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How was the Recitation?
● Did every solution make the program smaller?
● Did I change everything you would have?

○ Anything you wouldn’t?
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Scanner input = new Scanner(System.in);
while (questions.hasNext()) {
   Question q = question.next();
   System.out.println(q.toString());
   String answer = input.nextLine();
   q.respond(answer);
}

Interaction with CLI
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A backend with no interaction
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What have we not yet seen?
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How do you wait?

while (true) {
if (isKeyDown(“Alt+Q”)

break;
if (isKeyDown(“F1”)

openHelp();
if (isMouseDown(10 …)

startMovingWindow();
...

}
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How do you multi-player?

https://www.cloudsavvyit.com/2586/how-to-build-your-multiplayer-games-server-architecture/

while (true) {
if (player === “player1”) {

hasWon = play(“player1”);
if (hasWon) break;
player = “player2”;

} else (player === “player2”) {
hasWon = play(“player2”)
if (hasWon) break;
player = “player1”;

}
}
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Today
Beyond serial execution

● Event-based Programming
● Asynchrony & Concurrency
● I/O, GUIs
● Observer Pattern
● React preview
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Event-based programming

● Style of programming where control-flow is driven by (usually 
external) events

public void performAction(ActionEvent e) {
    List<String> lst = Arrays.asList(bar);
    foo.peek(42)
}

public void performAction(ActionEvent e) {
    bigBloatedPowerPointFunction(e);
    withANameSoLongIMadeItTwoMethods(e);
    yesIKnowJavaDoesntWorkLikeThat(e);
}

public void performAction(ActionEvent e) {
    List<String> lst = Arrays.asList(bar);
    foo.peek(40)
}
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Event-based GUIs
//static public void main…
JFrame window = …
window.setDefaultCloseOperation(
      WindowConstants.EXIT_ON_CLOSE);
window.setVisible(true);

//on add-button click:
String email = emailField.getText();
emaillist.add(email);

//on remove-button click:
int pos = emaillist.getSelectedItem();
if (pos>=0) emaillist.delete(pos);
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(Blocking) Interactions with users

blocking
execution
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Interactions with users through events
● Do not block waiting for user response

● Instead, react to user events
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● Thread: instructions executed in sequence
○ Within a thread, everything happens in order.
○ A thread can start, sleep, and die.
○ You often work on the “main” thread.

Three Concepts of Importance
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● Thread: instructions executed in sequence
○ Within a thread, everything happens in order.
○ A thread can start, sleep, and die.
○ You often work on the “main” thread.

● Concurrency: multiple threads running at the same time
○ Not necessarily executing in parallel

● Asynchrony: computation happening outside the main flow

Three Concepts of Importance
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Multi-Threading
The natural response to non-serial computation

● Multiple threads can exist concurrently
● Threads share memory space
● You are already using it

○ Garbage collection in the JVM
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Asynchrony
Where might this come from?
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Asynchrony
Where might this come from?

● People
● Other machines
● Our own callbacks
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Asynchrony
Usually, managing asynchronous events involves concurrency

● Do something while we wait
● Multiple events can overlap
● Even “waiting” is not really doing nothing
● We will focus on constructs for handling both
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Asynchrony
Asynchronous but not concurrent

//static public void main…
JFrame window = …
window.setDefaultCloseOperation(
      WindowConstants.EXIT_ON_CLOSE);
window.setVisible(true);
// And now, wait.
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Where do we want concurrency?
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Where do we want concurrency?
● User interfaces

○ Events can arrive any time
● File I/O

○ Offload work to disk/network/... handler
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Where do we want concurrency?
● Background work

○ Periodically run garbage collection, check health of service
● High-performance computing

○ Facilitate parallelism and distributed computing
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User Interfaces
What happens here:

document.addEventListener('click', () => console.log('Clicked!')
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User Interfaces
Callback functions

● Perhaps the building blocks of the internet’s UI.
● Work that should be done once something happens

○ Called asynchronously from the literal flow of the code
○ Not concurrent: JS is single-threaded

document.addEventListener('click', () => {
  console.log('Clicked!'); console.log('Clicked again!'); })
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Concurrency with file I/O
Key chart:

https://formulusblack.com/blog/compute-performance-distance-of-data-as-a-measure-of-latency/
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Concurrency with file I/O
Mostly used synchronous IO so far

/**

  * in the top-level directory only look for subdirectories and metadata files

  */

 processProject (builder: ProjectBuilder, dir: string): void {

    const files = fs.readdirSync(dir)

    for (const filename of files) {

      const file = path.join(dir, filename)

      const fileStats = fs.statSync(file)

      const extension = path.extname(file)

      if (fileStats.isDirectory()) { this.#processDirectory(builder, file) }

      else if (extension === '.yml') { this.#loadMetadataFile(builder, file) }

    }

  }
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Concurrency with file I/O
Mostly used synchronous IO so far

● Works fine if ‘fetch’ is synchronous
○ But if other work is waiting...

let image: Image = fetch('myImage.png');
display(image);
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Concurrency with file I/O
Mostly used synchronous IO so far

● Works fine if ‘fetch’ is synchronous
○ But if other work is waiting...

 

● It’d be nice if we could continue other work
○ How to make it work if ‘fetch’ is asynchronous?

let image: Image = fetch('myImage.png');
display(image);
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Concurrency with file I/O
Asynchronous code requires Promises

● Captures an intermediate state
○ Neither fetched, nor failed; we’ll find out eventually

let imageToBe: Promise<Image> = fetch('myImage.png');
imageToBe.then((image) => display(image))
         .catch((err) => console.log('aw: ' + err));



3117-214/514

Concurrency with file I/O
Asynchronous code requires Promises

● Captures an intermediate state
○ Neither fetched, nor failed; we’ll find out eventually

● A bit like a callback
○ But better designed
○ Also related to async/await
○ Future in Java

let imageToBe: Promise<Image> = fetch('myImage.png');
imageToBe.then((image) => display(image))
         .catch((err) => console.log('aw: ' + err));

https://developer.mozilla.org/en-US/docs/Learn/JavaScript/Asynchronous/Introducing#promises_versus_callbacks
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Statements/async_function
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Concurrency with file I/O
Can save you a lot of time

● An example from Machine Learning
● The usual process:

○ Read data from a filesystem or network
○ Batch samples, send to GPU/TPU/XPU memory
○ Train on-device
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Concurrency with file I/O
An example from Machine Learning

Different devices:
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Aside: Concurrency vs. parallelism
● Concurrency without parallelism:

● Concurrency with parallelism:
Thread1
Thread2
Thread3

Thread1
Thread2
Thread3
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Aside: Threads vs. Processes
● Threads are lightweight; processes heavyweight

● Threads share address space; processes have own

● Threads require synchronization; processes don’t
○ Threads hold locks while mutating objects

● It’s unsafe to kill threads; safe to kill processes
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Concurrency
Quite a few advanced topics

● Synchronization
● Immutability
● Parallelism
● More later in the course

○ Except for parallelism; largely out of scope
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Designing for Asynchrony & Concurrency
● We are in a new paradigm now

○ We need standardized ways to handle asynchronous and/or concurrent 
interactions

○ This is how design patterns are born
● A lot of powerful syntax for managing concurrency

○ To be discussed in future classes
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A GUI design challenge
● Consider a blackjack game, implemented by a Game class:

○ Player clicks “hit” and expects a new card
○ When should the GUI update the screen?
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A GUI design challenge, extended
● What if we want to show the points won?
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Game updates GUI?
● What if points change for reasons not started by the GUI?

(or computations take a long time and should not block)
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Game updates GUI?
● Let the Game tell the GUI that something happened
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Game updates GUI?
● Let the Game tell the GUI that something happened

Problem: This couples the World to the GUI implementation.
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Recall the Observer

https://refactoring.guru/design-patterns/observer
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Decoupling with the Observer pattern

● Let the Game tell all interested components about updates
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Core implementation vs. GUI
● Core implementation: application logic

○ Computing some result, updating data

● GUI
○ Graphical representation of data
○ Source of user interactions

● Design guideline: avoid coupling the GUI with core application
○ Multiple UIs with single core implementation
○ Test core without UI
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Separating application core and GUI
● Reduce coupling: do not allow core to depend on UI

● Create and test the core without a GUI
○ Use the Observer pattern to communicate information from the core 

(Model) to the GUI (View)

Core

GUI

Core Tests

GUI Tests
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An architectural pattern: 
Model-View-Controller (MVC)

Manage inputs from user: 
mouse, keyboard, menu, etc.

Manage display of 
information on the screen

Manage data related to the 
application domain
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Model-View-Controller (MVC)
Passive model

Active model

http://msdn.microsoft.com/en-us/library/ff649643.aspx
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React Preview
How to handle asynchronous streams of data, across many actors?

● Without overwhelming workers
● Or blocking, or wasting resources

https://www.reactivemanifesto.org/
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React Preview
“ReactiveX combines the Observer pattern with the Iterator pattern 
and functional programming with collections to fill the need for an ideal 
way of managing sequences of events.”

“It extends the observer pattern to support sequences of data/events 
and adds operators that allow you to compose sequences together 
declaratively while abstracting away concerns about things like 
low-level threading, synchronization, thread-safety and concurrent 
data structures.”

https://rxjs.dev/guide/overview 

https://github.com/ReactiveX/RxJava 

https://rxjs.dev/guide/overview
https://github.com/ReactiveX/RxJava
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Summary
● Thinking past the main loop

○ The world is asynchronous
○ Concurrency helps, in a lot of ways
○ Requires revisiting programming patterns

● Start considering UI design
○ Discussed in more detail next week


