
117-214/514

Principles of Software Construction:
Objects, Design, and Concurrency

Events Everywhere

Christian Kästner Vincent Hellendoorn

217-214/514

317-214/514

Outline
● Revisiting Immutability
● Model-View-Controller
● Event-Based Programming, Reactive Programming
● ReactJS UI

417-214/514

Revisiting Immutability

517-214/514

Reading Quiz:
Immutability

https://bit.ly/214q1026

617-214/514

Recall: Why Immutability?

717-214/514

Recall: Ensuring Immutability
● Don’t provide any mutators
● Ensure that no methods may be overridden
● Make all fields final
● Make all fields private
● Ensure security of any mutable components

817-214/514

Immutable?
class Stack {
 readonly #inner: any[]
 constructor (inner: any[]) {
 this.#inner=inner
 }
 push(o: any): Stack {
 const newInner = this.#inner.slice()
 newInner.push(o)
 return new Stack(newInner)
 }
 peek(): any {
 return this.#inner[this.#inner.length-1]
 }
 getInner(): any[] {
 return this.#inner
 }
}

917-214/514

Immutable?
class Stack {
 readonly #inner: any[]
 constructor (inner: any[]) {
 this.#inner=inner
 }
 push(o: any): Stack {
 const newInner = this.#inner.slice()
 newInner.push(o)
 return new Stack(newInner)
 }
 peek(): any {
 return this.#inner[this.#inner.length-1]
 }
 getInner(): any[] {
 return this.#inner
 }
}

Inner mutable state
(List in Java)

Create copy of
mutable object
(new ArrayList(old)
in Java)

Return new
immutable object

1017-214/514

Aliasing is what makes Mutable State risky
Many variables may point to same object

Any reference to the object can modify the object, effect seen by all
other users

const x = [1, 2, 3]
const y = x
function foo(z: number[]): void { /*...*/ }
foo(y)x, y, and z all point to

the same mutable
array

1117-214/514

Immutable?
class Stack {
 readonly #inner: any[]
 constructor (inner: any[]) {
 this.#inner=inner
 }
 push(o: any): Stack {
 const newInner = this.#inner.slice()
 newInner.push(o)
 return new Stack(newInner)
 }
 peek(): any {
 return this.#inner[this.#inner.length-1]
 }
 getInner(): any[] {
 return this.#inner
 }
}

Inner mutable state
(List in Java)

Create copy of
mutable object
(new ArrayList(old)
in Java)

Return new
immutable object

Leak mutable state
Accept mutable state

1217-214/514

Fixed
class Stack {
 readonly #inner: any[]
 constructor (inner: any[]) {
 this.#inner=inner.slice()
 }
 push(o: any): Stack {
 const newInner = this.#inner.slice()
 newInner.push(o)
 return new Stack(newInner)
 }
 peek(): any {
 return this.#inner[this.#inner.length-1]
 }
 getInner(): any[] {
 return this.#inner.slice()
 // Java: return new ArrayList(inner)
 }
}

1317-214/514

Recall: Ensuring Immutability
● Don’t provide any mutators
● Ensure that no methods may be overridden
● Make all fields final
● Make all fields private
● Ensure security of any mutable components

1417-214/514

Writing Immutable Data Structures
Any “set” operation returns a new copy of an object

(can point to old object to save memory, e.g. linked lists)

Final fields of immutable objects are save (e.g., strings, numbers)

Fields of mutable objects must be protected
(encapsulation, making copies)

Careful with mutable constructor/method arguments (make copies)

Easy to make mistakes when mixing mutable and immutable data
structures, only academic tools for checking

1517-214/514

Trend toward immutable data structures
Immutable data structures common in functional programming

Many recent languages and libraries embrace immutability
Scala, Rust, stream, React, Java Records

Simplifies building concurrent and distributed systems

Requires some practice when used to imperative programming with
mutable state, but will become natural

1617-214/514

Circular
references &
Caching
Immutable data
structures often from a
directed acyclic graph

Cycles challenging

Cycles often useful for
performance (caching)

class TreeNode {
 readonly #parent: TreeNode
 readonly #children: TreeNode[]
 constructor(parent: TreeNode,
 children: TreeNode[]) {
 this.#parent = parent
 this.#children = children
 }
 addChild(child: TreeNode) {
 const newChildren = this.#children.slice()
 //const newChild = child.setParent(this) ??
 newChildren.push(child)
 const newNode = new TreeNode(this.#parent,
 newChildren)
 //child.setParent(newNode) ??
 return newNode
 }
}

1717-214/514

Design Discussion
Design for Understandability / Maintainability

● Immutable objects are easy to reason about, they won’t change
● Mutable objects have more complicated contracts, function and

client both can modify state
● Do not need to think about corner cases of concurrent

modification

Design for Reuse

● Easy to reuse even in concurrent settings

1817-214/514

Java 16 Records
Records are (shallowly) immutable

No setters

But also no defensive copying of mutable fields

1917-214/514

Reactive Programming

2017-214/514

Reactive Programming
Programming strategy or patterns, where programs react to data

Embraces concurrency, focuses on data flows

Takes event-based programming to an extreme

Decouples programs around data

2117-214/514

Useful analogy: Spreadsheets
Cells contain data or
formulas

Formula cells are computed
automatically whenever
input data changes

2217-214/514

Implementing Spreadsheet-Like
Computations?

2317-214/514

Implementing Spreadsheet-Like
Computations?

x = 3

y = 5

z = x + y

print(z) // prints 8

x = 5

print(z) // expect 10, prints 8

in imperative computations,
no update when inputs change

2417-214/514

Implementing Spreadsheet-Like
Computations?

x = 3

y = 5

z = () => x + y

print(z()) // prints 8

x = 5

print(z()) // prints 10

Does not easily work in Java, since Java requires variables in closure to be final. Need object with mutable
internal state

computation performed on demand (pull)
caching possible

2517-214/514

Implementing Spreadsheet-Like
Computations?

x = new Cell(3)

y = new Cell(5)

z = new DerivedCell(x, y, (a,b)=>a+b)

print(z.get()) // prints 8

x.set(5)

print(z.get()) // prints 10

Cell implements observer pattern,
informs observers of changes (push)

DerivedCell listens to changes from Cell,
updates internal state on changes,
informs own observers of changes

2617-214/514

Complications
Single change in cell can trigger many computations (push)

Possibly put in queue, compute asynchronously

Perform some computations lazily when needed

Cyclic dependencies can result in infinite loops
Detect, special ways to handle

Observers can hinder garbage collection

2717-214/514

Reactive Programming and GUIs
Store state in observable cells, possibly derived

Have GUI update automatically on state changes

Have buttons perform state changes on cells

Mirrors active model-view-controller
pattern, discussed later
(model is observable cell)

2817-214/514

From Pull to Push
Instead of clients to look for state (pull)

observers react to state changes with actions (push)

Commonly observables indicate that something has changed,
triggering observers to get updated state (push-pull)

2917-214/514

Beyond Spreadsheet Cells

https://rxjs.dev/guide/observable

3017-214/514

Reactive Programming Libraries
RxJava, RxJS, many others

Provide Stream-like interfaces for event handling, with many
convenience functions (similar to promises)

Observables typically allow pushing multiple values in sequence

Cells can be implemented by considering only the latest value of
observables

3117-214/514

Previous Example with RxJava

PublishSubject<Integer> x = PublishSubject.create();
PublishSubject<Integer> y = PublishSubject.create();
Observable<Integer> z = Observable.combineLatest(x, y,
(a,b)->a+b);
z.subscribe(System.out::println);
x.onNext(3);
y.onNext(5);
x.onNext(5);

3217-214/514

Chaining Computations along Data

awk '{print $7}' < /var/log/nginx/access.log |
 sort |
 uniq -c |
 sort -r -n |
 head -n 5 > out

Multiple programs executed in sequence each read lines and produce lines;
can start reading lines before previous program is finished

3317-214/514

Streams / Reactive Programming / Events
Instead of calling methods in sequence,
set up pipelines for data processing

Let data control the execution
var lines = IOHelper.readLinesFromFile(file);
var linesObs = Observable.fromIterable(lines);
linesObs.
 map(Parser::getURLColumn).
 groupBy(...).
 sorted(comparator).
 subscribe(IOHelper.writeToFile(outFile));

3417-214/514

Many more Features in
Reactive Programming Libraries

Backpressure (see last lecture)

3517-214/514

Aside: The Adapter Pattern

3617-214/514

The Adapter Design Pattern

https://refactoring.guru/design-patterns/adapter

3717-214/514

https://refactoring.guru/design-patterns/adapter

3817-214/514

The Adapter
Design Pattern

Applicability
● You want to use an existing class,

and its interface does not match the
one you need

● You want to create a reusable class
that cooperates with unrelated
classes that don’t necessarily have
compatible interfaces

● You need to use several subclasses,
but it’s impractical to adapt their
interface by subclassing each one

Consequences
• Exposes the functionality of an object in

another form
• Unifies the interfaces of multiple

incompatible adaptee objects
• Lets a single adapter work with multiple

adaptees in a hierarchy
• -> Low coupling, high cohesion

3917-214/514

Adapters for Collections/Streams/Observables

Any others?

var lines = IOHelper.readLinesFromFile(file);
var linesObs = Observable.fromIterable(lines);
linesObs.
 map(Parser::getURLColumn).
 groupBy(...).
 sorted(comparator).
 subscribe(IOHelper.writeToFile(outFile));

4017-214/514

Façade/Controller vs. Adapter
● Motivation

○ Façade: simplify the interface
○ Adapter: match an existing interface

● Adapter: interface is given
○ Not typically true in Façade

● Adapter: polymorphic
○ Dispatch dynamically to multiple implementations
○ Façade: typically choose the implementation statically

4117-214/514

Core vs GUI

Backend vs Frontend

4217-214/514

Recall: Core implementation vs. GUI
● Core implementation: application logic

○ Computing some result, updating data

● GUI
○ Graphical representation of data
○ Source of user interactions

● Design guideline: avoid coupling the GUI with core application
○ Multiple UIs with single core implementation
○ Test core without UI

4317-214/514

Recall: Separating application core and GUI
● Reduce coupling: do not allow core to depend on UI

● Create and test the core without a GUI
○ Use the Observer pattern to communicate information from the core

(Model) to the GUI (View)

Core

GUI

Core Tests

GUI Tests

4417-214/514

Recall: Separating application core and GUI
● Reduce coupling: do not allow core to depend on UI

● Create and test the core without a GUI
○ Use the Observer pattern to communicate information from the core

(Model) to the GUI (View)

Core

GUI

Core Tests

GUI TestsWhat design goals does this further?

4517-214/514

Model View Controller

https://overiq.com/django-1-10/mvc-pattern-and-django/

4617-214/514

Model View Controller in Santorini?

https://overiq.com/django-1-10/mvc-pattern-and-django/

4717-214/514

Model View Controller in Santorini?

https://overiq.com/django-1-10/mvc-pattern-and-django/

Game
(God
Cards)

Board,
Tower,
Player

HTML
Template
Engine

4817-214/514

Model View Controller Dependencies

4917-214/514

Client-Server Programming forces
Frontend-Backend Separation

Backend
(Java/Node):
Data, logic,
rendering

Frontend
(Browser, HTML,
JavaScript):
Text, buttons

http calls

Browser can call web server, but not the other way around
Browser needs to pull for updates
Browser can request entirely no page or just additional content
(ajax, REST api calls, …)

5017-214/514

Client-Server Programming forces
Frontend-Backend Separation

Backend
(Java/Node):
Data, logic,
rendering

Frontend
(Browser, HTML,
JavaScript):
Text, buttons

http calls

Trick to let backend push information to frontend: Keep http
request open, append to page (compare to stream)
Alternative: regular pulling

keep open
connection

5117-214/514

Core & Gui in same environment
JavaScript frontend and backend together in browser

(e.g. using browserify) -- single threaded!

Java Swing GUI running in same VM as core logic -- multi threaded

Core logic could directly modify GUI

Backend (Java):
Data, logic,
rendering

Frontend (Swing):
Text, buttons

call method, update state

update text,
deactivate buttons

5217-214/514

Avoid Core to Gui coupling
Never call the GUI from the Core

Update GUI after action (pull) or use observer pattern instead to
inform GUI of updates (push)

Backend (Java):
Data, logic,
rendering

Frontend (Swing):
Text, buttons

call method, update state

update text,
deactivate buttons

5317-214/514

Excursion: Active Model View Controller
(Not commonly used)

5417-214/514

Model-View-Controller (MVC)
Passive
model

Active
model

http://msdn.microsoft.com/en-us/library/ff649643.aspx

5517-214/514

GUI Code in the Backend

Backend
(Java/Node):
Data, logic,
rendering

Frontend
(Browser, HTML,
JavaScript):
Text, buttons

http calls

Typically there is GUI code in Backend (rendering/view)
Could also send entire program state to frontend (e.g, json) and
render there with JavaScript

5617-214/514

Where to put GUI Logic?
Example: Deactivate undo button in first round of TicTacToe,
deactivate game buttons after game won

Backend
(Java/Node):
Data, logic,
rendering

Frontend
(Browser, HTML,
JavaScript):
Text, buttons

Option 1: All rendering in backend, update/refresh the entire page after every action -- simpler
Option 2: Handle some logic in frontend, use backend for checking -- fewer calls, more responsive

5717-214/514

Core Logic in Frontend?
Could move core logic largely to client, minimize backend interaction

Can frontend be trusted? Need to replicate core in front and backend?

Backend
(Java/Node):
shared state only

Frontend
(Browser, HTML,
JavaScript):
data, logic,
rendering

(React and other frameworks make it easy to introduce logic in the frontend; avoid tangling all core logic
with GUI)

5817-214/514

ReactJS

5917-214/514

ReactJS
Popular frontend library by Facebook

Template library and state management

Not reactive programming library, though it adopts some similar
ideas

6017-214/514

Templates with
ReactJS
(Similar ideas to Handlebars in
HW4 and Rec7)

Describe rendering of HTML,
inputs given as objects

JSX language extension to
embed HTML in JS

function formatName(user) {
 return user.firstName + ' ' +
 user.lastName;
}

const user = {
 firstName: 'Harper',
 lastName: 'Perez'
};

const element = (
 <h1>Hello, {formatName(user)}!</h1>
);

ReactDOM.render(
 element,
 document.getElementById('root')
);

Try it:
https://reactjs.org/redirect-to-codep
en/introducing-jsx

https://reactjs.org/redirect-to-codepen/introducing-jsx
https://reactjs.org/redirect-to-codepen/introducing-jsx

6117-214/514

Composing
Templates
(Corresponds to Fragments in
Handlebars)

Nest templates

Pass arguments (properties)
between templates

function Welcome(props) {

 return <h1>Hello, {props.name}</h1>;

}

function App() { return (

 <div>

 <Welcome name="Sara" />

 <Welcome name="Edite" />

 </div>

);}

ReactDOM.render(

 <App />,

 document.getElementById('root')

);

Try it:
https://reactjs.org/redirect-to-codep
en/components-and-props/composi
ng-components

https://reactjs.org/redirect-to-codepen/components-and-props/composing-components
https://reactjs.org/redirect-to-codepen/components-and-props/composing-components
https://reactjs.org/redirect-to-codepen/components-and-props/composing-components

6217-214/514

Templates with
State
Class notation instead of
function

State is like a cell in reactive
programming, if state changes,
page is re-rendered

class Toggle extends React.Component {

 constructor(props) {

 super(props);

 this.state = {isToggleOn: true};

 this.handleClick = this.handleClick.bind(this);

 }

 handleClick() {

 this.setState(prevState => ({

 isToggleOn: !prevState.isToggleOn

 }));

 }

 render() { return (

 <button onClick={this.handleClick}>

 {this.state.isToggleOn ? 'ON' : 'OFF'}

 </button>

); }

}

ReactDOM.render(

 <Toggle />,

 document.getElementById('root')

);

Try it:
https://codepen.io/gaearon/pen/xE
mzGg?editors=0010

https://codepen.io/gaearon/pen/xEmzGg?editors=0010
https://codepen.io/gaearon/pen/xEmzGg?editors=0010

6317-214/514

ReactJS Templates
Can use arbitrary JavaScript code (Handlebars can only access
object properties)

Properties are read-only

State is mutable and observed for re-rendering (state updates are
asynchronous)

Re-rendering is optimized and asynchronous, will rerender inner
components too if their properties change

6417-214/514

ReactJS and Core Logic
React makes it easy to add functionality in GUI

This really tangles GUI and logic (violating separation argued for above)

Suggestion: Use React state primarily for UI-related logic (e.g.,
selecting workers) and keep the core logic in the backend or as a
separate library -- be very explicit about what information is shared

6517-214/514

Connecting React
to backend
Return json from server
backend and store as
component state

function App() {

 const [data, setData] =

React.useState(null);

 React.useEffect(() => {

 fetch("/api")

 .then((res) => res.json())

 .then((data) =>

setData(data.message));

 }, []);

 return (

 <div>/* using state in data */</div>

);

}

Full example:
https://www.freecodecamp.org/new
s/how-to-create-a-react-app-with-a-
node-backend-the-complete-guide/

https://www.freecodecamp.org/news/how-to-create-a-react-app-with-a-node-backend-the-complete-guide/
https://www.freecodecamp.org/news/how-to-create-a-react-app-with-a-node-backend-the-complete-guide/
https://www.freecodecamp.org/news/how-to-create-a-react-app-with-a-node-backend-the-complete-guide/

6617-214/514

React and Homework 5/6
Using React is entirely optional

We use Handlebars by default (HW4 and Rec7)

Many other template engines and frontend frameworks exists (e.g.,
Vue, Angular, …)

React adds complexity but also easy updates reacting to state
changes

6717-214/514

Summary
Immutable objects are great! Use them

Reactive programming decouples programs along data
Observer pattern on steroids

New Design Pattern: Adapter

Decompose GUI from Core with Model View Controller Pattern

Brief intro to ReactJS

