
117-214/514

Principles of Software Construction:
Objects, Design, and Concurrency

Refactoring & Anti-patterns

Christian Kästner Vincent Hellendoorn

217-214/514

HW3 Feedback
https://rb.gy/xpnh1b

https://rb.gy/xpnh1b

317-214/514

Today
● Midterm debrief

○ Discussing the Decorator Pattern
● Revisiting composition + delegation
● More on inheritance
● Refactoring and Anti-patterns

417-214/514

Midterm Debrief
How did it go? Anything deserve discussion?

517-214/514

The Decorator Pattern
You have a complex drawing that consists of many shapes and want to save it. Some logic of the
saving functionality is always the same (e.g., going through all shapes, reducing them to drawable
lines), but others you want to vary to support saving in different file formats (e.g., as png, as svg,
as pdf). You want to support different file formats later.

Why is this not:

https://refactoring.guru/design-patterns/decorator

617-214/514

Drawing Example -- Basics
class Line {

 // TODO

}

interface Shape {

 toLines(): Line[];

}

class Triangle implements Shape {

 public toLines(): Line[] {

 return ...;

 }

}

717-214/514

Drawing Example -- Basics
// A drawing consists of many shapes.

class Drawing {

 shapes: Shape[]

 constructor(shapes: Shape[]) {

 this.shapes = shapes;

 }

 public toLines() {

 let lines: Line[] = []

 for (let shape of this.shapes) {

 lines.push(shape.toLines());

 }

 return lines;

 }

}

817-214/514

Drawing Example -- Decorator?

917-214/514

Drawing Example -- Decorator?
interface DrawingSaver {

 saveDrawing(drawing: Drawing, path: string): void;

}

class BasicSaver implements DrawingSaver {

 public saveDrawing(drawing: Drawing, path: string): void {

 let lines: Line[] = drawing.toLines();

 // Now what?

 }

}

1017-214/514

Drawing Example -- Decorator?
class DrawingSaverDecorator implements DrawingSaver {

 wrappee: DrawingSaver

 constructor(source: DrawingSaver) { this.wrappee = source; }

 public saveDrawing(drawing: Drawing, path: string): void {

 this.wrappee.saveDrawing(drawing, path);

 }

}

class JPEGDecorator extends DrawingSaverDecorator {

 public saveDrawing(drawing: Drawing, path: string): void {

 let lines: Line[] = drawing.toLines();

 // Internally store in JPEG

 super.saveDrawing(drawing, path);

 }

}

1117-214/514

Drawing Example -- Strategy
interface LineFormatter {

 write(lines: Line[], writer: Writer): void;

}

class DrawingSaver {

 public save(drawing: Drawing, formatter: LineFormatter, path: string) {

 let lines: Line[] = drawing.toLines();

 let writer: Writer = new Writer(path);

 formatter.write(lines, writer);

 }

}

class JPEGFormat implements LineFormatter {

 public write(lines: Line[], writer: Writer) { // Store JPEG data. }

}

1217-214/514

Drawing Example -- Template Method
abstract class DrawingSaver {

 public save(drawing: Drawing, path: string) {

 let lines = drawing.toLines();

 let formatted = this.toFormat(lines);

 let writer: Writer = new Writer(path);

 writer.write(formatted);

 }

 abstract toFormat(lines: Line[]): any[];

}

class JPEGSaver extends DrawingSaver {

 public toFormat(lines: Line[]): any[] { // Store JPEG data. }

}

1317-214/514

Today
● Midterm debrief

○ Discussing the Decorator Pattern
● Revisiting composition + delegation
● More on inheritance
● Refactoring and Anti-patterns

1417-214/514

Delegation
● Delegation is simply when one object relies on another object for

some subset of its functionality
○ e.g. here, the Sorter is delegating functionality to some Order

● Judicious delegation enables code reuse
interface Order {
 boolean lessThan(int i, int j);
}
final Order ASCENDING = (i, j) -> i < j;
final Order DESCENDING = (i, j) -> i > j;

static void sort(int[] list, Order cmp) {
 …
 boolean mustSwap =
 cmp.lessThan(list[i], list[j]);
 …
}

1517-214/514

Using delegation to extend functionality
● Consider the java.util.List (excerpted):
public interface List<E> {

 public boolean add(E e);

 public E remove(int index);

 public void clear();

…

}

● Suppose we want a list that logs its operations to the console…

1617-214/514

Using delegation to extend functionality
public class LoggingList<E> implements List<E> {

 private final List<E> list;

 public LoggingList<E>(List<E> list) { this.list = list; }

 public boolean add(E e) {

 System.out.println("Adding " + e);

 return list.add(e);

 }

 public E remove(int index) {

 System.out.println("Removing at " + index);

 return list.remove(index);

 }

}

The LoggingList is composed of a
List, and delegates (the non-logging)

functionality to that List

1717-214/514

Using inheritance to extend functionality
public class LoggingList<E> extends ??? {

 public boolean add(E e) {

 System.out.println("Adding " + e);

 return super.add(e);

 }

 public E remove(int index) {

 System.out.println("Removing at " + index);

 return super.remove(index);

 }

}

1817-214/514

Using inheritance to extend functionality
public class ArrayLoggingList<E> extends ArrayList<E> {

 public boolean add(E e) {

 System.out.println("Adding " + e);

 return super.add(e);

 }

 public E remove(int index) {

 System.out.println("Removing at " + index);

 return super.remove(index);

 }

}

The LoggingList is an ArrayList,
and relies on it for the (the
non-logging) functionality.

1917-214/514

Delegation and Design
● Small interfaces with clear contracts
● Classes to encapsulate algorithms, behaviors

○ E.g., the Order

2017-214/514

Designing with Inheritance in Mind
● Try to avoid it when composition+delegation is available

○ Delegation reduces coupling
○ Inheritance limits information hiding

● Document contracts for inheritance
○ The compiler won’t inforce all invariants

● Enforce or prohibit inheritance where possible
○ In Java: final & abstract

2117-214/514

Today
● Midterm debrief

○ Discussing the Decorator Pattern
● Revisiting composition + delegation
● More on inheritance
● Refactoring and Anti-patterns

2217-214/514

Details: this
● Refers to itself, but what is that?

○ In general, behaves as a variable referencing the current object.
○ Knows names of all fields and methods

■ Including private ones, and ones inherited from parents
○ But not generally types, modifiers

■ This is where reflection comes in, which is significantly easier in some languages
■ E.g., in Python: `self.__dict__` is all field names on self
■ In JS, `object.__proto__` does something similar

● The definition of ‘this’ can get murky with inheritance
○ Subtle differences between Java and JS/TS, Python

2317-214/514

This binding
class Parent {
 private int i;
 public Parent() {
 this.i = 5;
 }

 void print() {
 System.out.println(this.i);
 }
}

class Child extends Parent {
 private int i;
 public Child() {
 this.i = 7;
 }
}

Child m = new Child();

System.out.println(m.i);

m.print();

2417-214/514

What is ‘this’?
class BaseSaver implements DrawingSaver {
 public save(Drawing drawing, Writer writer) {
 Line[] lines = drawing.toLines();
 this.serialize(writer, lines);
 }
 public serialize(writer, lines) { ... }
}

class PNGDrawingSaver implements DrawingSaver
 DrawingSaver delegee;

 public save(Drawing drawing, Writer writer) {
 delegee.save(drawing, writer);
 }
 public serialize(...) { // write PNG }
}

Which ‘serialize’ gets called?
new PNGDrawingSaver(
 new BaseSaver()).save(...);

2517-214/514

Details: super
● Similar to this
● Refers to any (recursive) parent

○ Depending on what is accessed
● In TS, must call super(); before using ‘this’

○ Initializes the class
● In Java, super call needs to be first statement in constructor

2617-214/514

Details: final
● A final field: prevents reassignment to the field after initialization
● A final method: prevents overriding the method
● A final class: prevents extending the class

○ e.g., public final class CheckingAccountImpl { …
● Not present in TypeScript

○ Called “sealed” in some languages

2717-214/514

Details: abstract
● Method: must be overridden by a non-abstract subclass
● Class: only classes allowed to have abstract members

2817-214/514

Details: type-casting
● Sometimes you want a different type than you have

○ e.g., double pi = 3.14;

 int indianaPi = (int) pi;

● Useful if you know you have a more specific subtype:
 Account acct = …;

 CheckingAccount checkingAcct = (CheckingAccount) acct;

 long fee = checkingAcct.getFee();

○ Will get a ClassCastException if types are incompatible

● Advice: avoid downcasting types
○ Never(?) downcast within superclass to a subclass

In TS:
(dog as Animal).identify()

2917-214/514

Today
● Midterm debrief

○ Discussing the Decorator Pattern
● Revisiting composition + delegation
● More on inheritance
● Refactoring and Anti-patterns

3017-214/514

Recall: Refactoring and Anti-Patterns
● Often, all the functionality is correct, but the organization is bad

○ High coupling, high redundancy, poor cohesion, god classes, …
● Refactoring is the principal tool to improve structure

○ Automated refactorings even guarantee correctness
■ But you can’t always count on those being right

○ A series of refactorings is usually enough to introduce design patterns
● HW4 involves analyzing such a system and making primarily

refactoring changes
○ “primarily”, because sometimes you do need to alter things slightly.

3117-214/514

Anti-patterns
Anti-patterns are common forms of bad/no-design

● Can you think of examples?
● Where do they come from?

3217-214/514

Anti-patterns
● We have talked a fair bit about bad design heuristics

○ High coupling, low cohesion, law of demeter, …
● You will see a much larger vocabulary of related issues

○ Commonly called code/design “smells”
○ Worth reads:

■ A short overview: https://refactoring.guru/refactoring/smells
■ Wikipedia: https://en.wikipedia.org/wiki/Anti-pattern#Software_engineering
■ Book on the topic (no required reading): Refactoring for Software Design Smells:

Managing Technical Debt, Suryanarayana, Samarthyam and Sharma
● S.O. summary: https://stackoverflow.com/a/27567960

https://refactoring.guru/refactoring/smells
https://en.wikipedia.org/wiki/Anti-pattern#Software_engineering
https://stackoverflow.com/a/27567960

3317-214/514

Anti-patterns
● Two ways of looking at this:

○ Design issues that manifest as bad/unmaintainable code
○ Poorly written/evolved code that leads to bad design
○ Next two slides show both

3417-214/514

Anti-patterns
● Common system-level anti-patterns

○ Bad encapsulation, violates information hiding
■ public fields should be private; interface leaks implementation details; lack of interface

○ Bad modularization, violates coupling
■ related methods in different places, or vice versa; very large interface; “god” class

○ Bad abstraction, violates cohesion
■ Not exposing relevant functionality; near-identical classes; too many responsibilities

○ Bad inheritance/hierarchy
■ Violating behavioral subtyping; unnecessary inheritance; very large hierarchies (too wide

or too deep)

3517-214/514

Anti-patterns
● Zooming in: common code smells

○ Not necessarily bad, but worthwhile indicators to check
■ When problematic, often point to design problems

○ Long methods, large classes, and the likes. Suggests bad abstraction
■ Tend to evolve over time; requires restructuring

○ Inheritance despite low coupling (“refused bequest”)
■ Replace with delegation, or rebalance hierarchy

○ ‘instanceof’ (or ‘switch’) instead of polymorphism
○ Overly similar classes, hierarchies
○ Any change requires lots of edits

■ High coupling across classes (“shotgun surgery”), or heavily entangled implementation
(intra-class)

3617-214/514

Anti-patterns
● Zooming in: common code smells

○ Not necessarily bad, but worthwhile indicators to check
■ When problematic, often point to design problems

○ Excessive, unused hierarchies
○ Operations posing as classes
○ Data classes

■ Tricky: not always bad, but ideally distinguish from regular classes (e.g., ‘record’), and
assign responsibilities if any exist (think: FlashCard did equality checking)

○ Heavy usage of one class’ data from another (“feature envy”,
“inappropriate intimacy”; poor coupling)

○ Long chains of calls needed to do anything (law of demeter)
○ A class that only delegates work

3717-214/514

Anti-patterns
● You can detect them from either side

○ Pick a design principle, look for violations
○ Identify “weird” code and isolate design flaw

3817-214/514

Anti-patterns
● You can detect them from either side

○ Pick a design principle, look for violations
○ Identify “weird” code and isolate design flaw

● All fairly easy to spot on their own
○ But in HW4, there are multiple, tangled up

■ We actually provide way more guidance than you’ll get in the wild!
○ How do you approach that?

3917-214/514

Refactoring and Anti-patterns
● Identifying multiple design problems

○ Make a list
■ Read the code, record anything that stands out

● Pay attention to class names and their (apparent) interfaces
● Make note of repetitive code (esp. across methods)

■ Draw a diagram, using a tool or by hand
● Spot duplication, (lack of) interfaces, strange inheritance

■ This takes practice
○ Don’t solve every problem

■ Many issues are orthogonal
● Or, at least, you can improve things somewhat

■ When issues intersect, prioritize fixing interfaces

4017-214/514

Refactoring
● So where is “refactoring” in all this?

○ It’s what comes next.
○ Most design issues can be resolved with functionality-preserving

transformation(s)
■ Too many parameters? Merge relevant ones into object, and/or replace with method

calls.
■ Two near-identical classes? Merge their signatures using renamings, parameterization,

then delete one or extract super-class
○

4117-214/514

Summary
● Practice applying design patterns, recognizing anti-patterns

○ Create scenarios and try to write code
○ Find examples in public projects
○ We’ll do a case-study on Thursday

● Use this time to gain experience
○ Read lots of code, think about alternatives, like in HW4
○ Learn a vocabulary of anti-patterns (even if imperfect)

