Principles of Software Construction:
Objects, Design, and Concurrency

Concurrency: Patterns & Promises

Christian Kastner Vincent Hellendoorn

Carnegie Mellon University
School of Computer Science

institute for
I S SOFTWARE
RESEARCH

17-214/514 1 [s

RRRRRRRR

Today

e Design for Concurrency

o How to: design for extension, reuse, readability, robustness?
o The promise (future) pattern
o Connections to streams, React

17-214/514 2 Sf 2?;“5*}{1{%

Design Goals

e \What are we looking for in design?

17-214/514 3 [wvi

RRRRRRRR

Design Goals

e \What are we looking for in design?
o Reuse

Readability

Robustness

Extensibility

Performance

O O O O O

17-214/514 4 Sf 2?};*;"%{%

Design & Concurrency

e So far, mostly low-level concurrency idioms
o What design challenges do we face?

e Two case-studies
o Code examples off-slides

17-214/514 5 Sf 2?};‘;"%{%

function copyFileSync(source: string, dest: string) {
// Stat dest.

try {
. . fs.statSync(dest);
A simple function carch ¢
console.log("Destination already exists™)
return;

...In sync world

// Open source.

let fd;

try {
fd = fs.openSync(source, 'r');

} catch {
console.log("Destination already exists")
return;

// Read source.
let buff = Buffer.alloc(1000)

By X
r fs.readSync(fd, buff, 0, 0, 1000);

} catch () {
console.log("Could not read source file")
return;
¥
// Write to dest.
try {
fs.writeFileSync(dest, buff)
} catch () {
17_214/514 console.log("Failed to write to dest") e fo

1Y ESEARCH

Design Goals

e \What are we looking for in design?
o Reuse

Readability

Robustness

Extensibility

Performance

O O O O O

17-214/514 7 Sf 2?};*;"%{%

Design Goals

e \What are we looking for in design?

©)

O O O O O

17-214/514

Reuse
Readability
Robustness
Extensibility
Performance

function copyFileSync(source: string, dest: string) {
// Stat dest.

try {
. . fs.statSync(dest);
A simple function carch ¢
console.log("Destination already exists™)
return;

. ¥
...In sync world

// Open source.
let fd;
try {
fd = fs.openSync(source, 'r');
} catch {
console.log("Destination already exists")

How to make this asynchronous? L R

e \What needs to “happen first”? // Read source.

let buff = Buffer.alloc(1000)

e \What is the control-flow in callback world? !‘"Y {

fs.readSync(fd, buff, ©, 9, 1009);

} catch () {
console.log("Could not read source file")
return;
¥
// Write to dest.
try {
fs.writeFileSync(dest, buff)
} catch () {
17_214/514 console.log("Failed to write to dest") e fo

1Y ESEARCH

Event Handling in JS

What if our callbacks need callbacks?

17'214/514 10 Sf gé}?i{%

Callback Hell

More than nested functions!

e How to handle conditions (or loops)?
e Managing exceptional behavior in both sync and async code

17-214/514 11 [e

Design Goals

e \What are we looking for in design?
o Reuse

Readability

Robustness

Extensibility

Performance

O O O O O

17-214/514 12 [J

Design Goals

e \What are we looking for in design?

Readability
Robustness
Extensibility
Performance

O O O O O

17'214/514 13 Sf géﬁi{%

Promises

e Are immutable
e And available repeatedly to observers

e Compare ‘Future’ in Java
o ‘CompletableFuture’ is probably closest

17-214/514 14 [

Design Goals

e \What are we looking for in design?
o Reuse

Readability

Robustness

Extensibility

Performance

O O O O O

17-214/514 15 Sf 2?2;*}’.{{%

Design Goals

e \What are we looking for in design?
o Reuse

Readability

Robustness

Extensibility

Performance

O O O O O

17-214/514 16 Lo

Promises: downsides

e Still heavy syntax
e Hard to trace errors

e Doesn't quite solve complex callbacks
o E.qg., if X, call this, else that

17-214/514 17 [s

Next Step: Async/Await

e Async functions return a promise

o May wrap concrete values

o May return rejected promises on exceptions

e Allowed to ‘await’ synchronously

async function copy’

yncAwait(source: string, dest: string) {
let statPromise = promisify(fs.stat)

[/ stat dest.
try {

await statPromise(dest)

} catch () {

console.log("Destination already exists")
return

17-214/514

Design Goals

e \What are we looking for in design?
o Reuse

Readability

Robustness

Extensibility

Performance

O O O O O

17'214/514 19 Sf gé;{"u;"?é%

Design Goals

e \What are we looking for in design?
o Reuse

Readability

Robustness

Extensibility

Performance

O O O O O

17-2 14/5 14 20 Sf gé;{"ui{%

The Promise Pattern

e Problem: one or more values we will need will arrive later
o At some point we must wait

e Solution: an abstraction for expected values

e (Consequences:

o Declarative behavior for when results become available (conf. callbacks)

o Need to provide paths for normal and abnormal execution
m E.g., then() and catch()

o May want to allow combinators
o Debugging requires some rethinking

17-214/514 21 iy

Promises: Guarantees

e (allbacks are never invoked before the current run of the event
loop completes

e (allbacks are always invoked, even if (chronologically) added
after asynchronous operation completes

e Multiple callbacks are called in order

17-214/514 22 iy

Design for Concurrency

Let’s squint at a few similar developments

17'214/514 23 Sf gé}?i{%

Generator Pattern

e Problem: process a collection of indeterminate size
e Solution: provide data points on request when available

e (Consequences:
o Each call to ‘next’ is like awaiting a promise
o A generator can be infinite, and can announce if it is complete.

o Generators can be lazy, only producing values on demand
m Or producing promises

e \Where might this be useful?

17-214/514 24 [y

Observer Pattern

Recall: let objects observe behavior of others

What is the difference?

17-214/514

foreach (s in subscribers)
s.update(this)

mainState = newState
notifySubscribers()

Publisher

- subscribers: Subscriber([]
- mainState

+ subscribe(s: Subscriber)

+ unsubscribe(s: Subscriber)
+ notifySubscribers()

+ mainBusinessLogic()

A

s = new ConcreteSubscriber()
publisher.subscribe(s)

L4
| -
v

Client

-
-
-
-
-

«interface»
Subscriber

+ update(context)

Ja

https://refactoring.guru/design-patterns/observer

Concrete m
Subscribers
+ update(context) [
|
25

institute for
SOFTWARE
RESEARCH

Observer vs. Generator
Push vs. Pull

e In Observer, the publisher controls information flow
o When it pushes, everyone must listen

e In generators, the listener “pulls” elements
o Generator may only prepare the next element upon/after pull

e \Which is better?

o Generators are in a sense ‘observers’ to their clients.
o This inversion of control can make flow management easier

17-214/514

Manipulating Data

Problem: processing sequential data without assuming its presence

e Let's assume a list of future ints

e Apply a series of transformations
o E.g., map/update, filter

e Use the result in some operation
o E.g., collect, foreach

17-214/514 27 [

Manipulating Data

Easy solution: collect it all

e Downsides?

17-214/514

public class SynclList {

private int[] data;

public SynclList(List<Future<Integer>> ints) throws Execut
this.data = new int[ints.size()];
for (Iint i = 0; i < ints.size(); i++) {
this.data[i] = ints.get(i).get();

public void map(Function<Integer, Integer> mapper) {
for (int i = 0; i < this.data.length; i++) {
this.data[i] = mapper.apply(this.data[i]);

public void filter(Function<Integer, Boolean> filterer) {
int newSize = 0;
boolean[] filtered = new boolean[this.data.length];
for (int i = 0; i < this.data.length; i++) {
filtered[i] filterer.apply(this.data[i]);
if (filtered[i]) newSize++;

2 institute for
| S SOFTWARE
RESEARCH

Design Goals

e \What are we looking for in design?
o Reuse

Readability

Robustness

Extensibility

Performance

O O O O O

17-2 14/5 14 29 Sf géﬁi{%

Manipulating Data

How about:

17-214/514

public class AsynclList implements Closeable {

private final List<Future<Integer>> values;
private final ExecutorService executor;

public AsynclList(List<Future<Integer>> values) {
this.values = values;
this.executor = Executors.newSingleThreadExecutor();

public void map(Function<Integer, Integer> updater) {
for (int i = 0; i < this.values.size(); i++) {
Future<Integer> val = this.values.get(i);
this.values.set(i, this.executor.submit(() -> updater.apply(val.get())));

public void filter(Function<Integer, Boolean> filter) {
for (int i = 0; i < this.values.size(); i++) {
Future<Integer> val = this.values.get(i);
Future<Boolean> filtered = this.executor.submit(() -> filter.apply(val.get()));

Design Goals

e \What are we looking for in design?
o Reuse

Readability

Robustness

Extensibility

Performance

O O O O O

17'214/514 31 Sf gé;{"u;"?é%

Design Goals

e \What are we looking for in design?

o Reuse

o Readability
o Robustness
o Extensibility

17'214/514 32 Sf gég?ﬁ%

Manipulating Data

How about:

17-214/514

abstract class AbstractAsynclLazylList implements AsynclLazylist, Closeable {

protected final AbstractAsynclLazylList upstreanm;
private final ExecutorService executor;

public AbstractAsynclLazylList(AbstractAsynclLazylList upstream) {
this.upstream = upstreanm;
this.executor = Executors.newSingleThreadExecutor();

abstract Future<Integer> nextValue();

public AsynclLazylList map(Function<Integer, Integer> mapper) {
return new MaplLazylList(upstream: this, mapper);

public AsynclLazylList filter(Function<Integer, Boolean> filter) {
return new FilterLazylList(upstream: this, filter);

public List<Integer> collect() {
List<Integer> result = new ArraylList<>();
Future<Integer> value;
while ((value = this.nextValue()) != null) {

-

institute for
SOFTWARE
RESEARCH

Design Goals

e \What are we looking for in design?
o Reuse

Readability

Robustness

Extensibility

Performance

O O O O O

17-214/514 34 Sf 2?2;*}’.{{%

Design Goals

e \What are we looking for in design?

o Reuse
o Readability

o Extensibility
o Performance

17-214/514 35 Sf 2?2;*}’.{{%

Traversing a collection

e Since Java 1.0:
Vector arguments = ..;
for (int 1 = 0; 1 < arguments.size(); ++1) {

System.out.println(arguments.get(i));

}
e Java 1.5: enhanced for loop
List<String> arguments = ..;

for (String s : arguments) {
System.out.println(s);

}
e Works for every implementation of Iterable
public interface Iterable<E> {
public Iterator<E> iterator();
}
public interface Iterator<E> {
boolean hasNext();
E next();

17-21 void remove();

In JavaScript (ES6)

let arguments = .|
for (const s of arguments) {

console.log(s)

Works for every implementation with a “magic”

function [N EEIEI| providing an iterator

next(value?: any): IteratorResult<T>;

return?(value?: any): IteratorResult<T>;

throw?(e?: any): IteratorResult<T>;

interface IteratorReturnResult<TReturn> {
value: TReturn;

==

o
3 6 institute for
I S SOFTWARE
RESEARCH

The lterator Idea

lterate over elements in arbitrary data structures (lists, sets, trees)
without having to know internals

Typical interface:

public interface Iterator<E> {
boolean hasNext();
E next();

}

(in Java also remove)

17-214/514 37 Lo

Using an iterator

Can be used explicitly
List<String> arguments = ..;
for (Iterator<String> it = arguments.iterator(); it.hasNext();) {
String s = it.next();
System.out.println(s);
}

Often used with magic syntax:

for (String s : arguments)
(S arguments)

17-214/514 38 Sf e

Java: Getting an lterator

public interface Collection<E> extends Iterable<E> {

boolean add(E e);

boolean addAll(Collection<? extends E> c);

boolean remove(Object e);

boolean removeAll(Collection<?> c);

boolean retainAll(Collection<?> c);

boolean contains(Object e);

boolean containsAll(Collection<?> c);

void clear();

int size();

boolean isEmpty(); . . .
Tterator<E> iterator(); Defines an interface for creating an
Object]] toArray() Iterator,

<T> T[] toA (T[] a);)
e ’ but allows Collection

} implementation to decide
which Iterator to create.

17-214/514 39 sl

RESEARCH

Iterators for everything

public class Pair<E> {
private final E first, second;
public Pair(E f, E s) { first = f; second = s; }

Pair<String> pair = new Pair<String>("foo", "bar");

for (String s : pair) { .. }
17-214/514 N T O T sy

An lterator implementation for Pairs

public class Pair<E> implements Iterable<E> {
private final E first, second;
public Pair(E f, E s) { first = f; second = s; }
public Iterator<E> iterator() {
return new PairIterator();
}
private class PairIterator implements Iterator<E> {
private boolean seenFirst = false, seenSecond = false;
public boolean hasNext() { return !seenSecond; }
public E next() {
if (!seenFirst) { seenFirst = true; return first; }
if (!seenSecond) { seenSecond = true; return second; }
throw new NoSuchElementException();
}
public void remove() {
throw new UnsupportedOperationException();

} Pair<String> pair = new Pair<String>("foo", "bar");
} : :
} for (String s : pair) { .. }

titute for

FTWARE
SEARCH

lterator design pattern

e Problem: Clients need uniform strategy to access all elements in
a container, independent of the container type
o Order is unspecified, but access every element once

e Solution: A strategy pattern for iteration
e (Consequences:
o Hides internal implementation of underlying container

o Easy to change container type
o Facilitates communication between parts of the program

17-214/514 42 iy

Streams

e Stream is like an Iterator

o A sequence of objects

o Not interested in accessing specific addresses
e Typically provide operations

o To translate stream: map, flatMap, filter

o Operations on all elements (fold, sum) with higher-order functions
o Often provide efficient/parallel implementations (subtype polymorphism)

e Built-in in Java since Java 8: basics in Node libraries in JS

17-214/514 43 Sf 2?}3}&{%

<String> = . (Object::)
(s -> . (s). ()
(: ());

int = . (). (0, Integer::);
for (let [odd, even] in numbers.split(n => n % 2, n => !(n % 2)).zip()) {

console.log(odd = ${odd}, even = ${even}’);
}

Stream(people).filter({age: 23}).flatMap("children").map("firstName")
.distinct().filter(/a.*/i1).join(", ");

17-214/514 a4 | s

A Glimpse at Reactive Programming

(not to be confused with ReactJS)
Observable

Observables are lazy Push collections of multiple values. They fill the missing spot in the following table:

SINGLE MULTIPLE
Pull Function Iterator
Push Promise Observable

https://rxjs.dev/guide/observable
17-214/514 a5 [|j s

A Glimpse at Reactive Programming

This is the timgline of the These are items emitted This vertical line indicates
Observable. Time flows by the Observable. that the Observable has

from left to right. // X\\
: : : : : Co These dotted lines and
i Y A4 Y Y \ r\ this box indicate that a

transformation is being
flip =<<—applied to the Observable.
‘/ The text inside the box

shows the nature of the

completed successfully.

' ' . oe
\ \{ \/ ' transformation.
/‘ “ & O »
This Observable is If for some reason the Observable
the result of the terminates abnormally, with an error, the
transformation. vertical line is replaced by an X.

http://reactivex.io/documentation/observable.html
17-214/514 46 sl

RESEARCH

A Glimpse at Reactive Programming

(not to be confused with ReactJS)

e Rx Observables

o Similar to “standard” observers
m “An Observable is just the Observer pattern with a jetpack™

o Combined with a rich set of operators
m Compare the stream library, times a lot

o And flow-control in the form of back-pressure
o Makes for a unified API for polymorphic asynchronous events

*https://x-team.com/blog/rxjs-observables/

17-214/514 47 [s

Summary

e Concurrency brings unique design problems

o And patterns
o Promises are a key one
o Worth understanding relations to (async) generators, streams

17-214/514 48 Lo

Self-Assess
In-Class
Participation

https://bit.lv/214selfpart

17-214/514

nstitute for
SSSSSSSS
RRRRRRRR

https://bit.ly/214selfpart

Designing for Concurrency

e Previously: synchronization of methods, variable read/writes
o Is that enough?

17-214/514 50 [Qf s

RRRRRRRR

Designing for Concurrency

e Previously: synchronization of methods, variable read/writes
o Is that enough?

public static Object getLast(Vector list) {
int lastindex = list.size() - 1;
return list.get(lastindex);

}

public static void deleteLast(Vector list) {
int lastindex = list.size() - 1;
list.remove(lastindex);

}

17-214/514 51 Sf g

Object-level concurrency

public static Object getLast(Vector list) {
int lastindex = list.size() - 1;
return list.get(lastindex);

}

public static void deleteLast(Vector list) {
int lastindex = list.size() - 1;
list.remove(lastindex);

}

\ 4

A size[110

get(9)

\ 4

boom

\ 4

remove(9)

ES size[110

17-214/514

Object-level concurrency

Client-side synchronization

public static Object getLast(Vector list) {
synchronized (list) {
int lastindex = list.size() - 1;
return list.get(lastindex);

}
}

public static void deleteLast(Vector list) {
synchronized (list) {
int lastindex = list.size() - 1;
list.remove(lastindex);

17-214/514 . }

Object-level concurrency
What is the risk here?

for (int i = 0; i < vector.size(); i++)
doSomething(vector.get(i));

17-214/514 54 |[j

RRRRRRRR

Object-level concurrency
What is the risk here?

for (int i = 0; i < vector.size(); i++)
doSomething(vector.get(i));

synchronized (vector) {
for (int i = 0; i < vector.size(); i++)
doSomething(vector.get(i));

17-214/514

llllllllllll
SSSSSSSS
RRRRRRRR

Object-level concurrency

A common mistake:

public Object setup() {
if (obj == null) {
synchronized (this) {
obj = this.initializeObject()
}
}
}

17-214/514 56 [[j s

RRRRRRRR

