
117-214/514

Principles of Software Construction:
Objects, Design, and Concurrency

Asynchrony and Concurrency

Christian Kästner Vincent Hellendoorn

217-214/514

How was the Recitation?
● Did every solution make the program smaller?
● Did I change everything you would have?

○ Anything you wouldn’t?

317-214/514

Scanner input = new Scanner(System.in);
while (questions.hasNext()) {
 Question q = question.next();
 System.out.println(q.toString());
 String answer = input.nextLine();
 q.respond(answer);
}

Interaction with CLI

417-214/514

A backend with no interaction

517-214/514

What have we not yet seen?

617-214/514

How do you wait?

while (true) {
if (isKeyDown(“Alt+Q”)

break;
if (isKeyDown(“F1”)

openHelp();
if (isMouseDown(10 …)

startMovingWindow();
...

}

717-214/514

How do you multi-player?

https://www.cloudsavvyit.com/2586/how-to-build-your-multiplayer-games-server-architecture/

while (true) {
if (player === “player1”) {

hasWon = play(“player1”);
if (hasWon) break;
player = “player2”;

} else (player === “player2”) {
hasWon = play(“player2”)
if (hasWon) break;
player = “player1”;

}
}

817-214/514

Today
Beyond serial execution

● Event-based Programming
● Asynchrony & Concurrency
● I/O, GUIs
● Observer Pattern
● React preview

917-214/514

Event-based programming

● Style of programming where control-flow is driven by (usually
external) events

public void performAction(ActionEvent e) {
 List<String> lst = Arrays.asList(bar);
 foo.peek(42)
}

public void performAction(ActionEvent e) {
 bigBloatedPowerPointFunction(e);
 withANameSoLongIMadeItTwoMethods(e);
 yesIKnowJavaDoesntWorkLikeThat(e);
}

public void performAction(ActionEvent e) {
 List<String> lst = Arrays.asList(bar);
 foo.peek(40)
}

1017-214/514

Event-based GUIs
//static public void main…
JFrame window = …
window.setDefaultCloseOperation(
 WindowConstants.EXIT_ON_CLOSE);
window.setVisible(true);

//on add-button click:
String email = emailField.getText();
emaillist.add(email);

//on remove-button click:
int pos = emaillist.getSelectedItem();
if (pos>=0) emaillist.delete(pos);

1117-214/514

(Blocking) Interactions with users

blocking
execution

1217-214/514

Interactions with users through events
● Do not block waiting for user response

● Instead, react to user events

1317-214/514

● Thread: instructions executed in sequence
○ Within a thread, everything happens in order.
○ A thread can start, sleep, and die.
○ You often work on the “main” thread.

Three Concepts of Importance

1417-214/514

● Thread: instructions executed in sequence
○ Within a thread, everything happens in order.
○ A thread can start, sleep, and die.
○ You often work on the “main” thread.

● Concurrency: multiple threads running at the same time
○ Not necessarily executing in parallel

Three Concepts of Importance

1517-214/514

● Thread: instructions executed in sequence
○ Within a thread, everything happens in order.
○ A thread can start, sleep, and die.
○ You often work on the “main” thread.

● Concurrency: multiple threads running at the same time
○ Not necessarily executing in parallel

● Asynchrony: computation happening outside the main flow

Three Concepts of Importance

1617-214/514

Multi-Threading
The natural response to non-serial computation

● Multiple threads can exist concurrently
● Threads share memory space
● You are already using it

○ Garbage collection in the JVM

1717-214/514

Asynchrony
Where might this come from?

1817-214/514

Asynchrony
Where might this come from?

● People
● Other machines
● Our own callbacks

1917-214/514

Asynchrony
Usually, managing asynchronous events involves concurrency

● Do something while we wait
● Multiple events can overlap
● Even “waiting” is not really doing nothing
● We will focus on constructs for handling both

2017-214/514

Asynchrony
Asynchronous but not concurrent

//static public void main…
JFrame window = …
window.setDefaultCloseOperation(
 WindowConstants.EXIT_ON_CLOSE);
window.setVisible(true);
// And now, wait.

2117-214/514

Where do we want concurrency?

2217-214/514

Where do we want concurrency?
● User interfaces

○ Events can arrive any time
● File I/O

○ Offload work to disk/network/... handler

2317-214/514

Where do we want concurrency?
● Background work

○ Periodically run garbage collection, check health of service
● High-performance computing

○ Facilitate parallelism and distributed computing

2417-214/514

User Interfaces
What happens here:

document.addEventListener('click', () => console.log('Clicked!')

2517-214/514

User Interfaces
Callback functions

● Perhaps the building blocks of the internet’s UI.
● Work that should be done once something happens

○ Called asynchronously from the literal flow of the code
○ Not concurrent: JS is single-threaded

document.addEventListener('click', () => {
 console.log('Clicked!'); console.log('Clicked again!'); })

2617-214/514

Concurrency with file I/O
Key chart:

https://formulusblack.com/blog/compute-performance-distance-of-data-as-a-measure-of-latency/

2717-214/514

Concurrency with file I/O
Mostly used synchronous IO so far

/**

 * in the top-level directory only look for subdirectories and metadata files

 */

 processProject (builder: ProjectBuilder, dir: string): void {

 const files = fs.readdirSync(dir)

 for (const filename of files) {

 const file = path.join(dir, filename)

 const fileStats = fs.statSync(file)

 const extension = path.extname(file)

 if (fileStats.isDirectory()) { this.#processDirectory(builder, file) }

 else if (extension === '.yml') { this.#loadMetadataFile(builder, file) }

 }

 }

2817-214/514

Concurrency with file I/O
Mostly used synchronous IO so far

● Works fine if ‘fetch’ is synchronous
○ But if other work is waiting...

let image: Image = fetch('myImage.png');
display(image);

2917-214/514

Concurrency with file I/O
Mostly used synchronous IO so far

● Works fine if ‘fetch’ is synchronous
○ But if other work is waiting...

● It’d be nice if we could continue other work
○ How to make it work if ‘fetch’ is asynchronous?

let image: Image = fetch('myImage.png');
display(image);

3017-214/514

Concurrency with file I/O
Asynchronous code requires Promises

● Captures an intermediate state
○ Neither fetched, nor failed; we’ll find out eventually

let imageToBe: Promise<Image> = fetch('myImage.png');
imageToBe.then((image) => display(image))
 .catch((err) => console.log('aw: ' + err));

3117-214/514

Concurrency with file I/O
Asynchronous code requires Promises

● Captures an intermediate state
○ Neither fetched, nor failed; we’ll find out eventually

● A bit like a callback
○ But better designed
○ Also related to async/await
○ Future in Java

let imageToBe: Promise<Image> = fetch('myImage.png');
imageToBe.then((image) => display(image))
 .catch((err) => console.log('aw: ' + err));

https://developer.mozilla.org/en-US/docs/Learn/JavaScript/Asynchronous/Introducing#promises_versus_callbacks
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Statements/async_function

3217-214/514

Concurrency with file I/O
Can save you a lot of time

● An example from Machine Learning
● The usual process:

○ Read data from a filesystem or network
○ Batch samples, send to GPU/TPU/XPU memory
○ Train on-device

3317-214/514

Concurrency with file I/O
An example from Machine Learning

Different devices:

3417-214/514

Aside: Concurrency vs. parallelism
● Concurrency without parallelism:

● Concurrency with parallelism:
Thread1
Thread2
Thread3

Thread1
Thread2
Thread3

3517-214/514

Aside: Threads vs. Processes
● Threads are lightweight; processes heavyweight

● Threads share address space; processes have own

● Threads require synchronization; processes don’t
○ Threads hold locks while mutating objects

● It’s unsafe to kill threads; safe to kill processes

3617-214/514

Concurrency
Quite a few advanced topics

● Synchronization
● Immutability
● Parallelism
● More later in the course

○ Except for parallelism; largely out of scope

3717-214/514

Designing for Asynchrony & Concurrency
● We are in a new paradigm now

○ We need standardized ways to handle asynchronous and/or concurrent
interactions

○ This is how design patterns are born
● A lot of powerful syntax for managing concurrency

○ To be discussed in future classes

3817-214/514

A GUI design challenge
● Consider a blackjack game, implemented by a Game class:

○ Player clicks “hit” and expects a new card
○ When should the GUI update the screen?

3917-214/514

A GUI design challenge, extended
● What if we want to show the points won?

4017-214/514

Game updates GUI?
● What if points change for reasons not started by the GUI?

(or computations take a long time and should not block)

4117-214/514

Game updates GUI?
● Let the Game tell the GUI that something happened

4217-214/514

Game updates GUI?
● Let the Game tell the GUI that something happened

Problem: This couples the World to the GUI implementation.

4317-214/514

Recall the Observer

https://refactoring.guru/design-patterns/observer

4417-214/514

Decoupling with the Observer pattern

● Let the Game tell all interested components about updates

4517-214/514

Core implementation vs. GUI
● Core implementation: application logic

○ Computing some result, updating data

● GUI
○ Graphical representation of data
○ Source of user interactions

● Design guideline: avoid coupling the GUI with core application
○ Multiple UIs with single core implementation
○ Test core without UI

4617-214/514

Separating application core and GUI
● Reduce coupling: do not allow core to depend on UI

● Create and test the core without a GUI
○ Use the Observer pattern to communicate information from the core

(Model) to the GUI (View)

Core

GUI

Core Tests

GUI Tests

4717-214/514

An architectural pattern:
Model-View-Controller (MVC)

Manage inputs from user:
mouse, keyboard, menu, etc.

Manage display of
information on the screen

Manage data related to the
application domain

4817-214/514

Model-View-Controller (MVC)
Passive model

Active model

http://msdn.microsoft.com/en-us/library/ff649643.aspx

4917-214/514

React Preview
How to handle asynchronous streams of data, across many actors?

● Without overwhelming workers
● Or blocking, or wasting resources

https://www.reactivemanifesto.org/

5017-214/514

React Preview
“ReactiveX combines the Observer pattern with the Iterator pattern
and functional programming with collections to fill the need for an ideal
way of managing sequences of events.”

“It extends the observer pattern to support sequences of data/events
and adds operators that allow you to compose sequences together
declaratively while abstracting away concerns about things like
low-level threading, synchronization, thread-safety and concurrent
data structures.”

https://rxjs.dev/guide/overview

https://github.com/ReactiveX/RxJava

https://rxjs.dev/guide/overview
https://github.com/ReactiveX/RxJava

5117-214/514

Summary
● Thinking past the main loop

○ The world is asynchronous
○ Concurrency helps, in a lot of ways
○ Requires revisiting programming patterns

● Start considering UI design
○ Discussed in more detail next week

