Principles of Software Construction:
Objects, Design, and Concurrency

Concurrency: Safety & Immutability

Christian Kastner Vincent Hellendoorn

Carnegie Mellon University
School of Computer Science

institute for
I S SOFTWARE
RESEARCH

17-214/514 1 [s

RRRRRRRR

Today

e A bit more on GUIs
o Why HTML?
o Event Handling

e Concurrency Patterns
o Immutability

o Safety, liveness
o Designing for Concurrency

17-214/514 2 Sf 2?;“5*}{1{%

Mini-Quiz
https://rb.gy/heh2ks

17-214/514 | S

RRRRRRRR

HTML: how did we get here?

e Up till Spring, this course leaned on Java Swing

o Obviously not compatible with JS
o But also, fading in support

17-214/514 a4 |

Swing

Anyone know of an app using a Swing UI?

17-214/514 5 Sf 2?};*;"%{%

Components of a Swing application

(2] WindowTitle [-Woix]

MenuWidgetl MenuWidget2

J Fra m e : 7T99|7b7;17r3u17tqn [v] ToolbarCheckBox

PanelCaption

J P I Panel [SelectedTab | OtherTab
Item 1 @® RadioButtonl [] UncheckedCheckBox
e © RadioButton2 v] CheckedCheckBox
Item 3 : ; —

() RadioButton3] InactiveCheckBo

Resa | e] InactiveChecke
Item 5 ~HBELINEBACIO

JButton Buwon | | o

TextField | TextArea
- [..........0.. 1
JTextField | =
17'2 14/5 14 f institute for

O
6
RESEARCH

Quick Swing Demo

import javax.swing.¥;

public class SwingDemo extends JFrame {
private final JButton b = new JButton();

public SwingDemo() {
super();
this.setTitle("Swing Demo");
this.setBounds(x 160, y: 160, width: 180, height 140);
this.add(makeButton());
this.setVisible(true);
this.setDefaultCloseOperation(EXIT_ON_CLOSE);

private JButton makeButton() {|
b.setText("Click me!");
b.setBounds(x 40, y: 40, width: 180, height 30);
b.addActionListener(e -> JOptionPane.showMessageDialog(b, message: "Hello World!"));
return b;

public static void main(String[] args) throws InterruptedException, InvocationTargetException {

// Swing calls must be run by the event dispatching thread.

SwingUtilities.invokeAndWait(() -> new SwingDemo());

17-214/514 7 SEr AR

RESEARCH

So what is AWT doing here?

[jlava.lang.]
. . Object
e Abstract Window Toolkit T
o The original Java Ul AWT Lison SWING
o Wraps native code, so ey
heavily platform-dependent i)
[lawa.awt]
Container
! ’ 1
[iava.awt.] lawax.swing.]
[AWT Containers] JComponent
‘ f
[javax.swing.]
[Swing components]
[lavaawt] |, [javax.swing]
Window JWindow

https://en.wikipedia.org/wiki/File:AWTSwingClassHierarchy.p
17-214/514 8 g s

AWT

Why be platform-dependent?

17-214/514 9 Sf 2?};*;"%{%

Look and Feel

Eternal dilemma

e Platform-specific:
o Better integration in terms of speed, appearance, features

e Platform-agnostic:

o Broader deployment, more uniform experience
m E.g., tablet, phone, computer, tv

17-2 14/5 14 10 Sf g\é}}:i{%

Look and Feel

Eternal dilemma

e Platform-specific:
o Better integration in terms of speed, appearance, features

e Platform-agnostic:

o Broader deployment, more uniform experience
m E.g., tablet, phone, computer, tv

Which one is HTML+CSS?

17-214/514 11 [e

So what is AWT doing here?

e To compare with Swing

©)

©)

Swing draws its own widgets
m Using Java2D

Requires no native resources

e Swing still leans on AWT

©)

17-214/514

So not quite “lightweight”

[jlava.lang.]

Object
AWT ava.awt] SWING
Component
[
[iava.awt.]
[AWT Companents]
[lawa.awt.]
Container
L
1 1
[iava.awt.] lawax.swing.]
[AWT Containers] JComponent
: 1
fjavax.swing.]
[Swing components]
[lavaawt] |, [javax.swing]
Window JWindow

https://en.wikipedia.org/wiki/FiIe:AWTSwingCIassHierarirmzy.pl‘ﬁ

institute for

What about SWT?

e Powers Eclipse IDE
Developed by IBM
e Uses native code

o Like AWT

o But also provides own
GUI code, when absent

©)

17-214/514

Java - Tester.java

File Edit Source Refator Navigate Search Project Run

mj F-0-Q-~

1% Package Explorer 52

g Java Beans &2

=[] jcontentPane

= &3 jButton-"Next"

@+ actionPerformed

= & jButton1-"Check"

@4 actionPerformed

% jlabel
% jLabel1-"0/0"
=k jScroliPane
[£F jTextArea
= & jButton2-"OK"

4 actionPerformed

7 this (/Insecta/Tester.java)

Eclipse Platform

B #H G

R

> 5
Hierarchy 20

I Properties 5 [e @ ~ =0
Property
< 3

Window Help

[§ Tester.java 52

Next

[| [check
[| oo

(Click OK below to start
[Then click Nextto getthe first word

[

Palette

X

| &Java [Resource

B outline 52 =i
ERY o v
#“= import declarations ~
=-©, Tester
© & main(String[])
@ correct : int

jContentPane : javax.sn
jLabel : JLabel

jLabel1 : JLabel
jScrollPane : JScrollPan:
JTextAr
JTextFiel
JTextField1 : JTextField
Names : String[]

T
|EEE B[EEEEEOoo0onoono00o0ooonoonoao

o] num : int
- F NWORDS : int
F Orders : String[]
total : int
wrong : intf]
o Tester()
v private JButton getJButton2 () getJButton()
new ActionListener(
if (jButton2 == null) E] o getButton1()
* 5 5 & =y @ new ActionListener(
Soucrons setaounds (173, 245, 113, 201 S m gedmutonz)
3Button2.setText ("OK") ; euge": AC:PVO"US‘E"EV(
> 3Button2.addActionlistener (new java.awt.event.Actionlistenex () getiContentPane()
N getiScrollPane()
return 3Button2; getiTextArea()
) 3 getiTextField() -
< £ K] o
|2 LEPEUERAN Javadoc | Declaration| Console * v =0
0 errors, 0 warnings, 0 infos.
Description Resource In Folder Location
A >

https://en.wikipedia.org/wiki/Standard_Widget_Toolkit#/media/File:EclipseScreenshot.png

o
1 institute for
| S SOFTWARE
RESEARCH

Which One is Better?

e Perhaps a matter of preference
o Benchmarks show no real performance diff. between Swing & SWT

e Then there’'s Android, iOS, various wrappers (e.g., One Ul)
e \Why does this matter?

17-2 14/5 14 14 Sf gégi{%

HTML + CSS

e Once upon a time, a web-page specific language

17-214/514

Course Calendar

17214 F21
(Today) JE) B3 October 2021 ~

Sun Mon

14:00 Ye OH (Online 15:00 Kevin OH 09
11

3 4
14:00 Ye OH (Online 13:30 Christian OH 09
15:00 Kevin OH 1

tr 784x18
10 1"

14:00 Ye OH (Online 13:30 Christian OH 09
15:00 Kevin OH 1

TR

0

Elements

. 2.mv-event-container

Console Network > B 1 o : X

» <div class="month-row" style="top:16.666666666666668%;heig 1
ht:17.666666666666668%" >..</div>
v<div class="month-row" style="top:33.333333333333336%;heig
ht:17.666666666666668%"
» <table cellpadding="0"
e">.</table>
v <table cellpadding="0"
v <tbody>
Vst
> <td
> <td
> <td
> <td
> <td
> <td
> <td
</tr>
P CERD TR
P Ers.</tr>
Ptry.c/Er>
> <tr>..</tr>

Sources

v

cellspacing="0" class="st-bg-tabl

cellspacing="0" class="st-grid">

class="st-dtitle st-dtitle-fc">..</td>
class="st-dtitle st-dtitle-today">..</td> == $60
class="st-dtitle st-dtitle-next">..</td>
class="st-dtitle">..</td>
class="st-dtitle">..</td>
class="st-dtitle">..</td>
class="st-dtitle">..</td>

div.month-row table.st-grid tbody tr td.st-dtitle.st-dtitle-today

1 y st T
1 5 SOFTWARE
RESEARCH

HTML + CSS

e Grown into a general Ul language
o Involved some consolidation as recently as 2019
e Specifically, we are on HTML5

o A‘living standard”
o Rich multimedia support, incl. SVG, video, audio, “canvas’

HTML

17-214/514

HTML + CSS
e Broadly adopted for GUI design

o Including new settings, such as app development
m E.g., with Cordova

o Easy use with template engines
m Like Handlebars

HTML

17-214/514

Today

e A bit more on GUIs
o Why HTML?
o Event Handling

e Concurrency Patterns
o Immutability

o Safety, liveness
o Designing for Concurrency

17-2 14/5 14 18 Sf g\é}}:i{%

Looping back to Event Loops

e \Where are we “listening™?

private JButton makeButton() 4
b.setText("Click me!");
b.setBounds(x 40, y: 40, width: 100, height 30);
b.addActionListener(e -> JOptionPane.showMessageDialog(b, message: "Hello World!"));
return b;

17-214/514 19 [i

RESEARCH

There’s a thread for that
e The Event Dispatch Thread (EDT)

o Job: wait and dispatch
o For JS, which is single-threaded, involve an Event Loop (later)

17-2 14/5 14 20 Sf gég?ﬁ%

There’s a thread for that
e The Event Dispatch Thread (EDT)

o Job: wait and dispatch
o For JS, which is single-threaded, involve an Event Loop (later)

e This thread is pretty busy
o Move your mouse, hit keys? It’s listening

o Forinstance, Swing’s EDT calls "actionPerformed’ to notify subscribers
o It needs to handle things quickly or the Ul blocks

m So don’t waste its time!

17-214/514 21 iy

There's a thread for that

e This is why we 'invokeAndWait
o Hand control of the task to Swing

public static void main(String[] args) throws InterruptedException, InvocationTargetException {

// Swing calls must be run by the event dispatching thread.

SwingUtilities.invokeAndWait(() -> new SwingDemo());

17-214/514 22 B

RESEARCH

Event Loop

e At the heart, operates with a queue

o Messages get added to the end
o QOldest message are processed first

e InJS:

o Waits synchronously
o Executes each task completely without task-switching

17-2 14/5 14 23 Sf g\é}}:i{%

Event Loop in JS

Web APIs

DOM (document)

J s q AJAX (XMLHttpRequest)

Timeout (setTimeout)

Memory Heap Call Stack

Event Loop Callback Queue

‘ ’ ¢ onClick onLoad onDone

https://blog.sessionstack.com/how-javascript-works-event-loop-and-the-rise-of-async-programming-5-w ..~
17-214/514 avs-to-better-coding-with-2f077c4438b5 24 [H]f o

Event Loop in JS .

Call Stack Web APIs

Browser console

Event Loop Callback Queue

‘ ’ — Empty

https://blog.sessionstack.com/how-javascript-works-event-loop-and-the-rise-of-async-programming-5-w_ ..
17-214/514 avs-to-better-coding-with-2f077c4438b5 25 [H]f o

Event Loops

e S0 JS never blocks

o Meaning, the thread is never waiting to be granted power
m (modulo rare exceptions)

o Does that mean it is always responsive?

17-214/514 26 Lo

Event Loops

e S0 where do we do “heavy” work?

17-214/514 27 | i

RRRRRRRR

Event Loops

e S0 where do we do “heavy” work?
o Chunk up slightly larger jobs

m Allows other events to be handled in between

o If we really need parallelism: WebWorkers
m E.g., for rendering complex/large scenes

o ldeally, move heavy work to the backend
m A GUI shouldn’t be doing much work anyways

17-2 14/5 14 28 Sf g’g’%ﬁ’?’f&

Event Loops

More on jobs and promises on Thursday

17-214/514 29 |IHj s

Forming Design Patterns

e \\Ne've seen:

o Function-based dispatch (callbacks)
o Using queues to manage asynchronous events

e Some of the building blocks of concurrent, distributed systems

17'214/514 30 Sf gé;{"u;“a%

Today

e A bit more on GUIs
o Why HTML?
o Event Handling

e Concurrency Patterns
o Immutability

o Safety, liveness
o Designing for Concurrency

17-2 14/5 14 31 Sf g\é}}:i{%

What if my Thread isn’t Alone?

e Recall, in JS event loops:

o Waiting is synchronous
o Each message is processed fully without interruption

e \What if we wanted multiple threads?
o For parallelism
o Multiple users on a website

17'214/514 32 Sf gé;{"u;“a%

What will Happen:

17-214/514

public class Synchronization {

static long balancel =

100;

static long balance2 = 100;

public static void
Thread threadl
Thread thread2

main(String[] args) throws InterruptedException {
= new Thread(Synchronization::fromiTo2);
= new Thread(Synchronization::from2Tol);

threadl.start(); thread2.start();
threadl.join(); thread2.join();

System.out.println(balancel + ",

}

private
for

}

private
for
}

}

static void
(ink i:= 8;
balancel -=
balance2 +=

static void
Cint i:= 05
balance2 -=
balancel +=

" + balance2);

fromlTo2() {

i < 10000; i++) {
100;

100;

from2Tol() {

i < 10000; i++) {
100;

100;

nstitute for

SOFTWARE
RESEARCH

What will Happen:

Where does this fail?
What if single threaded?

Could we make it work
with 2 threads?

17-214/514

public class Synchronization {
static long balancel = 100;
static long balance2 = 100;

public static void main(String[] args) throws InterruptedException {
Thread threadl = new Thread(Synchronization::fromiTo2);
Thread thread2 = new Thread(Synchronization::from2Tol);

threadl.start(); thread2.start();
threadl.join(); thread2.join();
System.out.println(balancel + ", " + balance2);

private static void fromlTo2() {
for (int 1 = 0; i < 16000; i++) #
balancel -= 100;
balance2 += 100;

private static void from2Tol() {
for (int i = 0; i < 10000; i++) {
balance2 -= 100;
balancel += 100;

nstitute for

SOFTWARE
RESEARCH

public class Synchronization {
static AtomicInteger balancel = new AtomicInteger(initialValue: 100);
new AtomicInteger(initialValue: 100);

. . static AtomicInteger balance2
4 ‘tOI I IICI‘ty public static void main(String[] args) throws InterruptedException {
Thread threadl = new Thread(Synchronization::fromiTo2);
Thread thread2 = new Thread(Synchronization::from2Tol);

Competing access needs
threadl.start(); thread2.start();
tO be managed threadl.join(); thread2.join();

System.out.println(bhalancel + ", " + balance2);

private static void fromlTo2() {
for (int i = 0; i < 10000; i++) {
balancel.getAndAdd(delta: -100);
balance2.getAndAdd(delta: 100);

private static void from2Tol() {
for (int 1 = 0; i < 10000; i++) {
balancel.getAndAdd(delta: 100);
balance2.getAndAdd(deita: -{106);

17-214/514 ' e o

I.ﬂ. RESEARCH

Atomicity
Competing access needs to be managed.

e Atomic operations take place as a single unit
o "getAndAdd == read and write -- nobody else gets to touch it.
o Is "balance++ atomic?
o How about pauseThread = true’

17-214/514 36 Lo

How to Prevent Competing Access?

e Any other ideas?

17-214/514 37 [s

How to Prevent Competing Access?

e Any other ideas?

o Don’t have state!
o Don’t have shared state!
o Don’t have shared mutable state!

17'214/514 38 Sf gé}?i{%

Today

e A bit more on GUIs
o Why HTML?
o Event Handling

e Concurrency Patterns
o Immutability

o Safety, liveness
o Designing for Concurrency

17-214/514 39 Lo

Immutability

e A key principle in design, not just for concurrency

o Inherently Thread-safe
o No risks in sharing
o Can make things very simple

17-2 14/5 14 40 Sf gégi{%

Ensuring Immutability

Don’t provide any mutators

Ensure that no methods may be overridden
Make all fields final

Make all fields private

Ensure security of any mutable components

17-2 14/5 14 41 Sf gégi{%

Immutability

What if you need to make a change?

17-214/514 42 g s

RRRRRRRR

Immutability

What if you need to make a change?

function newGame(board: Board, nextPlayer: Player, history: Game[]): Game {

return {
board: board,
play: function (x: number, y: number): Game {
if (board.getCell(x,y)!==null) return this
if (this.getWinner()!==null) return this
const newHistory = history.slice()
newHistory.push(this)
return newGame(
board.updateCell(x, y, nextPlayer),
1 - nextPlayer,

newHistory)

institute for

}’ https://qithub.com/CMU-17-214/rec07-qui/blob/7e9f9202f22d3e015a1f7dd422794834f3386d4d/ts-express/src/game.ls SORDNARE

RESEARCH

17-214/514

https://github.com/CMU-17-214/rec07-gui/blob/7e9f9202f22d3e015a1f7dd422794834f3386d4d/ts-express/src/game.ts

Immutability

What functionality was made really easy by this design?

function newGame(board: Board, nextPlayer: Player, history: Game[]): Game {

return {
board: board,
play: function (x: number, y: number): Game {
if (board.getCell(x,y)!==null) return this
if (this.getWinner()!==null) return this
const newHistory = history.slice()
newHistory.push(this)
return newGame(
board.updateCell(x, y, nextPlayer),
1 - nextPlayer,

newHistory)

17-214/514 1 |- sl

RESEARCH

Making a Class Immutable

public final class Complex {
private final double re, im;

public Complex(double re, double im) {

this.re = re;
this.im = im;
}
// Getters without corresponding setters
public double getRealPart() { return re; }

public double getImaginaryPart() { return im; }
// subtract, multiply, divide similar to add

public Complex add(Complex c) {
return new Complex(re + c.re, im + c.im);
}

17-214/514 a5 [|j s

Immutability

Any disadvantages?

17-214/514 46 Sf g

Immutability

Any disadvantages?

String x = "It was the best of times, .."; // An entire book.

]

X += "The end.";

17-214/514

Immutability

Any disadvantages?

String x = "It was the best of times, "+ // An entire book.

X += "The end.";

e Provide mutable helpers (e.g. StringBuilder).
e Bundle common actions

17-214/514

Designing for Immutability

In short: make things immutable unless you really can’t

e Especially, smaller data-classes

e Not realistic for classes whose state naturally changes

o BankAccount: return a new account for each transaction?
o In that case, minimize mutable part

17-214/514 49 Lo

Today

e A bit more on GUIs
o Why HTML?
o Event Handling

e Concurrency Patterns
o Immutability

o Safety, liveness
o Designing for Concurrency

17-214/514 50 Sf 2?;“5*}{1{%

Thread Safety

e Let's define what we want:

o Thread safe means no assumptions required to operate correctly with
multiple threads.
o Why was the earlier example not thread-safe?

17-214/514 51 Sf 2?3%%

Thread Safety

e Let's define what we want:

o Thread safe means no assumptions required to operate correctly with
multiple threads.
o Why was the earlier example not thread-safe?

e If a program is not thread-safe, it can:

o Corrupt program state (as before)
o Fail to properly share state (cause liveness failure)
o Get stuck in infinite mutual waiting loop (deadlock)

17-214/514 52 Sf i?ﬁfﬁ{%

Back to: Atomicity

e Recall: atomic operations take place as a single unit
o Read and write -- nobody else gets to touch it.

e Is atomicity sufficient for thread-safety?

17-2 14/5 14 53 Sf gé;{"ui{%

Liveness Failure

17-214/514

public class LivenessFailure {
private static boolean stopRequested;

public static void main(String[] args) throws InterruptedException {
Thread backgroundThread = new Thread(new Runnable() {
public void run() {
int i =:0;
while (!stopRequested) {

= i++;

};

backgroundThread.start();
TimeUnit.SECONDS.sleep(timeout: 1);
stopRequested = true;

54 [Hi

institute for
SOFTWARE
RESEARCH

Back to: Atomicity

e Recall: atomic operations take place as a single unit
o Read and write -- nobody else gets to touch it.

e Is atomicity sufficient for thread-safety?
o No. Shared memory is complicated

17-2 14/5 14 55 Sf gégi{%

Shared State

e \latile fields always return the most recently written value

©)

©)

17-214/514

Does not guarantee atomicity
Useful if only one thread writes

public class VolatileExample {

| J

private static volatile long nextSerialNumber = 0;

public static long generateSerialNumber() {

i

public static void main(String[] args) throws InterruptedException {

return nextSerialNumber++;

Thread threads[] = new Thread[5];
for (int i = 0; i < threads.length; i++) {
threads[i] = new Thread(() -> {
for (int j = 0; j < 1_000_000; j++)
generateSerialNumber();
i
threads[i].start();
Ly
for(Thread thread : threads)
thread.join();
System.out.println(generateSerialNumber());

Shared State

e \latile fields always return the most recently written value

o Does not guarantee atomicity
o Useful if only one thread writes

e Are atomicity + coordinated communication sufficient for thread
safety?

17-214/514 57 [

Synchronization

e Safe Communication + Exclusion

o Requires a lock. In Java, tied to an object instance.
o Complete ownership of resource, no caching risks.
o Can make parallelism quite slow!

17-214/514 58 [[j s

Back to "Blocking”

e \Why does JS not have these issues?
o Atomicity? Shared Reality? Safety?

17-214/514 59 |Ij o

Back to "Blocking”

e \Why does JS not have these issues?

o Atomicity: no thread can interrupt an action
m The event loop completely finishes each task

o Shared reality: no concurrent reads possible
m Single-threaded by design

o Safety: obvious.
e But, more burden on developers!

17-2 14/5 14 60 Sf g\é}}:i{%

Is Threading all Bad?

e Not at all!
o Obviously useful for parallelism and asynchronous 1/O
o But also, we can have good design.
e Threads map to tasks
o Commonly assign one thread per task
o Convenient abstract for handling large workloads
e Help manage complex event loops

o Message passed from one handle to another in single-threaded envs.
m See ‘promises’ on Thursday

17-2 14/5 14 61 Sr g\é}}:i{%

Synchronization

There is a lot more to discuss

e How to synchronize, avoid deadlocks
e Active vs. passive waiting

17'214/514 62 Sf gé;{"u;"?é%

Today

e A bit more on GUIs
o Why HTML?
o Event Handling

e Concurrency Patterns
o Immutability

o Safety, liveness
o Designing for Concurrency

17-2 14/5 14 63 Sf g\é}}:i{%

Forming Design Patterns

e \\Ne've seen:

17-214/514

Concurrency strategies:
Function-based dispatch (callbacks)
Using queues to manage asynchronous events

Thread-safety strategies:

Immutability where possible
Synchronization on mutable state

Forming Design Patterns

e \We've not yet talked about:

o Handling complex/multiple callbacks
m Promises, Async/await

o Guarding entire objects
m Concurrency Encapsulation

o Managing consumers & producers
m Coupling, performance

17-214/514 65 Sf §?§§f’.€{’i§

Designing with Concurrency in Mind

e More on Thursday

17-214/514 66 [i

RRRRRRRR

Summary

e Event Loops require a different attitude
o Avoid heavy lifting; think about blocking
o More on Thursday

e Concurrency comes with some head-aches
o Shared state is very complicated. Avoid it entirely!
o Or synchronize well -- steep learning curve.

e Thursday:

o “Callback hell” and why we need promises
o Bits on React

17-214/514 67 Lo

HW4 Effort
https://rb.gy/qyjpof

17-214/514 68 [Jj i

RRRRRRRR

