
117-214/514

Principles of Software Construction

API Design

Christian Kästner Vincent Hellendoorn
(Many slides originally from Josh Bloch)

217-214/514

317-214/514

Review: libraries, frameworks

Library

Framework

public MyWidget extends JContainer {

ublic MyWidget(int param) {/ setup internals,
without rendering
}

/ render component on first view and resizing
protected void paintComponent(Graphics g) {
// draw a red box on his componentDimension d =
getSize();
g.setColor(Color.red);
g.drawRect(0, 0, d.getWidth(), d.getHeight());

}
}

public MyWidget extends JContainer {

ublic MyWidget(int param) {/ setup internals,
without rendering
}

/ render component on first view and resizing
protected void paintComponent(Graphics g) {
// draw a red box on his componentDimension d =
getSize();
g.setColor(Color.red);
g.drawRect(0, 0, d.getWidth(), d.getHeight());

}
}

your code

your code

API

API

417-214/514

Midterm 2 on Thursday
4 sheets of notes, handwritten or printed, both sides
all topics in scope, focus on topics since midterm 1

Final homework released after midterm
Milestones: (1) Design framework,
(2) implement framework, (3) implement plugins
Work with a partner (or two)

Upcoming

517-214/514

Homework 6
Data Analytics Framework

Framework
Defines UI,

abstractions,
some data processing,

lifecycle

Visualization Plugin

Visualization Plugin

Visualization Plugin

Data Plugin

Data Plugin

Data Plugin

617-214/514

HW6: Map-Based
Data Visualizations?

State, county, or country
data

Data from many sources

Visualization as map
image, table, google
maps

Animations for time
series data

717-214/514

817-214/514

917-214/514

1017-214/514

1117-214/514

HW6: Consider plotting libraries
(for web frontends)

to brainstorm ideas

1217-214/514

Leftover topics
ReactJS (see last week’s slides)

1317-214/514

Where we are

Subtype
Polymorphism

Information Hiding,
Contracts

Immutability

Types

Unit Testing

Domain Analysis

Inheritance & Deleg.

Responsibility
Assignment,

Design Patterns,
Antipattern

Promises/Reactive P.

Integration Testing

GUI vs Core

Frameworks and
Libraries, APIs

Module systems,
microservices

Testing for
Robustness

CI, DevOps, Teams

Design for

understanding

change/ext.

reuse

robustness

...

Small scale:
One/few objects

Mid scale:
Many objects

Large scale:
Subsystems

1417-214/514

Where we are

Subtype
Polymorphism ✓

Information Hiding,
Contracts ✓

Immutability ✓

Types

Unit Testing ✓

Domain Analysis ✓

Inheritance & Del. ✓

Responsibility
Assignment,

Design Patterns,
Antipattern ✓

Promises/
Reactive P. ✓

Integration Testing ✓

GUI vs Core ✓

Frameworks and
Libraries ✓, APIs

Module systems,
microservices

Testing for
Robustness

CI ✓, DevOps,
Teams

Design for

understanding

change/ext.

reuse

robustness

...

Small scale:
One/few objects

Mid scale:
Many objects

Large scale:
Subsystems

1517-214/514

Outline
● Introduction to API Design
● The Process of API Design
● Information Hiding and Minimizing Conceptual Weight
● Naming

● Other API Suggestions

● Breaking Changes

1617-214/514

Introduction to API Design

1717-214/514

What’s an API?
● Short for Application Programming Interface

○ = Contract for a Subsystem/Library

● Component specification in terms of operations, inputs, & outputs
○ Defines a set of functionalities independent of implementation

● Allows implementation to vary without compromising clients
● Defines component boundaries in a programmatic system
● A public API is one designed for use by others

○ Related to Java’s public modifier, but not identical
○ protected members are part of the public api

1817-214/514

API: Application Programming Interface
● An API defines the boundary between

components/modules in a programmatic system

1917-214/514

API: Application Programming Interface
● An API defines the boundary between

components/modules in a programmatic system

2017-214/514

API: Application Programming Interface
● An API defines the boundary between

components/modules in a programmatic system

2117-214/514

API: Application Programming Interface
● An API defines the boundary between

components/modules in a programmatic system

2217-214/514

Libraries and frameworks both define APIs

Library

Framework

public MyWidget extends JContainer {

ublic MyWidget(int param) {/ setup
internals, without rendering
}

/ render component on first view and
resizing
protected void
paintComponent(Graphics g) {
// draw a red box on his
componentDimension d = getSize();
g.setColor(Color.red);
g.drawRect(0, 0, d.getWidth(),
d.getHeight());}
}

public MyWidget extends JContainer {

ublic MyWidget(int param) {/ setup
internals, without rendering
}

/ render component on first view and
resizing
protected void
paintComponent(Graphics g) {
// draw a red box on his
componentDimension d = getSize();
g.setColor(Color.red);
g.drawRect(0, 0, d.getWidth(),
d.getHeight());}
}

your code

your code

API

API

2317-214/514

Exponential growth in the power of APIs
This list is approximate and incomplete, but it tells a story

’50s-’60s – Arithmetic. Entire library was 10-20 functions!
’70s – malloc, bsearch, qsort, rnd, I/O, system calls,

formatting, early databases
’80s – GUIs, desktop publishing, relational databases
’90s – Networking, multithreading
’00s – Data structures(!), higher-level abstractions,

Web APIs: social media, cloud infrastructure
’10s – Machine learning, IOT, pretty much everything

2417-214/514

What the dramatic growth in APIs has done for us

● Enabled code reuse on a grand scale
● Increased the level of abstraction dramatically
● A single programmer can quickly do things that would

have taken months for a team
● What was previously impossible is now routine
● APIs have given us super-powers

2517-214/514

Why is API design important?
● A good API is a joy to use; a bad API is a nightmare
● APIs can be among your greatest assets

○ Users invest heavily: learning, using
○ Cost to stop using an API can be prohibitive
○ Successful public APIs capture users

● APIs can also be among your greatest liabilities
○ Bad API can cause unending stream of support requests
○ Can inhibit ability to move forward

● Public APIs are forever – one chance to get it right

2617-214/514

Positive and Negative Experiences with
APIs?

2717-214/514

Public APIs are forever

Your code

Your
colleague

Another
colleague

Somebody on
the webSomebody on

the webSomebody on
the webSomebody on

the webSomebody on
the webSomebody on

the webSomebody on
the webSomebody on

the web

2817-214/514

Public APIs are forever

Eclipse
(IBM)

JDT Plugin (IBM)

CDT Plugin (IBM)

UML Plugin (third
party)Somebody on the

webSomebody on the
webSomebody on the

webSomebody on the
webSomebody on the

webSomebody on the
webthird party plugin

2917-214/514

Evolutionary problems: Public (used) APIs
are forever
● "One chance to get it right"

● Can only add features to library

● Cannot:
○ remove method from library

○ change contract in library

○ change plugin interface of framework

● Deprecation of APIs as weak workaround awt.Component,
deprecated since Java 1.1
still included in 7.0

3017-214/514

Hyrum’s Law
“With a sufficient number of users of
an API, it does not matter what you
promise in the contract: all
observable behaviors of your
system will be depended on by
somebody.”

https://xkcd.com/1172/

https://www.hyrumslaw.com/

https://xkcd.com/1172/
https://www.hyrumslaw.com/

3117-214/514

Why is API design important to you?
● If you program, you are an API designer

○ Good code is modular – each object/class/module has an
API

● Useful modules tend to get reused
○ Once a module has users, you can’t change its API at will

● Thinking in terms of APIs improves code quality

3217-214/514

Characteristics of a good API
● Easy to learn
● Easy to use, even without documentation
● Hard to misuse
● Easy to read and maintain code that uses it
● Sufficiently powerful to satisfy requirements
● Easy to evolve
● Appropriate to audience

Design for ...

3317-214/514

The Process of API Design

3417-214/514

An API design process
● Define the scope of the API

○ Collect use-case stories, define requirements

○ Be skeptical: Distinguish true requirements from so-called solutions,
"When in doubt, leave it out."

● Draft a specification, gather feedback, revise, and repeat
○ Keep it simple, short

● Code early, code often
○ Write client code before you implement the API

3517-214/514

Plan with Use Cases
● Think about how the API might be used?

○ e.g., get the current time, compute the difference between
two times, get the current time in Tokyo, get next week's date
using a Maya calendar, …

● What tasks should it accomplish?
● Should all the tasks be supported?

○ If in doubt, leave it out!
● How would you solve the tasks with the API?

3617-214/514

Respect the rule of three

● Via Will Tracz, Confessions of a Used Program
Salesman:
Write 3 implementations of each abstract class
or interface before release
○ "If you write one, it probably won't support another."

○ "If you write two, it will support more with difficulty."

○ "If you write three, it will work fine."

3717-214/514

The process of API design – 1-slide version
Not sequential; if you discover shortcomings, iterate!

1. Gather requirements skeptically, including use cases
2. Choose an abstraction (model) that appears to address use

cases
3. Compose a short API sketch for abstraction
4. Apply API sketch to use cases to see if it works

○ If not, go back to step 3, 2, or even 1
5. Show API to anyone who will look at it
6. Write prototype implementation of API
7. Flesh out the documentation & harden implementation
8. Keep refining it as long as you can

3817-214/514

Gather requirements – with a healthy degree
of skepticism
● Often you’ll get proposed solutions instead

○ Better solutions may exist
● Your job is to extract true requirements

○ You need use-cases; if you don’t get them, keep trying
● You may get requirements that don’t make sense

○ Ask questions until you see eye-to-eye
● You may get requirements that are wrong

○ Push back
● You may get requirements that are contradictory

○ Broker a compromise
● Requirements will change as you proceed

3917-214/514

Requirements gathering
● Key question: what problems should this API solve?

○ Goals - Define scope of effort
● Also important: what problems shouldn’t API solve?

○ Explicit non-goals - Bound effort
● Requirements can include performance, scalability

○ These factors can (but don’t usually) constrain API
● Maintain a requirements doc

○ Helps focus effort, fight scope creep
○ Provides defense against cranks
○ Saves rationale for posterity

4017-214/514

Choosing an abstraction (model)
● Embed use cases in an underlying structure

○ Note their similarities and differences
○ Note similarities to physical objects (“reasoning by analogy”)
○ Note similarities to other abstractions in the same platform

● This step does not have to be explicit
○ You can start designing the spec without a clear model
○ Generally a model will emerge

● For easy APIs, this step is almost nonexistent
○ It can be as simple as deciding on static method vs. class

● For difficult APIs, can be the hardest part of the process

4117-214/514

Start with short spec – one page is ideal!
● At this stage, comprehensibility and agility are more

important than completeness
● Bounce spec off as many people as possible

○ Start with a small, select group and enlarge over time
○ Listen to their input and take it seriously
○ API Design is not a solitary activity!

● If you keep the spec short, it’s easy to read, modify, or
scrap it and start from scratch

● Don’t fall in love with your spec too soon!
● Flesh it out (only) as you gain confidence in it

4217-214/514

Sample Early API Draft
// A collection of elements (root of the collection hierarchy)
public interface Collection<E> {

 // Ensures that collection contains o
 boolean add(E o);

 // Removes an instance of o from collection, if present
 boolean remove(Object o);

 // Returns true iff collection contains o
 boolean contains(Object o);

 // Returns number of elements in collection
 int size() ;

 // Returns true if collection is empty
 boolean isEmpty();

 ... // Remainder omitted
}

4317-214/514

Write to the API, early and often
● Start before you’ve implemented the API

○ Saves you from doing implementation you’ll throw away
● Start before you’ve even specified it properly

○ Saves you from writing specs you’ll throw away
● Continue writing to API as you flesh it out

○ Prevents nasty surprises right before you ship
○ If you haven’t written code to it, it probably doesn’t work

● Code lives on as examples, unit tests
○ Among the most important code you’ll ever write

4417-214/514

When you think you’re on the right track, then write a
prototype implementation
● Some of your client code will run; some won’t
● You will find “embarrassing” errors in your API

○ Remember, they are obvious only in retrospect
○ Fix them and move on

4517-214/514

Then flesh out documentation so it’s usable
by people who didn’t help you write the API
● You’ll likely find more problems as you flesh out the docs

○ Fix them

● Then you’ll have an artifact you can share more widely
● Do so, but be sure people know it’s subject to change
● If you’re lucky, you’ll get bug reports & feature requests
● Use the API feedback while you can!

○ Read it all…
○ But be selective: act only on the good feedback

4617-214/514

Maintain realistic expectations
● Most API designs are over-constrained

○ You won’t be able to please everyone…
○ So aim to displease everyone equally*

○ But maintain a unified, coherent, simple design!

● Expect to make mistakes
○ A few years of real-world use will flush them out
○ Expect to evolve API

* Well, not equally – I said that back in 2004 because I thought it sounded funny, and it stuck;
actually you should decide which uses are most important and favor them.

4717-214/514

Issue tracking
● Throughout process, maintain a list of design issues

○ Individual decisions such as what input format to accept
■ Write down all the options

■ Say which were ruled out and why

■ When you decide, say which was chosen and why

● Prevents wasting time on solved issues
● Provides rationale for the resulting API

○ Reminds its creators
○ Enlightens its users

● I used to use text files and mailing lists for this
○ now there are tools (github, Jira, Bugzilla, IntelliJ’s TODO facility, etc.)

4817-214/514

Disclaimer – one size does not fit all
● This process has worked for me
● Others developed similar processes independently
● But I’m sure there are other ways to do it
● The smaller the API, the less process you need
● Do not be a slave to this or any other process

○ It’s good only to the extent that it results in a better API and
makes your job easier

4917-214/514

Information Hiding

5017-214/514

Which one do you prefer?
public class Point {

 public double x;

 public double y;

}

// vs.

public class Point {

 private double x;

 private double y;

 public double getX() { /* … */ }

 public double getY() { /* … */ }

}

5117-214/514

Information hiding also for APIs
● Make classes, members as private as possible

○ You can add features, but never remove or change the
behavioral contract for an existing feature

● Public classes should have no public fields
(with the exception of constants)

● Minimize coupling
○ Allows modules to be, understood, used, built, tested,

debugged, and optimized independently

5217-214/514

Key design principle: Information hiding

● "When in doubt, leave it out.”

● Implementation details in APIs are harmful
○ Confuse users
○ Inhibit freedom to change implementation

5317-214/514

Which one do you prefer?

public class Rectangle {

public Rectangle(Point e, Point f) …

}

// vs.

public class Rectangle {

public Rectangle(PolarPoint e, PolarPoint f) …

}

5417-214/514

public class Rectangle {

public Rectangle(Point e, Point f) …

}

// …

Point p1 = PointFactory.Construct(…);

// new PolarPoint(…); inside

Point p2 = PointFactory.Construct(…);

// new PolarPoint(…); inside

Rectangle r = new Rectangle(p1, p2);

Applying Information hiding: Factories

5517-214/514

Aside: The Factory Method Design Pattern

From: https://refactoring.guru/design-patterns/factory-method

https://refactoring.guru/design-patterns/factory-method

5617-214/514

Aside: The Factory Method Design Pattern

From: https://refactoring.guru/design-patterns/factory-method

+ Object creation separated from object
+ Able to hide constructor from clients,

control object creation
+ Able to entirely hide implementation

objects, only expose interfaces + factory
+ Can swap out concrete class later
+ Can add caching (e.g. Integer.from())
+ Descriptive method name possible

- Extra complexity
- Harder to learn API and write code

https://refactoring.guru/design-patterns/factory-method

5717-214/514

● Subtle leaks of implementation details through
○ Documentation: e.g., do not specify hashCode() return

○ Implementation-specific return types / exceptions: e.g., Phone
number API that throws SQL exceptions

○ Output formats: e.g., implements Serializable

● Lack of documentation 🡪 Implementation/StackOverflow
becomes specification 🡪 no hiding

Be Aware: Unintentionally Leaking
Implementation Details

5817-214/514

But: Don’t overspecify method behavior
● Don’t specify internal details

○ It’s not always obvious what’s an internal detail

● All tuning parameters are suspect
○ Let client specify intended use, not internal detail
○ Bad: number of buckets in table; Good: intended size
○ Bad: number of shards; Good: intended concurrency level

5917-214/514

Be Aware: Unintentionally Leaking
Implementation Details
● Subtle leaks of implementation details through

○ Documentation: e.g., do not specify hash functions
○ Implementation-specific return types / exceptions: e.g.,

Phone number API that throws SQL exceptions
○ Output formats: e.g., implements Serializable

● Lack of documentation 🡪 Implementation becomes
specification 🡪 no hiding

6017-214/514

Minimizing Conceptual Weight

6117-214/514

Principle: Minimize conceptual weight
● API should be as small as possible but no smaller

○ When in doubt, leave it out

● Conceptual weight: How many concepts must a
programmer learn to use your API?

○ APIs should have a "high power-to-weight ratio"

6217-214/514

Conceptual weight (a.k.a. conceptual surface area)

● Conceptual weight more important than “physical size”
● def. The number & difficulty of new concepts in API

○ i.e., the amount of space the API takes up in your brain

● Examples where growth adds little conceptual weight:
○ Adding overload that behaves consistently with existing methods
○ Adding arccos when you already have sin, cos, and arcsin
○ Adding new implementation of an existing interface

● Look for a high power-to-weight ratio
○ In other words, look for API that lets you do a lot with a little

6317-214/514

“Perfection is achieved not when there is nothing more to
add, but when there is nothing left to take away.”
 ― Antoine de Saint-Exupéry, Airman’s Odyssey, 1942

6417-214/514

Example: generalizing an API can make it smaller

● Not very powerful
○ Supports only search operation, and only over certain ranges

● Hard to use without documentation
○ What are the semantics of index? I don’t remember, and it isn’t obvious.

Subrange operations on Vector – legacy List implementation

public class Vector {

 public int indexOf(Object elem, int index);

 public int lastIndexOf(Object elem, int index);

 ...

}

6517-214/514

Example: generalizing an API can make it smaller

● Supports all List operations on all subranges
● Easy to use even without documentation

Subrange operations on List
public interface List<T> {

 List<T> subList(int fromIndex, int toIndex);

 ...

}

6617-214/514

Boilerplate Code
 import org.w3c.dom.*;
 import java.io.*;
 import javax.xml.transform.*;
 import javax.xml.transform.dom.*;
 import javax.xml.transform.stream.*;

 /** DOM code to write an XML document to a specified output stream. */
 static final void writeDoc(Document doc, OutputStream out) throws IOException{
 try {
 Transformer t = TransformerFactory.newInstance().newTransformer();
 t.setOutputProperty(OutputKeys.DOCTYPE_SYSTEM, doc.getDoctype().getSystemId());
 t.transform(new DOMSource(doc), new StreamResult(out)); // Does actual writing
 } catch(TransformerException e) {
 throw new AssertionError(e); // Can’t happen!
 }
 }

• Generally done via cut-and-paste
• Ugly, annoying, and error-prone

6717-214/514

Boilerplate Code
Generally created via cut-and-paste

Ugly, annoying, and error-prone

Sign of API not supporting common use cases directly

Consider creating APIs for most common use cases,
hiding internals

6817-214/514

Principle: Make it easy to do what’s common,
make it possible to do what’s less so
● If it’s hard to do common tasks, users get upset
● For common use cases

○ Don’t make users think about obscure issues - provide reasonable defaults
○ Don’t make users do multiple calls - provide a few

well-chosen convenience methods
○ Don’t make user consult documentation

● For uncommon cases, it’s OK to make users work more
● Don’t worry too much about truly rare cases

○ It’s OK if your API doesn’t handle them, at least initially

6917-214/514

Tradeoffs
How to balance

● Low conceptual weight
● Avoiding boilerplate code

?

7017-214/514

Lecture summary (to be continued)
● APIs took off in the past thirty years, and gave us

super-powers
● Good APIs are a blessing; bad ones, a curse
● API Design is hard
● Following an API design process greatly improves API

quality
● Most good principles for good design apply to APIs

○ Don't adhere to them slavishly, but…
○ Don't violate them without good reason

