
117-214/514

Principles of Software Construction:
Objects, Design, and Concurrency

Concurrency: Patterns & Promises

Christian Kästner Vincent Hellendoorn

217-214/514

Today
● Design for Concurrency

○ How to: design for extension, reuse, readability, robustness?
○ The promise (future) pattern
○ Connections to streams, React

317-214/514

Design Goals
● What are we looking for in design?

417-214/514

Design Goals
● What are we looking for in design?

○ Reuse
○ Readability
○ Robustness
○ Extensibility
○ Performance
○ ...

517-214/514

Design & Concurrency
● So far, mostly low-level concurrency idioms

○ What design challenges do we face?
● Two case-studies

○ Code examples off-slides

617-214/514

A simple function
...in sync world

717-214/514

Design Goals
● What are we looking for in design?

○ Reuse
○ Readability
○ Robustness
○ Extensibility
○ Performance
○ ...

817-214/514

Design Goals
● What are we looking for in design?

○ Reuse
○ Readability
○ Robustness
○ Extensibility
○ Performance
○ ...

917-214/514

A simple function
...in sync world

How to make this asynchronous?

● What needs to “happen first”?
● What is the control-flow in callback world?

1017-214/514

Event Handling in JS
What if our callbacks need callbacks?

1117-214/514

Callback Hell
More than nested functions!

● How to handle conditions (or loops)?
● Managing exceptional behavior in both sync and async code

1217-214/514

Design Goals
● What are we looking for in design?

○ Reuse
○ Readability
○ Robustness
○ Extensibility
○ Performance
○ ...

1317-214/514

Design Goals
● What are we looking for in design?

○ Reuse
○ Readability
○ Robustness
○ Extensibility
○ Performance
○ ...

1417-214/514

Promises
● Are immutable
● And available repeatedly to observers
● Compare ‘Future’ in Java

○ ‘CompletableFuture’ is probably closest

1517-214/514

Design Goals
● What are we looking for in design?

○ Reuse
○ Readability
○ Robustness
○ Extensibility
○ Performance
○ ...

1617-214/514

Design Goals
● What are we looking for in design?

○ Reuse
○ Readability
○ Robustness
○ Extensibility
○ Performance
○ ...

1717-214/514

Promises: downsides
● Still heavy syntax
● Hard to trace errors
● Doesn’t quite solve complex callbacks

○ E.g., if X, call this, else that

1817-214/514

Next Step: Async/Await
● Async functions return a promise

○ May wrap concrete values
○ May return rejected promises on exceptions

● Allowed to ‘await’ synchronously

1917-214/514

Design Goals
● What are we looking for in design?

○ Reuse
○ Readability
○ Robustness
○ Extensibility
○ Performance
○ ...

2017-214/514

Design Goals
● What are we looking for in design?

○ Reuse
○ Readability
○ Robustness
○ Extensibility
○ Performance
○ ...

2117-214/514

The Promise Pattern
● Problem: one or more values we will need will arrive later

○ At some point we must wait
● Solution: an abstraction for expected values
● Consequences:

○ Declarative behavior for when results become available (conf. callbacks)
○ Need to provide paths for normal and abnormal execution

■ E.g., then() and catch()
○ May want to allow combinators
○ Debugging requires some rethinking

2217-214/514

Promises: Guarantees
● Callbacks are never invoked before the current run of the event

loop completes
● Callbacks are always invoked, even if (chronologically) added

after asynchronous operation completes
● Multiple callbacks are called in order

2317-214/514

Design for Concurrency
Let’s squint at a few similar developments

2417-214/514

Generator Pattern
● Problem: process a collection of indeterminate size
● Solution: provide data points on request when available
● Consequences:

○ Each call to ‘next’ is like awaiting a promise
○ A generator can be infinite, and can announce if it is complete.
○ Generators can be lazy, only producing values on demand

■ Or producing promises

● Where might this be useful?

2517-214/514

Observer Pattern
Recall: let objects observe behavior of others

What is the difference?

https://refactoring.guru/design-patterns/observer

2617-214/514

Observer vs. Generator
Push vs. Pull

● In Observer, the publisher controls information flow
○ When it pushes, everyone must listen

● In generators, the listener “pulls” elements
○ Generator may only prepare the next element upon/after pull

● Which is better?
○ Generators are in a sense ‘observers’ to their clients.
○ This inversion of control can make flow management easier

2717-214/514

Manipulating Data
Problem: processing sequential data without assuming its presence

● Let’s assume a list of future ints
● Apply a series of transformations

○ E.g., map/update, filter
● Use the result in some operation

○ E.g., collect, foreach

2817-214/514

Manipulating Data
Easy solution: collect it all

● Downsides?

2917-214/514

Design Goals
● What are we looking for in design?

○ Reuse
○ Readability
○ Robustness
○ Extensibility
○ Performance
○ ...

3017-214/514

Manipulating Data
How about:

3117-214/514

Design Goals
● What are we looking for in design?

○ Reuse
○ Readability
○ Robustness
○ Extensibility
○ Performance
○ ...

3217-214/514

Design Goals
● What are we looking for in design?

○ Reuse
○ Readability
○ Robustness
○ Extensibility
○ Performance
○ ...

3317-214/514

Manipulating Data
How about:

3417-214/514

Design Goals
● What are we looking for in design?

○ Reuse
○ Readability
○ Robustness
○ Extensibility
○ Performance
○ ...

3517-214/514

Design Goals
● What are we looking for in design?

○ Reuse
○ Readability
○ Robustness
○ Extensibility
○ Performance
○ ...

3617-214/514

Traversing a collection
● Since Java 1.0:

 Vector arguments = …;

 for (int i = 0; i < arguments.size(); ++i) {

 System.out.println(arguments.get(i));

 }

● Java 1.5: enhanced for loop
List<String> arguments = …;

for (String s : arguments) {

 System.out.println(s);

}

● Works for every implementation of Iterable
public interface Iterable<E> {

 public Iterator<E> iterator();

}

public interface Iterator<E> {

 boolean hasNext();

 E next();

 void remove();

}

● In JavaScript (ES6)
let arguments = …

for (const s of arguments) {

 console.log(s)

}

● Works for every implementation with a “magic”
function [Symbol.iterator] providing an iterator
interface Iterator<T> {

 next(value?: any): IteratorResult<T>;

 return?(value?: any): IteratorResult<T>;

 throw?(e?: any): IteratorResult<T>;

}

interface IteratorReturnResult<TReturn> {

 done: true;

 value: TReturn;

}

3717-214/514

The Iterator Idea
Iterate over elements in arbitrary data structures (lists, sets, trees)
without having to know internals

Typical interface:

public interface Iterator<E> {

 boolean hasNext();

 E next();

}

(in Java also remove)

3817-214/514

Using an iterator
Can be used explicitly

List<String> arguments = …;

for (Iterator<String> it = arguments.iterator(); it.hasNext();) {

 String s = it.next();

 System.out.println(s);

}

Often used with magic syntax:
for (String s : arguments)
for (const s of arguments)

3917-214/514

Java: Getting an Iterator
public interface Collection<E> extends Iterable<E> {
 boolean add(E e);
 boolean addAll(Collection<? extends E> c);
 boolean remove(Object e);
 boolean removeAll(Collection<?> c);
 boolean retainAll(Collection<?> c);
 boolean contains(Object e);
 boolean containsAll(Collection<?> c);
 void clear();
 int size();
 boolean isEmpty();
 Iterator<E> iterator();
 Object[] toArray()
 <T> T[] toArray(T[] a);
 …
}

Defines an interface for creating an
Iterator,
but allows Collection
implementation to decide
which Iterator to create.

4017-214/514

Iterators for everything
public class Pair<E> {
 private final E first, second;
 public Pair(E f, E s) { first = f; second = s; }

}

Pair<String> pair = new Pair<String>("foo", "bar");
for (String s : pair) { … }

4117-214/514

public class Pair<E> implements Iterable<E> {
 private final E first, second;
 public Pair(E f, E s) { first = f; second = s; }
 public Iterator<E> iterator() {
 return new PairIterator();
 }
 private class PairIterator implements Iterator<E> {
 private boolean seenFirst = false, seenSecond = false;
 public boolean hasNext() { return !seenSecond; }
 public E next() {
 if (!seenFirst) { seenFirst = true; return first; }
 if (!seenSecond) { seenSecond = true; return second; }
 throw new NoSuchElementException();
 }
 public void remove() {
 throw new UnsupportedOperationException();
 }
 }
}

An Iterator implementation for Pairs

Pair<String> pair = new Pair<String>("foo", "bar");
for (String s : pair) { … }

4217-214/514

Iterator design pattern
● Problem: Clients need uniform strategy to access all elements in

a container, independent of the container type
○ Order is unspecified, but access every element once

● Solution: A strategy pattern for iteration
● Consequences:

○ Hides internal implementation of underlying container
○ Easy to change container type
○ Facilitates communication between parts of the program

4317-214/514

Streams
● Stream is like an Iterator

○ A sequence of objects
○ Not interested in accessing specific addresses

● Typically provide operations
○ To translate stream: map, flatMap, filter
○ Operations on all elements (fold, sum) with higher-order functions
○ Often provide efficient/parallel implementations (subtype polymorphism)

● Built-in in Java since Java 8; basics in Node libraries in JS

4417-214/514

List<String>results = stream.map(Object::toString)
.filter(s -> pattern.matcher(s).matches())

 .collect(Collectors.toList());

int sum = numbers.parallelStream().reduce(0, Integer::sum);

Stream(people).filter({age: 23}).flatMap("children").map("firstName")
 .distinct().filter(/a.*/i).join(", ");

for (let [odd, even] in numbers.split(n => n % 2, n => !(n % 2)).zip()) {
 console.log(`odd = ${odd}, even = ${even}`); // [1, 2], [3, 4], ...
}

4517-214/514

A Glimpse at Reactive Programming
(not to be confused with ReactJS)

https://rxjs.dev/guide/observable

4617-214/514

A Glimpse at Reactive Programming

http://reactivex.io/documentation/observable.html

4717-214/514

A Glimpse at Reactive Programming
(not to be confused with ReactJS)

● Rx Observables
○ Similar to “standard” observers

■ “An Observable is just the Observer pattern with a jetpack”*
○ Combined with a rich set of operators

■ Compare the stream library, times a lot
○ And flow-control in the form of back-pressure
○ Makes for a unified API for polymorphic asynchronous events

*https://x-team.com/blog/rxjs-observables/

4817-214/514

Summary
● Concurrency brings unique design problems

○ And patterns
○ Promises are a key one
○ Worth understanding relations to (async) generators, streams

4917-214/514

Self-Assess
In-Class
Participation

https://bit.ly/214selfpart

https://bit.ly/214selfpart

5017-214/514

Designing for Concurrency
● Previously: synchronization of methods, variable read/writes

○ Is that enough?

5117-214/514

Designing for Concurrency
● Previously: synchronization of methods, variable read/writes

○ Is that enough?

public static Object getLast(Vector list) {
 int lastIndex = list.size() - 1;
 return list.get(lastIndex);
}

public static void deleteLast(Vector list) {
 int lastIndex = list.size() - 1;
 list.remove(lastIndex);
}

5217-214/514

Object-level concurrency
public static Object getLast(Vector list) {
 int lastIndex = list.size() - 1;
 return list.get(lastIndex);
}

public static void deleteLast(Vector list) {
 int lastIndex = list.size() - 1;
 list.remove(lastIndex);
}

size🡪10 get(9) boom

size🡪10 remove(9)

A

B

5317-214/514

Object-level concurrency
Client-side synchronization

public static Object getLast(Vector list) {
 synchronized (list) {
 int lastIndex = list.size() - 1;
 return list.get(lastIndex);
 }
}

public static void deleteLast(Vector list) {
 synchronized (list) {
 int lastIndex = list.size() - 1;
 list.remove(lastIndex);
 }
}

5417-214/514

Object-level concurrency
What is the risk here?

for (int i = 0; i < vector.size(); i++)
 doSomething(vector.get(i));

5517-214/514

Object-level concurrency
What is the risk here?

for (int i = 0; i < vector.size(); i++)
 doSomething(vector.get(i));

synchronized (vector) {
 for (int i = 0; i < vector.size(); i++)
 doSomething(vector.get(i));
}

5617-214/514

Object-level concurrency
A common mistake:

public Object setup() {
 if (obj == null) {
 synchronized (this) {
 obj = this.initializeObject()
 }
 }
}

