Principles of Software Construction:
Objects, Design, and Concurrency

Asynchrony and Concurrency

Christian Kastner Vincent Hellendoorn

Carnegie Mellon University
School of Computer Science

institute for
I S SOFTWARE
RESEARCH

17-214/514 1 [s

How was the Recitation?

e Did every solution make the program smaller?

e Did | change everything you would have?
o Anything you wouldn’t?

17-214/514 2 Sf ;é}éﬁ%

Interaction with CLI

Terminal — 0

File Edit View Search Terminal Help

scripts/kconfig/conf arch/x86/Kconfig
*

Linux Kernel Configuration

*
*
*
*

General setup

*

Prompt for developr

Pestapepeaaaees Scanner input = new Scanner(System.in);

Automatically appen : :
S while (questions.hasNext()) {

Kernel compression Question q = question.next();

i Sitﬁz‘?iizﬁtzf System.out.println(qg.toString());

3. LZMA (KERNEL_L - _ - .
4. LZO (KERNEL_LZ String answer = input.nextlLine();

choice[1-47]: 3 q.respond(answer) ;
Support for paging
System V IPC (SYSVI

POSIX Message QUEUES \rwvoain_itigurviry iy
BSD Process Accounting (BSD_PROCESS_ACCT) [Y/n/?2] n

Export task/process statistics through netlink (EXPERIMENTAL) (TASKSTATS) [Y/n/?
11

3 [

institute for
SOFTWARE
RESEARCH

A backend with no interaction

. .“\g
ence WO

NoE O Ce%(i whak & dowman wmodel

looks \\ke

17-214/514 a4 |

tig 1%
an examP\e

What have we not yet seen?

17-214/514 5 i

How do you wait?

»Eile Edit Uieu‘ Search Run Debug Uption;» Uindou

ndex
ontents

You have a royalty-free right to use, modify, repr
and distribute the sample applications and toolkit eyboard
Uisual Basic for MS-DOS (and/or any modified versi
in any way you find useful, provided that you agre| USRS F1
Microsoft has no warranty, obligations or liabilit]EIESR\T/EeE=30"] Shift+F1
any of the sample applications or toolkits. T torial

:nnf, o
' Include file containing declaration :
* SINCLUDE : while (true) {

‘clock.bi’
if (isKeyDown(“Alt+Q")
ONST FALSE = 0

ONST TRUE = NOT FALSE break;
ONST ALARMSOUND = “MBT255L1606C04GED if (isKeyDown(“F1")

IM SHARED AlarmTime AS STRING openHelp();
if (isMouseDown(10 ..)
startMovingWindow()

IM SHARED TimeFmt AS STRING

’

17-214/514

6 [Hi

institute for
SOFTWARE
RESEARCH

How do you multi-player?

'll"—;:ji‘—i"'
. A

while (true) {
if (player === “player1”) {
hasWon = play(“player1”);
if (hasWon) break;
player = “player2”;

} else (player === “player2”) {
hasWon = play(“player2”)
if (hasWon) break;
player = “playeri1”;

https://www.cloudsavvyit.com/2586/how-to-build-your-multiplayer-games-server-architecture/
17-214/514 7 i

RESEARCH

Today

Beyond serial execution

Event-based Programming
Asynchrony & Concurrency
/O, GUIs

Observer Pattern

React preview

17-214/514 8 Sf 2?}3}{1{%

Event-based programming

e Style of programming where control-flow is driven by (usually
external) events

public void performAction (ActionEvent e) {
List<String> lst = Arrays.asList (bar);
foo.peek (42)

public void performAction (ActionEvent e) {
bigBloatedPowerPointFunction (e) ;
withANameSoLongIMadeItTwoMethods (e) ;
yesIKnowJavaDoesntWorkLikeThat (e) ;

public void performAction (ActionEvent e) {
List<String> lst = Arrays.aslist (bar);
foo.peek (40)

17-214/514 9 el

RESEARCH

Event-based GUIs

Saform ey Contactidior] //static public void main...
AT | | JFrame window = ...
o = | window.setDefaultCloseOperation(
bispy Format: [T 1 ’ WindowConstants.EXIT_ON_CLOSE);
window.setVisible(true);
E-mail I
e “1//on add-button click:
em 1 String email = emailField.getText();
Ttem 3 [Remo 2 N
e = emaillist.add(email);
= //on remove-button click:
e oeh int pos =emaillist.getSelectedItem(
—_— if (pos>=0) emaillist.delete(pos);

17-21 e

(Blocking) Interactions with users

Dealer Player

newGame

17-214/514

Interactions with users through events
e Do not block waiting for user response

e Instead, react to user events

Game Dealer Player
newGame J : :
| addCards l |
|) |
| addCards |
| [>I
hit ' I I	
ﬁ addCard I	
' >I	

17-214/514 12 [s

RRRRRRRR

Three Concepts of Importance

e Thread: instructions executed in sequence

o Within a thread, everything happens in order.
o Athread can start, sleep, and die.
o You often work on the “main” thread.

17'214/514 13 Sf gég?ﬁ%

Three Concepts of Importance

e Thread: instructions executed in sequence

o Within a thread, everything happens in order.
o Athread can start, sleep, and die.
o You often work on the “main” thread.

e Concurrency: multiple threads running at the same time
o Not necessarily executing in parallel

17-2 14/5 14 14 Sf gé;{"ui{%

Three Concepts of Importance

e Thread: instructions executed in sequence

o Within a thread, everything happens in order.
o Athread can start, sleep, and die.
o You often work on the “main” thread.

e Concurrency: multiple threads running at the same time
o Not necessarily executing in parallel

e Asynchrony: computation happening outside the main flow

17-214/514 15 Sf 2?3%%

Multi-Threading

The natural response to non-serial computation

e Multiple threads can exist concurrently
e Threads share memory space

e You are already using it
o Garbage collection in the JVM

17-214/514 16 Lo

Asynchrony

Where might this come from?

17-214/514 17 [s

RRRRRRRR

Asynchrony

Where might this come from?

e People
e Other machines
e QOur own callbacks

17-214/514 18 Lo

Asynchrony

Usually, managing asynchronous events involves concurrency

Do something while we wait

Multiple events can overlap

Even “waiting” is not really doing nothing
We will focus on constructs for handling both

17-214/514 19 Lo

Asynchrony

Asynchronous but not concurrent

£ Form Preview [ContactEditor] //StatIC publlc V0|d ma|n
Nl | | IFrame window = ...
o = window.setDefaultCloseOperation(
B — ‘ l WindowConstants.EXIT_ON_CLOSE);
window.setVisible(true);
E:-:':aii:nddreSS' // And nOW’ Walt.

Ttem 1 [Ede
(Item 2
Item 4
17-214/f " 20 [it
(YHTML) Plain Text ¢ Custom | [| O | 7 i

Where do we want concurrency?

17-214/514 21 | s

RRRRRRRR

Where do we want concurrency?

e User interfaces
o Events can arrive any time

e Filel/O

o Offload work to disk/network/... handler

17-214/514 22 iy

Where do we want concurrency?

e Background work
o Periodically run garbage collection, check health of service

e High-performance computing
o Facilitate parallelism and distributed computing

17'214/514 23 Sf gég?ﬁ%

User Interfaces
What happens here:

document.addEventListener('click', () => console.log('Clicked!")

17-214/514 24 |Ij o

User Interfaces

Callback functions

e Perhaps the building blocks of the internet’s Ul.

e \Work that should be done once something happens
o Called asynchronously from the literal flow of the code
o Not concurrent: JS is single-threaded

document.addEventListener('click', () => {
console.log('Clicked!'); console.log('Clicked again!'); })

17-214/514

Concurrency with file 1/0
Key chart:

17-214/514

Computer Action Avg Latency Normalized Human Time
3GhzCPU Clock cycle 3Ghz 0.3ns 1s

Level 1 cache access 0.9ns 3s

Level 2 cache access 2.8ns 9s

Level 3 cache access 12.9 ns 43 s

RAM access 70 - 100ns 3.5t0 5.5 min
NVMe SSD I/O 7-150 ps 2 hrs to 2 days
Rotational disk I/0 1-10 ms 11 days to 4 mos
Internet: SF to NYC 40 ms 1.2 years
Internet: SF to Australia 183 ms 6 years

OS virtualization reboot 4s 127 years
Virtualization reboot 40 s 1200 years
Physical system reboot 90s 3 Millenia

Table 1: Computer Time in Human Terms '

https://formulusblack.com/blog/compute-performance-distance-of-data-as-a-measu re-oi—éatenc

/

institute for
SOFTWARE
RESEARCH

Concurrency with file 1/0

Mostly used synchronous IO so far

17-214/514

/**
* in the top-level directory only look for subdirectories and metadata files
*/
processProject (builder: ProjectBuilder, dir: string): void {
const files = fs.readdirSync(dir)
for (const filename of files) {
const file = path.join(dir, filename)
const fileStats = fs.statSync(file)
const extension = path.extname(file)
if (fileStats.isDirectory()) { this.#processDirectory(builder, file) }
else if (extension === '.yml') { this.#loadMetadataFile(builder, file) }

27 [Hi

institute for
SOFTWARE
RESEARCH

Concurrency with file 1/0

Mostly used synchronous IO so far

e Works fine if ‘fetch’ is synchronous
o But if other work is waiting...

let image: Image = fetch('myImage.png');
display(image);

17-214/514 28 [[j e

RRRRRRRR

Concurrency with file 1/0

Mostly used synchronous IO so far

e Works fine if ‘fetch’ is synchronous
o But if other work is waiting...

let image: Image = fetch('myImage.png');
display(image);

e It'd be nice if we could continue other work
o How to make it work if ‘fetch’ is asynchronous?

17-214/514

Concurrency with file 1/0

Asynchronous code requires Promises

e C(Captures an intermediate state
Neither fetched, nor failed; we’ll find out eventually

©)

17-214/514

imageToBe.then((image) => display(image))
.catch((err) => console.log(aw:

let imageToBe: Promise<Image> = fetch('myImage.png');

'+ err));

Concurrency with file 1/0

Asynchronous code requires Promises

e C(Captures an intermediate state
Neither fetched, nor failed; we’ll find out eventually

©)

imageToBe.then((image) => display(image))
.catch((err) => console.log(aw:

let imageToBe: Promise<Image> = fetch('myImage.png');

'+ err));

e A bitlike a callback

©)
@)

©)

17-214/514

But better designed
Also related to async/await
Future in Java

https://developer.mozilla.org/en-US/docs/Learn/JavaScript/Asynchronous/Introducing#promises_versus_callbacks
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Statements/async_function

Concurrency with file I/O

Can save you a lot of time

e An example from Machine Learning

e The usual process:

o Read data from a filesystem or network
o Batch samples, send to GPU/TPU/XPU memory
o Train on-device

17-2 14/5 14 32 Sf gé;{"ui{%

Concurrency with file I/O

An example from Machine Learning

Naive

ttttttt

17-2 14/5 14 33 S r g‘é&:ﬁi{%

Aside: Concurrency vs. parallelism

e Concurrency without parallelism:

Thread1 R T
Threaqz N I
Thread3

e Concurrency with parallelism:

Thread1 NG
Thread2 [

L
Thread3

17-214/514 34 [s

RRRRRRRR

Aside: Threads vs. Processes

e Threads are lightweight; processes heavyweight
e Threads share address space; processes have own

e Threads require synchronization; processes don't

o Threads hold locks while mutating objects

e |t's unsafe to kill threads; safe to kill processes

17-2 14/5 14 35 Sf gégi{%

Concurrency

Quite a few advanced topics

Synchronization
Immutability
Parallelism

More later in the course
o Except for parallelism; largely out of scope

17-214/514 36 Lo

Designing for Asynchrony & Concurrency

e We are in a new paradigm now

o We need standardized ways to handle asynchronous and/or concurrent
interactions
o This is how design patterns are born

e A lot of powerful syntax for managing concurrency
o To be discussed in future classes

17-214/514 37 Lo

A GUI design challenge

e Consider a blackjack game, implemented by a Game class:
o Player clicks “hit” and expects a new card
o When should the GUI update the screen?

Ul

0
)
=]
1

hit()

getData

Y A

update

17-214/514 38 [j o

RRRRRRRR

A GUI design challenge, extended

e \What if we want to show the points won?

Game GUI PointsPanel
I I |
I hit | I
[V
[N | |
I getData | I
K l
: b update :
I | update |
I | |
| getData |
[%
K |]
| | g
I | update

17-214/514 39 [Jj s

RRRRRRRR

Game updates GUI?

e What if points change for reasons not started by the GUI?
(or computations take a long time and should not block)

Game GUI PointsPanel
J I |
I hit | I
[
K | |
| getData I |
K |
: b update :
I update |
| ! 3
| getData |
["
N | !
| | 5
I | update

17-214/514 40 | s

RRRRRRRR

Game updates GUI?

e Letthe Game tell the GUI that something happened

17-214/514

Game

GUI

hit

update(data)

updatddata)

PointsPanel

update

I
K
!
I
I
I
I
I
I
|

update

Game updates GUI?
e Letthe Game tell the GUI that something happened

Game GUI PointsPanel

! |

:< hit I |

| update{data) : :
—) |

: | update :

I updatddata) |

1 v Ny

; |

l | | update

| |

Problem: This couplés the World to the GUI implementation.

17-214/514 42

Recall the Observer

Publisher s
«interface»
- subscribers: Subscriber[] [<>—=>| Subscriber
foreach (s in subscribers) - mainState + update(context)
s.update(this) + subscribe(s: Subscriber) A
+ unsubscribe(s: Subscriber) |
S e Conerte 1
mainBusinessLogic() Subscribers

A

s = new ConcreteSubscriber() und 2
publisher.subscribe(s) update(context)

L~ l
Client

-
-
-
-
-

17-214/514 https://refactoring.guru/design-patterns/observer 43 A

RESEARCH

Decoupling with the Observer pattern

e Letthe Game tell all interested components about updates

Game GUI PointsPanel
I l |
| register | |
[V
[N] |
I register |
= a
K] !
I hit | |
[Ve
KN . [|
I notify I
’ |
! |
| b update [
| notify |
| l N|
l | |> update

17-214/514 a4 g o

RRRRRRRR

Core implementation vs. GUI

e Core implementation: application logic
o Computing some result, updating data

o GUI

o Graphical representation of data

o Source of user interactions

e Design guideline: avoid coupling the GUI with core application
o Multiple Uls with single core implementation
o Test core without Ul

17'2 14/5 14 45 Sf :Es:t::iior

SSSSSSSS
H

Separating application core and GUI

e Reduce coupling: do not allow core to depend on Ul

e Create and test the core without a GUI

o Use the Observer pattern to communicate information from the core
(Model) to the GUI (View)

GUI Tests

CoreTests

17-214/514

An architectural pattern:
Model-View-Controller (MVC)

Manage inputs from user: }

= m e —————— Controller \\mouse, keyt)Oard, menu, etc.
\'%

:
]
]
V
View r -
Manage display of
Linformation on the screen

Manage data related to the
application domain

17-214/514 47 [s

RRRRRRRR

Model-View-Controller (MVC)

H :Controll Model Vi
Passive model = : -
handleEvent s ' '
R G e S i Controller : :
v : service 1 :
Model : :
1
A v updé'lte :
b T i T Do b 0 View T >
|i| = getData
N ;
Active model ___ o L
________ Controller T T
] '
: v " handleEvent g ' :
A 4 . | <<interface>> : - i o s
Model - Observer ! update -
+update() ' >
? A Q getData
I lerceccecce- View Data.

http:ﬁ/_}?iirhygirzsoft.com/en-us/Iibrary/ff649643.aspx

React Preview

How to handle asynchronous streams of data, across many actors?

e Without overwhelming workers
e Or blocking, or wasting resources

Maintainable Extensible

VALUE
- . - ‘A -
MEANS .

Message Driven

17-214/514 https://www.reactivemanifesto.org/ 49 ek

React Preview

“‘ReactiveX combines the Observer pattern with the Iterator pattern
and functional programming with collections to fill the need for an ideal
way of managing sequences of events.” https://rxjs.dev/guide/overview

“It extends the observer pattern to support sequences of data/events
and adds operators that allow you to compose sequences together
declaratively while abstracting away concerns about things like

low-level threading, synchronization, thread-safety and concurrent
data structures.” https://github.com/ReactiveX/RxJava

17-214/514 50 Sf :?}Eﬁ{z{%

https://rxjs.dev/guide/overview
https://github.com/ReactiveX/RxJava

Summary

e Thinking past the main loop

o The world is asynchronous
o Concurrency helps, in a lot of ways
o Requires revisiting programming patterns

e Start considering Ul design
o Discussed in more detail next week

17-214/514 51 Sf i?ﬁfﬁ{%

