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Today

e A bit more on GUIs
o Why HTML?
o Event Handling

e Concurrency Patterns
o Immutability

o Safety, liveness
o Designing for Concurrency
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Mini-Quiz
https://rb.gy/heh2ks
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HTML: how did we get here?

e Up till Spring, this course leaned on Java Swing

o Obviously not compatible with JS
o But also, fading in support
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Swing

Anyone know of an app using a Swing UI?
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Components of a Swing application
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Quick Swing Demo

import javax.swing.¥;

public class SwingDemo extends JFrame {
private final JButton b = new JButton();

public SwingDemo() {
super();
this.setTitle("Swing Demo");
this.setBounds( x 160, y: 160, width: 180, height 140);
this.add(makeButton());
this.setVisible(true);
this.setDefaultCloseOperation(EXIT_ON_CLOSE);

private JButton makeButton() {|
b.setText("Click me!");
b.setBounds( x 40, y: 40, width: 180, height 30);
b.addActionListener(e -> JOptionPane.showMessageDialog(b, message: "Hello World!"));
return b;

public static void main(String[] args) throws InterruptedException, InvocationTargetException {

// Swing calls must be run by the event dispatching thread.

SwingUtilities.invokeAndWait(() -> new SwingDemo());
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So what is AWT doing here?

[jlava.lang.]
. . Object
e Abstract Window Toolkit T
o The original Java Ul AWT Lison SWING
o Wraps native code, so ey
heavily platform-dependent i )
[lawa.awt]
Container
! ’ 1
[iava.awt.] lawax.swing.]
[AWT Containers] JComponent
‘ f
[javax.swing.]
[Swing components]
[lavaawt] |, [javax.swing]
Window JWindow

https://en.wikipedia.org/wiki/File:AWTSwingClassHierarchy.p
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AWT

Why be platform-dependent?
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Look and Feel

Eternal dilemma

e Platform-specific:
o Better integration in terms of speed, appearance, features

e Platform-agnostic:

o Broader deployment, more uniform experience
m E.g., tablet, phone, computer, tv
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Look and Feel

Eternal dilemma

e Platform-specific:
o Better integration in terms of speed, appearance, features

e Platform-agnostic:

o Broader deployment, more uniform experience
m E.g., tablet, phone, computer, tv

Which one is HTML+CSS?
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So what is AWT doing here?

e To compare with Swing

©)

©)

Swing draws its own widgets
m Using Java2D

Requires no native resources

e Swing still leans on AWT

©)
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So not quite “lightweight”
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https://en.wikipedia.org/wiki/FiIe:AWTSwingCIassHierarirmzy.pl‘ﬁ
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What about SWT?

e Powers Eclipse IDE
Developed by IBM
e Uses native code

o Like AWT

o But also provides own
GUI code, when absent

©)
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Which One is Better?

e Perhaps a matter of preference
o Benchmarks show no real performance diff. between Swing & SWT

e Then there’'s Android, iOS, various wrappers (e.g., One Ul)
e \Why does this matter?
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HTML + CSS

e Once upon a time, a web-page specific language
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HTML + CSS

e Grown into a general Ul language
o Involved some consolidation as recently as 2019
e Specifically, we are on HTML5

o A‘living standard”
o Rich multimedia support, incl. SVG, video, audio, “canvas’

HTML
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HTML + CSS
e Broadly adopted for GUI design

o Including new settings, such as app development
m E.g., with Cordova

o Easy use with template engines
m Like Handlebars

HTML
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Today

e A bit more on GUIs
o Why HTML?
o Event Handling

e Concurrency Patterns
o Immutability

o Safety, liveness
o Designing for Concurrency
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Looping back to Event Loops

e \Where are we “listening™?

private JButton makeButton() 4
b.setText("Click me!");
b.setBounds( x 40, y: 40, width: 100, height 30);
b.addActionListener(e -> JOptionPane.showMessageDialog(b, message: "Hello World!"));
return b;
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There’s a thread for that
e The Event Dispatch Thread (EDT)

o Job: wait and dispatch
o For JS, which is single-threaded, involve an Event Loop (later)
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There’s a thread for that
e The Event Dispatch Thread (EDT)

o Job: wait and dispatch
o For JS, which is single-threaded, involve an Event Loop (later)

e This thread is pretty busy
o Move your mouse, hit keys? It’s listening

o Forinstance, Swing’s EDT calls "actionPerformed’ to notify subscribers
o It needs to handle things quickly or the Ul blocks

m So don’t waste its time!
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There's a thread for that

e This is why we 'invokeAndWait
o Hand control of the task to Swing

public static void main(String[] args) throws InterruptedException, InvocationTargetException {

// Swing calls must be run by the event dispatching thread.

SwingUtilities.invokeAndWait(() -> new SwingDemo());
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Event Loop

e At the heart, operates with a queue

o Messages get added to the end
o QOldest message are processed first

e InJS:

o Waits synchronously
o Executes each task completely without task-switching
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Event Loop in JS

Web APIs

DOM (document)

J s q AJAX (XMLHttpRequest)

Timeout (setTimeout)

Memory Heap Call Stack

Event Loop Callback Queue

‘ ’ ¢ onClick onLoad onDone

https://blog.sessionstack.com/how-javascript-works-event-loop-and-the-rise-of-async-programming-5-w ..~
17-214/514 avs-to-better-coding-with-2f077c4438b5 24 [H]f o




Event Loop in JS .

Call Stack Web APIs

Browser console

Event Loop Callback Queue

‘ ’ — Empty

https://blog.sessionstack.com/how-javascript-works-event-loop-and-the-rise-of-async-programming-5-w_ ..
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Event Loops

e S0 JS never blocks

o Meaning, the thread is never waiting to be granted power
m (modulo rare exceptions)

o Does that mean it is always responsive?
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Event Loops

e S0 where do we do “heavy” work?
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Event Loops

e S0 where do we do “heavy” work?
o Chunk up slightly larger jobs

m Allows other events to be handled in between

o If we really need parallelism: WebWorkers
m E.g., for rendering complex/large scenes

o ldeally, move heavy work to the backend
m A GUI shouldn’t be doing much work anyways
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Event Loops

More on jobs and promises on Thursday
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Forming Design Patterns

e \\Ne've seen:

o Function-based dispatch (callbacks)
o Using queues to manage asynchronous events

e Some of the building blocks of concurrent, distributed systems
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Today

e A bit more on GUIs
o Why HTML?
o Event Handling

e Concurrency Patterns
o Immutability

o Safety, liveness
o Designing for Concurrency
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What if my Thread isn’t Alone?

e Recall, in JS event loops:

o Waiting is synchronous
o Each message is processed fully without interruption

e \What if we wanted multiple threads?
o For parallelism
o Multiple users on a website
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What will Happen:

17-214/514

public class Synchronization {

static long balancel =

100;

static long balance2 = 100;

public static void
Thread threadl
Thread thread2

main(String[] args) throws InterruptedException {
= new Thread(Synchronization::fromiTo2);
= new Thread(Synchronization::from2Tol);

threadl.start(); thread2.start();
threadl.join(); thread2.join();

System.out.println(balancel + ",

}

private
for

}

private
for
}

}

static void
(ink i:= 8;
balancel -=
balance2 +=

static void
Cint i:= 05
balance2 -=
balancel +=

" + balance2);

fromlTo2() {

i < 10000; i++) {
100;

100;

from2Tol() {

i < 10000; i++) {
100;

100;
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What will Happen:

Where does this fail?
What if single threaded?

Could we make it work
with 2 threads?

17-214/514

public class Synchronization {
static long balancel = 100;
static long balance2 = 100;

public static void main(String[] args) throws InterruptedException {
Thread threadl = new Thread(Synchronization::fromiTo2);
Thread thread2 = new Thread(Synchronization::from2Tol);

threadl.start(); thread2.start();
threadl.join(); thread2.join();
System.out.println(balancel + ", " + balance2);

private static void fromlTo2() {
for (int 1 = 0; i < 16000; i++) #
balancel -= 100;
balance2 += 100;

private static void from2Tol() {
for (int i = 0; i < 10000; i++) {
balance2 -= 100;
balancel += 100;
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public class Synchronization {
static AtomicInteger balancel = new AtomicInteger( initialValue: 100);
new AtomicInteger( initialValue: 100);

. . static AtomicInteger balance2
4 ‘tOI I IICI‘ty public static void main(String[] args) throws InterruptedException {
Thread threadl = new Thread(Synchronization::fromiTo2);
Thread thread2 = new Thread(Synchronization::from2Tol);

Competing access needs
threadl.start(); thread2.start();
tO be managed threadl.join(); thread2.join();

System.out.println(bhalancel + ", " + balance2);

private static void fromlTo2() {
for (int i = 0; i < 10000; i++) {
balancel.getAndAdd( delta: -100);
balance2.getAndAdd( delta: 100);

private static void from2Tol() {
for (int 1 = 0; i < 10000; i++) {
balancel.getAndAdd( delta: 100);
balance2.getAndAdd( deita: -{106);
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Atomicity
Competing access needs to be managed.

e Atomic operations take place as a single unit
o "getAndAdd == read and write -- nobody else gets to touch it.
o Is "balance++ atomic?
o How about pauseThread = true’
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How to Prevent Competing Access?

e Any other ideas?
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How to Prevent Competing Access?

e Any other ideas?

o Don’t have state!
o Don’t have shared state!
o Don’t have shared mutable state!
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Today

e A bit more on GUIs
o Why HTML?
o Event Handling

e Concurrency Patterns
o Immutability

o Safety, liveness
o Designing for Concurrency
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Immutability

e A key principle in design, not just for concurrency

o Inherently Thread-safe
o No risks in sharing
o Can make things very simple
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Ensuring Immutability

Don’t provide any mutators

Ensure that no methods may be overridden
Make all fields final

Make all fields private

Ensure security of any mutable components
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Immutability

What if you need to make a change?
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Immutability

What if you need to make a change?

function newGame(board: Board, nextPlayer: Player, history: Game[]): Game {

return {
board: board,
play: function (x: number, y: number): Game {
if (board.getCell(x,y)!==null) return this
if (this.getWinner()!==null) return this
const newHistory = history.slice()
newHistory.push(this)
return newGame(
board.updateCell(x, y, nextPlayer),
1 - nextPlayer,

newHistory)

institute for
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https://github.com/CMU-17-214/rec07-gui/blob/7e9f9202f22d3e015a1f7dd422794834f3386d4d/ts-express/src/game.ts

Immutability

What functionality was made really easy by this design?

function newGame(board: Board, nextPlayer: Player, history: Game[]): Game {

return {
board: board,
play: function (x: number, y: number): Game {
if (board.getCell(x,y)!==null) return this
if (this.getWinner()!==null) return this
const newHistory = history.slice()
newHistory.push(this)
return newGame(
board.updateCell(x, y, nextPlayer),
1 - nextPlayer,

newHistory)
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Making a Class Immutable

public final class Complex {
private final double re, im;

public Complex(double re, double im) {

this.re = re;
this.im = im;
}
// Getters without corresponding setters
public double getRealPart() { return re; }

public double getImaginaryPart() { return im; }
// subtract, multiply, divide similar to add

public Complex add(Complex c) {
return new Complex(re + c.re, im + c.im);
}
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Immutability

Any disadvantages?
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Immutability

Any disadvantages?

String x = "It was the best of times, .."; // An entire book.

]

X += "The end.";
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Immutability

Any disadvantages?

String x = "It was the best of times, "+ // An entire book.

X += "The end.";

e Provide mutable helpers (e.g. StringBuilder).
e Bundle common actions

17-214/514



Designing for Immutability

In short: make things immutable unless you really can’t

e Especially, smaller data-classes

e Not realistic for classes whose state naturally changes

o BankAccount: return a new account for each transaction?
o In that case, minimize mutable part
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Today

e A bit more on GUIs
o Why HTML?
o Event Handling

e Concurrency Patterns
o Immutability

o Safety, liveness
o Designing for Concurrency
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Thread Safety

e Let's define what we want:

o Thread safe means no assumptions required to operate correctly with
multiple threads.
o Why was the earlier example not thread-safe?
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Thread Safety

e Let's define what we want:

o Thread safe means no assumptions required to operate correctly with
multiple threads.
o Why was the earlier example not thread-safe?

e If a program is not thread-safe, it can:

o Corrupt program state (as before)
o Fail to properly share state (cause liveness failure)
o Get stuck in infinite mutual waiting loop (deadlock)
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Back to: Atomicity

e Recall: atomic operations take place as a single unit
o Read and write -- nobody else gets to touch it.

e Is atomicity sufficient for thread-safety?

17-2 14/5 14 53 Sf gé;{"ui{%



Liveness Failure

17-214/514

public class LivenessFailure {
private static boolean stopRequested;

public static void main(String[] args) throws InterruptedException {
Thread backgroundThread = new Thread(new Runnable() {
public void run() {
int i =:0;
while (!stopRequested) {

= i++;

};

backgroundThread.start();
TimeUnit.SECONDS.sleep( timeout: 1);
stopRequested = true;

54 [Hi
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Back to: Atomicity

e Recall: atomic operations take place as a single unit
o Read and write -- nobody else gets to touch it.

e Is atomicity sufficient for thread-safety?
o No. Shared memory is complicated
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Shared State

e \latile fields always return the most recently written value

©)

©)
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Does not guarantee atomicity
Useful if only one thread writes

public class VolatileExample {

| J

private static volatile long nextSerialNumber = 0;

public static long generateSerialNumber() {

i

public static void main(String[] args) throws InterruptedException {

return nextSerialNumber++;

Thread threads[] = new Thread[5];
for (int i = 0; i < threads.length; i++) {
threads[i] = new Thread(() -> {
for (int j = 0; j < 1_000_000; j++)
generateSerialNumber();
i
threads[i].start();
Ly
for(Thread thread : threads)
thread.join();
System.out.println(generateSerialNumber());




Shared State

e \latile fields always return the most recently written value

o Does not guarantee atomicity
o Useful if only one thread writes

e Are atomicity + coordinated communication sufficient for thread
safety?
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Synchronization

e Safe Communication + Exclusion

o Requires a lock. In Java, tied to an object instance.
o Complete ownership of resource, no caching risks.
o Can make parallelism quite slow!
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Back to "Blocking”

e \Why does JS not have these issues?
o Atomicity? Shared Reality? Safety?
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Back to "Blocking”

e \Why does JS not have these issues?

o Atomicity: no thread can interrupt an action
m The event loop completely finishes each task

o Shared reality: no concurrent reads possible
m Single-threaded by design

o Safety: obvious.
e But, more burden on developers!
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Is Threading all Bad?

e Not at all!
o Obviously useful for parallelism and asynchronous 1/O
o But also, we can have good design.
e Threads map to tasks
o Commonly assign one thread per task
o Convenient abstract for handling large workloads
e Help manage complex event loops

o Message passed from one handle to another in single-threaded envs.
m See ‘promises’ on Thursday
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Synchronization

There is a lot more to discuss

e How to synchronize, avoid deadlocks
e Active vs. passive waiting
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Today

e A bit more on GUIs
o Why HTML?
o Event Handling

e Concurrency Patterns
o Immutability

o Safety, liveness
o Designing for Concurrency
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Forming Design Patterns

e \\Ne've seen:

17-214/514

Concurrency strategies:
Function-based dispatch (callbacks)
Using queues to manage asynchronous events

Thread-safety strategies:

Immutability where possible
Synchronization on mutable state



Forming Design Patterns

e \We've not yet talked about:

o Handling complex/multiple callbacks
m Promises, Async/await

o Guarding entire objects
m Concurrency Encapsulation

o Managing consumers & producers
m Coupling, performance
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Designing with Concurrency in Mind

e More on Thursday
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Summary

e Event Loops require a different attitude
o Avoid heavy lifting; think about blocking
o More on Thursday

e Concurrency comes with some head-aches
o Shared state is very complicated. Avoid it entirely!
o Or synchronize well -- steep learning curve.

e Thursday:

o “Callback hell” and why we need promises
o Bits on React
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HW4 Effort
https://rb.gy/qyjpof
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