
117-214/514

Principles of Software Construction:
Objects, Design, and Concurrency

Concurrency: Safety & Immutability

Christian Kästner Vincent Hellendoorn

217-214/514

Today
● A bit more on GUIs

○ Why HTML?
○ Event Handling

● Concurrency Patterns
○ Immutability
○ Safety, liveness
○ Designing for Concurrency

317-214/514

Mini-Quiz
https://rb.gy/heh2ks

417-214/514

HTML: how did we get here?
● Up till Spring, this course leaned on Java Swing

○ Obviously not compatible with JS
○ But also, fading in support

517-214/514

Swing
Anyone know of an app using a Swing UI?

617-214/514

Components of a Swing application

JButton

JPanel

JTextField

…

JFrame

717-214/514

Quick Swing Demo

817-214/514

So what is AWT doing here?
● Abstract Window Toolkit

○ The original Java UI
○ Wraps native code, so

heavily platform-dependent

https://en.wikipedia.org/wiki/File:AWTSwingClassHierarchy.png

917-214/514

AWT
Why be platform-dependent?

1017-214/514

Look and Feel
Eternal dilemma

● Platform-specific:
○ Better integration in terms of speed, appearance, features

● Platform-agnostic:
○ Broader deployment, more uniform experience

■ E.g., tablet, phone, computer, tv

1117-214/514

Look and Feel
Eternal dilemma

● Platform-specific:
○ Better integration in terms of speed, appearance, features

● Platform-agnostic:
○ Broader deployment, more uniform experience

■ E.g., tablet, phone, computer, tv

Which one is HTML+CSS?

1217-214/514

So what is AWT doing here?
● To compare with Swing

○ Swing draws its own widgets
■ Using Java2D

○ Requires no native resources
● Swing still leans on AWT

○ So not quite “lightweight”

https://en.wikipedia.org/wiki/File:AWTSwingClassHierarchy.png

1317-214/514

What about SWT?
● Powers Eclipse IDE

○ Developed by IBM
● Uses native code

○ Like AWT
○ But also provides own

GUI code, when absent

https://en.wikipedia.org/wiki/Standard_Widget_Toolkit#/media/File:EclipseScreenshot.png

1417-214/514

Which One is Better?
● Perhaps a matter of preference

○ Benchmarks show no real performance diff. between Swing & SWT
● Then there’s Android, iOS, various wrappers (e.g., One UI)
● Why does this matter?

1517-214/514

HTML + CSS
● Once upon a time, a web-page specific language

1617-214/514

HTML + CSS
● Grown into a general UI language

○ Involved some consolidation as recently as 2019
● Specifically, we are on HTML5

○ A “living standard”
○ Rich multimedia support, incl. SVG, video, audio, “canvas”

1717-214/514

HTML + CSS
● Broadly adopted for GUI design

○ Including new settings, such as app development
■ E.g., with Cordova

○ Easy use with template engines
■ Like Handlebars

1817-214/514

Today
● A bit more on GUIs

○ Why HTML?
○ Event Handling

● Concurrency Patterns
○ Immutability
○ Safety, liveness
○ Designing for Concurrency

1917-214/514

Looping back to Event Loops
● Where are we “listening”?

2017-214/514

There’s a thread for that
● The Event Dispatch Thread (EDT)

○ Job: wait and dispatch
○ For JS, which is single-threaded, involve an Event Loop (later)

2117-214/514

There’s a thread for that
● The Event Dispatch Thread (EDT)

○ Job: wait and dispatch
○ For JS, which is single-threaded, involve an Event Loop (later)

● This thread is pretty busy
○ Move your mouse, hit keys? It’s listening
○ For instance, Swing’s EDT calls `actionPerformed` to notify subscribers
○ It needs to handle things quickly or the UI blocks

■ So don’t waste its time!

2217-214/514

There’s a thread for that
● This is why we `invokeAndWait`

○ Hand control of the task to Swing

2317-214/514

Event Loop
● At the heart, operates with a queue

○ Messages get added to the end
○ Oldest message are processed first

● In JS:
○ Waits synchronously
○ Executes each task completely without task-switching

2417-214/514

Event Loop in JS

https://blog.sessionstack.com/how-javascript-works-event-loop-and-the-rise-of-async-programming-5-w
ays-to-better-coding-with-2f077c4438b5

2517-214/514

Event Loop in JS

https://blog.sessionstack.com/how-javascript-works-event-loop-and-the-rise-of-async-programming-5-w
ays-to-better-coding-with-2f077c4438b5

2617-214/514

Event Loops
● So JS never blocks

○ Meaning, the thread is never waiting to be granted power
■ (modulo rare exceptions)

○ Does that mean it is always responsive?

2717-214/514

Event Loops
● So where do we do “heavy” work?

2817-214/514

Event Loops
● So where do we do “heavy” work?

○ Chunk up slightly larger jobs
■ Allows other events to be handled in between

○ If we really need parallelism: WebWorkers
■ E.g., for rendering complex/large scenes

○ Ideally, move heavy work to the backend
■ A GUI shouldn’t be doing much work anyways

2917-214/514

Event Loops
More on jobs and promises on Thursday

3017-214/514

Forming Design Patterns
● We’ve seen:

○ Function-based dispatch (callbacks)
○ Using queues to manage asynchronous events

● Some of the building blocks of concurrent, distributed systems

3117-214/514

Today
● A bit more on GUIs

○ Why HTML?
○ Event Handling

● Concurrency Patterns
○ Immutability
○ Safety, liveness
○ Designing for Concurrency

3217-214/514

What if my Thread isn’t Alone?
● Recall, in JS event loops:

○ Waiting is synchronous
○ Each message is processed fully without interruption

● What if we wanted multiple threads?
○ For parallelism
○ Multiple users on a website

3317-214/514

What will Happen:

3417-214/514

What will Happen:
Where does this fail?

What if single threaded?

Could we make it work
with 2 threads?

3517-214/514

Atomicity
Competing access needs
to be managed.

3617-214/514

Atomicity
Competing access needs to be managed.

● Atomic operations take place as a single unit
○ `getAndAdd` == read and write -- nobody else gets to touch it.
○ Is `balance++` atomic?
○ How about `pauseThread = true`

3717-214/514

How to Prevent Competing Access?
● Any other ideas?

3817-214/514

How to Prevent Competing Access?
● Any other ideas?

○ Don’t have state!
○ Don’t have shared state!
○ Don’t have shared mutable state!

3917-214/514

Today
● A bit more on GUIs

○ Why HTML?
○ Event Handling

● Concurrency Patterns
○ Immutability
○ Safety, liveness
○ Designing for Concurrency

4017-214/514

Immutability
● A key principle in design, not just for concurrency

○ Inherently Thread-safe
○ No risks in sharing
○ Can make things very simple

4117-214/514

Ensuring Immutability
● Don’t provide any mutators
● Ensure that no methods may be overridden
● Make all fields final
● Make all fields private
● Ensure security of any mutable components

4217-214/514

Immutability
What if you need to make a change?

4317-214/514

Immutability
What if you need to make a change?

https://github.com/CMU-17-214/rec07-gui/blob/7e9f9202f22d3e015a1f7dd422794834f3386d4d/ts-express/src/game.ts

https://github.com/CMU-17-214/rec07-gui/blob/7e9f9202f22d3e015a1f7dd422794834f3386d4d/ts-express/src/game.ts

4417-214/514

Immutability
What functionality was made really easy by this design?

4517-214/514

Making a Class Immutable
public final class Complex {
 private final double re, im;

 public Complex(double re, double im) {
 this.re = re;
 this.im = im;
 }

 // Getters without corresponding setters
 public double getRealPart() { return re; }
 public double getImaginaryPart() { return im; }

 // subtract, multiply, divide similar to add
 public Complex add(Complex c) {
 return new Complex(re + c.re, im + c.im);
 }

4617-214/514

Immutability
Any disadvantages?

4717-214/514

Immutability
Any disadvantages?

String x = "It was the best of times, .."; // An entire book.

x += "The end.";

4817-214/514

Immutability
Any disadvantages?

String x = "It was the best of times, .."; // An entire book.

x += "The end.";

● Provide mutable helpers (e.g. StringBuilder).
● Bundle common actions

4917-214/514

Designing for Immutability
In short: make things immutable unless you really can’t

● Especially, smaller data-classes
● Not realistic for classes whose state naturally changes

○ BankAccount: return a new account for each transaction?
○ In that case, minimize mutable part

5017-214/514

Today
● A bit more on GUIs

○ Why HTML?
○ Event Handling

● Concurrency Patterns
○ Immutability
○ Safety, liveness
○ Designing for Concurrency

5117-214/514

Thread Safety
● Let’s define what we want:

○ Thread safe means no assumptions required to operate correctly with
multiple threads.

○ Why was the earlier example not thread-safe?

5217-214/514

Thread Safety
● Let’s define what we want:

○ Thread safe means no assumptions required to operate correctly with
multiple threads.

○ Why was the earlier example not thread-safe?
● If a program is not thread-safe, it can:

○ Corrupt program state (as before)
○ Fail to properly share state (cause liveness failure)
○ Get stuck in infinite mutual waiting loop (deadlock)

5317-214/514

Back to: Atomicity
● Recall: atomic operations take place as a single unit

○ Read and write -- nobody else gets to touch it.
● Is atomicity sufficient for thread-safety?

5417-214/514

Liveness Failure

5517-214/514

Back to: Atomicity
● Recall: atomic operations take place as a single unit

○ Read and write -- nobody else gets to touch it.
● Is atomicity sufficient for thread-safety?

○ No. Shared memory is complicated

5617-214/514

Shared State
● Volatile fields always return the most recently written value

○ Does not guarantee atomicity
○ Useful if only one thread writes

5717-214/514

Shared State
● Volatile fields always return the most recently written value

○ Does not guarantee atomicity
○ Useful if only one thread writes

● Are atomicity + coordinated communication sufficient for thread
safety?

5817-214/514

Synchronization
● Safe Communication + Exclusion

○ Requires a lock. In Java, tied to an object instance.
○ Complete ownership of resource, no caching risks.
○ Can make parallelism quite slow!

5917-214/514

Back to “Blocking”
● Why does JS not have these issues?

○ Atomicity? Shared Reality? Safety?

6017-214/514

Back to “Blocking”
● Why does JS not have these issues?

○ Atomicity: no thread can interrupt an action
■ The event loop completely finishes each task

○ Shared reality: no concurrent reads possible
■ Single-threaded by design

○ Safety: obvious.
● But, more burden on developers!

6117-214/514

Is Threading all Bad?
● Not at all!

○ Obviously useful for parallelism and asynchronous I/O
○ But also, we can have good design.

● Threads map to tasks
○ Commonly assign one thread per task
○ Convenient abstract for handling large workloads

● Help manage complex event loops
○ Message passed from one handle to another in single-threaded envs.

■ See ‘promises’ on Thursday

6217-214/514

Synchronization
There is a lot more to discuss

● How to synchronize, avoid deadlocks
● Active vs. passive waiting

6317-214/514

Today
● A bit more on GUIs

○ Why HTML?
○ Event Handling

● Concurrency Patterns
○ Immutability
○ Safety, liveness
○ Designing for Concurrency

6417-214/514

Forming Design Patterns
● We’ve seen:

Concurrency strategies:
○ Function-based dispatch (callbacks)
○ Using queues to manage asynchronous events

Thread-safety strategies:
○ Immutability where possible
○ Synchronization on mutable state

6517-214/514

● We’ve not yet talked about:
○ Handling complex/multiple callbacks

■ Promises, Async/await
○ Guarding entire objects

■ Concurrency Encapsulation
○ Managing consumers & producers

■ Coupling, performance

Forming Design Patterns

6617-214/514

Designing with Concurrency in Mind
● More on Thursday

6717-214/514

Summary
● Event Loops require a different attitude

○ Avoid heavy lifting; think about blocking
○ More on Thursday

● Concurrency comes with some head-aches
○ Shared state is very complicated. Avoid it entirely!
○ Or synchronize well -- steep learning curve.

● Thursday:
○ “Callback hell” and why we need promises
○ Bits on React

6817-214/514

HW4 Effort
https://rb.gy/qyjpof

