // … 
  boolean mustSwap = order(list[j], list[i]);
  // …
}
> sort(list, ASC);



817-214/514

Design Patterns



917-214/514

Design patterns

“Each pattern describes a problem 
which occurs over and over again 
in our environment, and then 
describes the core of the solution 
to that problem, in such a way that 
you can use this solution a million 
times over, without ever doing it 
the same way twice”
   – Christopher Alexander,
       Architect (1977)



1017-214/514

How not to discuss design (from Shalloway and Trott)

● Carpentry:
○ How do you think we should build these drawers?
○ Well, I think we should make the joint by cutting straight down 

into the wood, and then cut back up 45 degrees, and then 
going straight back down, and then back up the other way 45 
degrees, and then going straight down, and repeating…



1117-214/514

How not to discuss design (from Shalloway and Trott)

● Software Engineering:
○ How do you think we should write this method?
○ I think we should write this if statement to handle … followed 

by a while loop … with a break statement so that…



1217-214/514

Discussion with design patterns
● Carpentry:

○ "Is a dovetail joint or a miter joint better here?"

● Software Engineering:
○ "Is a strategy pattern or a template method better here?"



1317-214/514

History: 
Design Patterns 
(1994)



1417-214/514

Elements of a design pattern
● Name
● Abstract description of problem
● Abstract description of solution
● Analysis of consequences



1517-214/514

Strategy Pattern



1617-214/514

Strategy pattern
● Problem: Clients need different variants of an algorithm
● Solution: Create an interface for the algorithm, with an 

implementing class for each variant of the algorithm
● Consequences:

○ Easily extensible for new algorithm implementations
○ Separates algorithm from client context
○ Introduces an extra interface and many classes: (1) Code can be 

harder to understand, (2) Lots of overhead if the strategies are 
simple



1717-214/514

Context

Strategy
execute()

ConcreteStrA ConcreteStrB

algorithm()

execute() execute()



1817-214/514

s : 
ConcrStrA

algorithm
(s) s.execute()

: 
Context

Strategy can be provided in method call or in any other way to context

algorithm
(t) t.execute()

t : 
ConcrStrB



1917-214/514

One design scenario
● Amazon.com processes millions of orders each year, 

selling in 75 countries, all 50 states, and thousands of 
cities worldwide.  These countries, states, and cities 
have hundreds of distinct sales tax policies and, for 
any order and destination, Amazon.com must be able 
to compute the correct sales tax for the order and 
destination.



2017-214/514

Another design scenario
● A vision processing system must detect lines in an 

image.  For different applications the line detection 
requirements vary.  E.g., for a vision system in a 
driverless car the system must process 30 images per 
second, but it's OK to miss some lines in some 
images.  A face recognition system can spend 3-5 
seconds analyzing an image, but requires accurate 
detection of subtle lines on a face.



2117-214/514

Design Patterns and 
Programming Languages
Design patterns address general design challenges

Some patterns address problems with built-in solutions

Example: Strategy pattern vs higher-order functions

const ASC = function(i: number, j: number): boolean { 
return i < j; 

}
const DESC = function(i: number, j: number): boolean { 

return i > j; 
}

function sort(
list: number[], 
order: (number, number) => boolean) {

  … 
  boolean mustSwap = order(list[j], list[i]);
  …
}
> sort(list, ASC);



2217-214/514

Strategy Pattern vs Higher-Order Function
const ASC = 

function(i: number, j: number): boolean { 
return i < j; 

}
const DESC = 

function(i: number, j: number): boolean { 
return i > j; 

}

function sort(
list: number[], 
order: (number, number) => boolean) ...;

interface Order {
  boolean lessThan(int i, int j);
}

class AscendingOrder implements Order {
  public boolean lessThan(int i, int j) { 

return i < j; }
}
class DescendingOrder implements Order {
  public boolean lessThan(int i, int j) { 

return i > j; }
}

void sort(int[] list, Order order) ;



2317-214/514

Strategy Pattern vs Higher-Order Function
const ASC = function(i, j) { return i < j; }
const DESC = function(i, j) { return i > j; }

function sort(list, order) ...;

interface Order {
  boolean lessThan(int i, int j);
}

class AscendingOrder implements Order {
  public boolean lessThan(int i, int j) { 

return i < j; }
}
class DescendingOrder implements Order {
  public boolean lessThan(int i, int j) { 

return i > j; }
}

void sort(int[] list, Order order) ;



2417-214/514

New Java Syntax for “Functions”
const ASC = 

function(i: number, j: number): boolean { 
return i < j; 

}
const DESC = 

function(i: number, j: number): boolean { 
return i > j; 

}

function sort(
list: number[], 
order: (number, number) => boolean) ...;

interface Order {
  boolean lessThan(int i, int j);
}

final Order ASCENDING  = (i, j) -> i < j;
final Order DESCENDING = (i, j) -> i > j;

static void sort(int[] list, Order order);

Convenient syntax (introduced for lambdas)  to create objects of interface with single method.



2517-214/514

Module Pattern



2617-214/514

(function () {
// ... all vars and functions are in this scope only
// still maintains access to all globals

}());

Module pattern: Hide internals in closure

Function provides local scope, internals not accessible

Function directly invoked to execute it once

Wrapped in parentheses to make it expression

Discovered around 2007, became very popular, part of Node



2717-214/514

function createPolarPoint(len, angle) {
    let xcache = -1;
    let internalLen=len;
    function computeX() {…}

return { 
getX: function() { 

computeX(); return xcache; },
getY: function() { 

return len * sin(angle); }
};

}

Using closures to hide methods and fields



2817-214/514

var MODULE = (function () {
var my = {},
privateVariable = 1;

function privateMethod() {
// ...

}

my.moduleProperty = 1;
my.moduleMethod = function () {

// ...
};

return my;
}());

Module pattern: Decide what to export



2917-214/514

Java: Module Pattern?
Public/private built in, problem does not exist

Fully qualified names (“edu.cmu.cs17214.FlashCard”) as 
convention/pattern to solve naming clashes

Never JavaScript/TypeScript features make it less 
important (ES6 modules, classes, public/private)



3017-214/514

Composite Pattern



3117-214/514

Design Exercise (on paper)
● You are designing software for a shipping company.

● There are several different kinds of items that can be shipped: letters, books, packages, fragile items, etc.

● Two important considerations are the weight of an item and its insurance cost.

○ Fragile items cost more to insure.

○ All letters are assumed to weigh an ounce

○ We must keep track of the weight of other packages.

● The company sells boxes and customers can put several items into them.

○ The software needs to track the contents of a box (e.g. to add up its weight, or compute the total insurance value).

○ However, most of the software should treat a box holding several items just like a single item.

● Think about how to represent packages; what are possible interfaces, classes, and methods? (letter, book, box 
only)



3217-214/514

The Composite Design Pattern

32



3317-214/514

The Composite Design Pattern
● Applicability

○ You want to represent part-whole hierarchies 
of objects

○ You want to be able to ignore the difference 
between compositions of objects and 
individual objects

● Consequences
○ Makes the client simple, since it can treat 

objects and composites uniformly
○ Makes it easy to add new kinds of 

components
○ Can make the design overly general

■ Operations may not make sense on 
every class

■ Composites may contain only certain 
components



3417-214/514

We have seen this before
interface Point {

int getX();

int getY();

}

class MiddlePoint implements Point {

Point a, b;

MiddlePoint(Point a, Point b) {this.a = a; this.b = b; }

int getX() { return (this.a.getX() + this.b.getX()) / 2;}

int getY() { return (this.a.getY() + this.b.getY()) / 2; }

}



3517-214/514

Composite Pattern and Flash Cards?



3617-214/514

We have seen this before
function newCombinedCardOrganizer (cardOrganizers: CardOrganizer[]): CardOrganizer {

 return {

   reorganize: function (cards: CardStatus[]): CardStatus[] {

     let status = cards.slice()

     for (const cardOrganizer of cardOrganizers) {

       status = cardOrganizer.reorganize(status)

     }

     return status

   }

 }

}



3717-214/514

Fluent APIs / Cascade Pattern



3817-214/514

Setting up Complex Objects
Long constructors, lots of optional parameters, long lists 
of statements

client.getItem('user-table')
    .setHashKey('userId', 'userA')
    .setRangeKey('column', '@')
    .execute()
    .then(function(data) {
        ...
    })

Option find = OptionBuilder
.withArgName("file")
.hasArg()
.withDescription("search..." )
.create("find");



3917-214/514

Liquid APIs
Each method changes 
state, 
then returns this

(Immutable version: 
Return modified copy)

class OptBuilder {
private String argName = "";
private boolean hasArg = false;
...
OptBuilder withArgName(String n) {

this.argName = n; 
return this;

}
OptBuilder hasArg() {

this.hasArg = true;
return this;

}
...
Option create() {

return new Option(argName,
 hasArgs, ...)

}
}



4017-214/514

Python: Named parameters

parser = argparse.ArgumentParser(description='Process some integers.')
parser.add_argument('integers', metavar='N', type=int, nargs='+',
                    help='an integer for the accumulator')
parser.add_argument('--sum', dest='accumulate', action='store_const',
                    const=sum, default=max,
                    help='sum the integers (default: find the max)')



4117-214/514

JavaScript: JSON Objects
var argv = require('yargs/yargs')(process.argv.slice(2))

  .option('size', {

    alias: 's',

    describe: 'choose a size',

    choices: ['xs', 's', 'm', 'l', 'xl']

  })

  .argv

Notice the combination of cascading and complex JSON parameters



4217-214/514

Fluent APIs: Discussion and Tradeoffs
Problem: Complex initialization and configuration

Advantages: 

● Fairly readable code
● Can check individual arguments
● Avoid untyped complex arguments

Disadvantages:

● Runtime error checking of constraints and mandatory arguments
● Extra complexity in implementation
● Not always obvious how to terminate
● Possibly harder to debug



4317-214/514

Iterator Pattern & Streams



4417-214/514

Traversing a collection
● Since Java 1.0:

  Vector arguments = …;

  for (int i = 0; i < arguments.size(); ++i) {

    System.out.println(arguments.get(i));

  }

● Java 1.5:  enhanced for loop
List<String> arguments = …;

for (String s : arguments) {

  System.out.println(s);

}

● Works for every implementation of Iterable
public interface Iterable<E> {

  public Iterator<E> iterator();

}

public interface Iterator<E> {

  boolean hasNext();

  E next();

  void remove();  

}                 

● In JavaScript (ES6)
let arguments = …

for (const s of arguments) {

  console.log(s)

}

● Works for every implementation with a “magic”
function [Symbol.iterator] providing an iterator
interface Iterator<T> {

  next(value?: any): IteratorResult<T>;

  return?(value?: any): IteratorResult<T>;

  throw?(e?: any): IteratorResult<T>;

}

interface IteratorReturnResult<TReturn> {

  done: true;

  value: TReturn;

}



4517-214/514

The Iterator Idea
Iterate over elements in arbitrary data structures (lists, 
sets, trees) without having to know internals
Typical interface:

public interface Iterator<E> {
  boolean hasNext();
  E next();
}

(in Java also remove)



4617-214/514

Using an iterator
Can be used explicitly

List<String> arguments = …;  

for (Iterator<String> it = arguments.iterator(); it.hasNext();  ) {

  String s = it.next();

  System.out.println(s);

}

Often used with magic syntax: 
for (String s : arguments)
for (const s of arguments)



4717-214/514

Java: Getting an Iterator
public interface Collection<E> extends Iterable<E> {  
  boolean     add(E e);
  boolean     addAll(Collection<? extends E> c);
  boolean     remove(Object e);
  boolean     removeAll(Collection<?> c);
  boolean     retainAll(Collection<?> c);
  boolean     contains(Object e);
  boolean     containsAll(Collection<?> c);
  void        clear();
  int         size();
  boolean     isEmpty();
  Iterator<E> iterator();
  Object[]    toArray()
  <T> T[]     toArray(T[] a);
  …
}

Defines an interface for creating an 
Iterator,
but allows Collection 
implementation to decide
which Iterator to create.



4817-214/514

Iterators for everything
public class Pair<E> {
  private final E first, second;
  public Pair(E f, E s) { first = f; second = s; }

  

}

Pair<String> pair = new Pair<String>("foo", "bar");
for (String s : pair) { … }



4917-214/514

public class Pair<E> implements Iterable<E> {
  private final E first, second;
  public Pair(E f, E s) { first = f; second = s; }
  public Iterator<E> iterator() {
    return new PairIterator();
  }
  private class PairIterator implements Iterator<E> {
    private boolean seenFirst = false, seenSecond = false;
    public  boolean hasNext() { return !seenSecond; }
    public  E next() {
      if (!seenFirst)  { seenFirst  = true; return first;  }
      if (!seenSecond) { seenSecond = true; return second; }
      throw new NoSuchElementException();
    }
    public void remove() { 
      throw new UnsupportedOperationException();
    }
  }
}

An Iterator implementation for Pairs

Pair<String> pair = new Pair<String>("foo", "bar");
for (String s : pair) { … }



5017-214/514

Iterator design pattern
● Problem:  Clients need uniform strategy to access all 

elements in a container, independent of the container 
type
○ Order is unspecified, but access every element once

● Solution:  A strategy pattern for iteration 
● Consequences:

○ Hides internal implementation of underlying container
○ Easy to change container type
○ Facilitates communication between parts of the program



5117-214/514

Iterator and FlashCards?



5217-214/514

Streams
Stream ~ Iterator -- a sequence of objects

Typically provide operations to produce new stream from old 
stream (map, flatMap, filter) and operations on all elements (fold, 
sum) -- using higher-order functions/strategy

Often provide efficient/parallel implementations
(subtype polymorphism)

Built-in in Java since Java 8; basics in Node libraries in JavaScript



5317-214/514

List<String>results = stream.map(Object::toString)
.filter(s -> pattern.matcher(s).matches())

                .collect(Collectors.toList());

int sum = numbers.parallelStream().reduce(0, Integer::sum);

Stream(people).filter({age: 23}).flatMap("children").map("firstName")
   .distinct().filter(/a.*/i).join(", ");

for (let [odd, even] in numbers.split(n => n % 2, n => !(n % 2)).zip()) {
    console.log(`odd = ${odd}, even = ${even}`);  // [1, 2], [3, 4], ...
}



5417-214/514

Design pattern conclusions
● Provide shared language
● Convey shared experience
● Can be system and language specific


