Principles of Software Construction

API Design

Christian Kastner Vincent Hellendoorn
(Many slides originally from Josh Bloch)

Carnegie Mellon University
School of Computer Science

institute for
I S SOFTWARE
RESEARCH

17-214/514 1 [s

2 I
17-214/514

RESEARCH

Review: libraries, frameworks
APL .

public MyHidget extends JContainer {

ublic MyWidget (int param) {/ setup internals,
without rendering

/ render component on first view and resizing

Pprotected void paintComponent (Graphics g) {

// draw a red box on his componentDimension d =

getsize();

g.setColor (Color. red) ;
drawRect(0, 0, d

tWidth(), d.getHeight()):

)

your code

public Mydidget extends JContainer (

ublic MyWidget (int param) (/ setup internals,
without rendering
)

ender component on first view and resizing

protected void paintComponent (Graphics g) (

// draw a red box on his componentDimension d =

getsize();

g.setColox (Color.red) ;

g.drawRect (0, 0, d.getWidth(), d.getHeight());
)

your code

/
/
\ I
\
N\
N
N
N
-
API.
/
/
—‘
\
N\
N
N
N

SOFTWARE
RESEARCH

17'2 14/5 14 3 institute for

Upcoming
Midterm 2 on Thursday
4 sheets of notes, handwritten or printed, both sides
all topics in scope, focus on topics since midterm 1
Final homework released after midterm

Milestones: (1) Design framework,
(2) implement framework, (3) implement plugins

Work with a partner (or two)

17-214/514 4 Sf 2?;“5*}{1{%

Homework 6

Data Analytics Framework

Data Plugin

Data Plugin

Data Plugin

Framework

Defines U,
abstractions,

some data processing,

lifecycle

Visualization Plugin

Visualization Plugin

AN

17-214/514

Visualization Plugin

HW6: Map-Based
Data Visualizations?

State, county, or country
data

Data from many sources
Visualization as map
image, table, google

maps

Animations for time
series data

17-214/514

CA

States that produced the most presidents

VT
T NH
A et — VA
P | '\4
NE o s cT
1 IL 1
1 NJ
MO KY !
1 1 NG
2
AR sc

17-214/514

Population trends: Pittsburgh and Phoenix

Population trends in Pittsburgh and the greater Phoenix metropolitan
area (roughly Maricopa County) over the past 150-200 years.

PITTSBURGH - GREATER PHOENIX METRO AREA
CTvToo o o W W— 3,500,000
7oo.m0 ... : 3.000'000
600,000 " 2,500,000
(070)0 ¢4 [ETSrmumum— | AU | W :
' 2,000,000
400,000 '
1,500,000
300,000 « SRR .o o AR . oo
200,000 1,000,000
100,000 500,000
0 : 0
1800 1850 1900 1950 2000 1850 1900 1950 2000

James Hilston/Post-Gazette

7 [

institute for
SOFTWARE
RESEARCH

Rainfall

average rainfall in inches

== Pittsburgh == Seattle
8in

6 in

41in

2in

0in
Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec

BestPlaces.Net

17-214/514 8 sl

RESEARCH

institute for
SOFTWARE
RESEARCH

17-214/51

345

® o
ihl plotly | Graphing Libraries | II y i

Speec mu—— 120

Waterfall Charts Indicators Candlestick Charts Funnel and Web f [b,- .
t .~ Tron arig
» Quick start ch @) bralnsto tends S
1
¥ Examples MapS " deaS

Mapbox Map Layers Mapbox Density Choropleth Mapbox Lines on Maps Bubble Maps
Heatmap

3D Charts More 3D Charts »

3D Scatter Plots Ribbon Plots 3D Surface Plots 3D Mesh Plots 3D Line Plots

SprlOtS More Subplots »

{ r R L | " e - n gw(s)utute for
b 3 s : FTWARE
I8 a2 . e W R i ‘” “II .Illlll- VAT | CaINoN VAW CECEARCH

Leftover topics

ReactJS (see last week'’s slides)

17-214/514 12 [J

Where we are

Design for
understanding
change/ext.
reuse

robustness

17-214/514

Small scale: Mid scale: Large scale:
One/few objects Many objects Subsystems
Subtype Domain Analysis GUI vs Core

Polymorphism

Information Hiding,
Contracts

Immutability
Types
Unit Testing

Inheritance & Deleg.

Responsibility
Assignment,
Design Patterns,
Antipattern

Promises/Reactive P.

Integration Testing

Frameworks and
Libraries, APIs

Module systems,
microservices

Testing for
Robustness

Cl, DevOps, Teams

Where we are

Design for
understanding
change/ext.
reuse

robustness

17-214/514

Small scale: Mid scale: Large scale:
One/few objects Many objects Subsystems
Subtype Domain Analysis v GUI vs Core v

Polymorphism v

Information Hiding,
Contracts v

Immutability v
Types
Unit Testing v/

Inheritance & Del. v

Responsibility
Assignment,
Design Patterns,
Antipattern v

Promises/
Reactive P. v

Integration Testing v/

Frameworks and
Libraries v, APls

Module systems,
microservices

Testing for
Robustness

Cl v/, DevOps,
Teams

nstitute for
SSSSSSSS
RRRRRRRR

Outline

e Introduction to API Design
e The Process of APl Design
e |nformation Hiding and Minimizing Conceptual Weight

e Naming
e Other AP| Suggestions
e Breaking Changes

17-214/514 15 Sf i?ﬁfﬁ{%

Introduction to AP| Design

17-214/514 16 [s

RRRRRRRR

What's an API?

e Short for Application Programming Interface
o = Contract for a Subsystem/Library

e Component specification in terms of operations, inputs, & outputs
o Defines a set of functionalities independent of implementation

e Allows implementation to vary without compromising clients

e Defines component boundaries in a programmatic system

e A public APl is one designed for use by others
o Related to Java’s public modifier, but not identical
o protected members are part of the public api

17-214/514 17 [s

API. Application Programming Interface

® An API defines the boundary between
components/modules in a programmatic system

Package java.util

Contains the i legacy
a random-number generator, and a bit array).

classes, event model, date and time facilities, il

Packages

Java™ Platform, Standard Edition 7

java.applet

See: Description

java.awt API Specification

java.awt.color

java.awt.datatransfer P

}aza,aw‘hdnd This document is the API specification for the Java™ Platform, Standard Edition. Interface Summary

java.awt.event See: Description Interface Description

iava.awt.font
All Classes
AbstractAction

AbstractAnnotationValueVisitor6
AbstractAnnotationValueVisitor7

Package

java.applet

Description

Provides the classes necessary to cre

Collection<E>
Comparator<T>
Deque<E>

Enumeration<E>

The root interface in the collection hierarchy.
A comparison function, which imposes a total ordering o
A linear collection that supports element insertion and re:

An object that implements the Enumeration interface ge:

AbstractBorder context. EventListener A tagging interface that all event listener interfaces musf
AbstractButton : e . >
AbstractCellEditor Java.a Contains all of the classes for creating Formattable The Formattable interface must be implemented by al
ﬁgs:rac:gollerccli;‘)n g | java.awt.color Provides classes for color spaces. conversion specifier of Formatter.
stractColorChooserPane - Iterator<g> i i
AbstractDocument java.awt.datatransfer Provides interfaces and classes for tr: TetE Gliexelonovenaicooction:
ist<E>

AbstractDocument.Attribute Context
AbstractDocument.Content
AbstractDocument.ElementEdit
AbstractElementVisitoré

java.awt.dnd

java.awt.event

Drag and Drop is a direct manipulatio
mechanism to transfer information be

Provides interfaces and classes for di

Listiterator<E>

An ordered collection (also known as a sequence).

An iterator for lists that allows the programmer to travers
the iterator's current position in the list.

AbstractElementVisitor7 . i i . Map<K,v> An object that maps keys to values.

s eaoe e erovios o sova 20 camoeraon| | [MBS s

AbstractLayoutCache)) java.awt.geom geometry. NavigableMap<K,v> A sortedMap extended with navigation methods returni

ﬁg:::zzil[;)t'outcache.NodeDlmensmns java.awt.im Provides classes and interfaces for th avigableSet s Asortedset with navigati reporti

ﬁgzﬂzgﬁtyma java.awt.im.spi Provides interfaces that enable the de Observer A class c.an |mp?ement the Ob-server |nterfa<.;e when it \

AbstractMap.SimpleEntry environmant. Queuesks A for holding prior to proce

AbstractMap.SimplelmmutableEntry java.awt.image Provides classes for creating and mo: RandomAccess Marker interface used by List implementations to indic

ﬁg::::g:m:'rzgzg:gppl java.awt.image.renderable Provides classes and interfaces for pi Set<E> A collection that contains no duplicate elements. ° ‘

AbstractOwnableSvnghronizer iava awt nrint P T PRy e e T SR e SortedMap<K,V> T 18 gg;;%z&%
RESEARCH

API. Application Programming Interface

® An API defines the boundary between
(ormomonantaleacidgg n g programmatic system

| The java.util.Collection<E> interface

boolean add(E e);

boolean addAll(Collection<E> c);

boolean remove(E e); Package java.util
Packages boolean QQWALL(COIIECtiON<E) C) i Contains the i legacy ion classes, event model, date and time facilities, il
P boolean. ng;giné}x;,((:ollectiomb 3 Edition 7 a random-number generator, and a bit array).

See: Description
java.awt

java.awt.color boolean. contains(E e);

java.awt.datatr

java.awt.dnd boolean containsAll(Collection<E> c); [Patfon; Standard Edition.
java.awt.event; —=
iava.awt.font void clear(); ° Description
Al ‘ Collection<E> The root interface in the collection hierarchy.

int size(); Comparator<T> A comparison function, which imposes a total ordering ¢
AbstractAction boolean iéﬁmp&l() o Description Deque<E> A linear collection that supports element insertion and re
AbstractAnnot: o 2 3 - 3 s =
AbstractAnnots 4 . Provides the classes necessary to cre EDUMSIation<E> An object that implements the Enumeration interface ge!
ﬁgs:rac:go:tdel Iterator<E> iterator(); context. EventListener A tagging interface that all event listener interfaces musf

stractButton . .
AbstractCellEd object[] mAL‘LQ}L() Contains all of the classes for creating Formattable The Formattable interface must be implemented by al
AbstractCollec. Provides classes for color spaces. conversion specifier of Format ex.
AbstractColor(E toArray(E[] a); Iterator<E> i i
Abstiactbocur] [] WWJ([]) > Provides interfaces and dasses for tri R An iterator over a collection.
AbstractDocuniefit AUNoue COrmext ” . . x ist<E> An ordered collection (also known as a sequence).
AbstractDocument.Content java.awt.dnd 2ag anc Bropis g d"eF' e e Listiterator<E> Ani for li
AbstractDocument ElementEdit mechanism to transfer information be mn |.tterat!orr for lists t?a! a_ltl_ows If:ﬁ p:'_osl;rammer to travers
3 i e iterator's current position in the list.

AbstractElementVisitoré java.awt.event Provides interfaces and classes for di B
AbstractElementVisitor7 e s E——— g o Map<K,v> An object that maps keys to values.

i java.awt. rovides classes and interface relatin
AbstractintemuptibleGhannel P ————— MapEneytire g SOy (/540 ok

i rovides the Java 2D classes for def g
AbstractLayoutCache java.awt.geom geometry. NavigableMap<K,v> A sortedMap extended with navigation methods returni
AbstractLayoutCache.NodeDimensions R N i > - i |
AbstractList java.awt.im Provides classes and interfaces for th NavigableSetsE A sortedset with r reporti
i Observer i i i

ﬁgs:rac:l“_/llstModel P —— Provides interfaces that enable the d¢ A class can implement the Observer interface when it \
Abit;:itM:g SimpleEntry e environment. Queue<E> A i i for holding prior to proce
AbstractMap.SimplelmmutableEntry java.awt.image Provides classes for creating and mo: RandomAccess Marker interface used by List implementations to indic
:g:g:g:m:{zggg:g\pl java.awt.image.renderable Provides classes and interfaces for pi Set<E> A collection that contains no duplicate elements.
AbstractOwnableSvnchronizer, iava awt nrint Dravidnce alacone and intarfanae far SortedMap<K,Vv> A Map that further provides a total ordering on its keys. 1 9

institute for
SOFTWARE
RESEARCH

API. Application Programming Interface

® An API defines the boundary between

I\MV\I\I"\I\I"\'I"'\IMI\IJI II :IF\ — V\lﬂl\ﬂlﬁﬂmmf\l‘lf\ =W W 4
¢: S P —— (11

(e https://developer.github.com/v3/repos/

The MM(E > |nterface ¥ 214-s14 ¥ 214 ¥ 413 [Z Piazza [Services [more DCKX: Directory of

List your repositories
boolean add(E e);
List repositories for the authenticated user. Note that this does not include repositories owned by
bgglgan aﬂg&ll (Collection(E> ic) 5 organizations which the user can access. You can list user organizations and list organization
repositories separately.

boolean remove(E e);
Packages boolean removeAll(Collection<E> c); SETVseniiepes nt model, date and time facilities, il
. : . Edi
java.applet boolean retainAll(Collection<E> c); Parameters
java.awt .
}:z::\nmrt.ggltt;;r boolean contains(E e); Name Type Description
java.awtdnd boolean containsAll(Collection<E> c); Plath type string Gan be one of all, ouner, public, private, menber. Default: a11
java.awt.even
iava.awt.font void clear(); sort string Can be one of created, updated, pushed, full_name. Default: full_name
he collection hierarchy.
All Classes int size() . direction string Can be one of asc or desc. Default: when using full_name: asc; o .
‘‘‘‘‘) N 1, which imposes a total ordering ¢

AbstractAction s ¢ 4
st boolean ;;Em,p,l:x() ; De t supports element insertion and re
AbstractAnnot: " . Pr) o | ents the Enumeration interface ge
Qgsgrac:goadel Iterator<E> iterator(); co List user repositories at all event listener interfaces musf

stractButton,

. Cc z
ﬁgztfgctge::sc Object[] toArray() List public repositories for the specified user. | ffe::f:;::ifrbe Implementad by:a)
ractCollec: Pr i
AbstractColorC E[] toArray(E[] a); action.
AbstractDocun Pr GET /users/:username/repos
AbstractDocurient. AUNDUe COnext) Dr (also known as a sequence).
AbstractDocument.Content java.awt.dnd = it allows the programmer to travers
AbstractDocument.ElementEdit Parameters Josition in the list.
AbstractElementVisitoré java.awt.event Pr |
AbstractElementVisitor7 : == eys to values.
AbslractExecu(o(Service java.awt.font Pri Name Type Description S
ﬁgzt:zz:m::gm%:’clﬁshannel java.awt.geom Pr type string Can be one of all, owner, member. Default: owner bd with navigation methods retumi
< . ge

ﬁgzgzzztias)t’UUtCEChe-NodeD'mens'ons java.awt.im Pr sort string Can be one of created, updated, pushed, full_name. Default: full_name ed with navigation methods reporti
ﬁgs:raciHSIModel S Provides interfaces that enable the de oSusTver ACiass Caniimpiertient the observer interface when it \

stractMap 2 Sl environment. Queue<E> A i i for holding prior to proce
AbstractMap.SimpleEntry . .
AbstractMap.SimplelmmutableEntry java.awt.image Provides classes for creating and mo: RandomAccess Marker interface used by List implementations to indic
2‘5252332@231’;?52'?"' Java.awt.image.renderable Provides classes and interfaces for p Set<E> A collection that contains no duplicate elements.
Ahstrant(‘)wnahle$vnchmnj7pr iava awt nrint Decaddoc cloccoc ond dosocforoas £ o SortedMap<K,V> A Map that further provides a total ordering on its keys. 20

institute for
SOFTWARE
RESEARCH

API. Application Programming Interface

® An API defines the boundary between

Arnmanrnanmanta A~ sl
(‘, S ool oWl -Wl_LT-W8 - -F_W_ 8T

A\ o — e s i

org.omg.CORBA.MARSHAL: com.ibm.ws.pmi.server.DataDescriptor; IllegalAccessException minor code: 4942F23E comy
at com.ibm.rmi.io.ValueHandlerImpl.readValue (ValueHandlerImpl.java:199)
at com.ibm.rmi.iiop.CDRInputStream.read value (CDRInputStream.java:1429)
at com.ibm.rmi.io.ValueHandlerImpl.read Array(ValueHandlerImpl.java:625)
at com.ibm.rmi.io.ValueHandlerImpl.readValueInternal (ValueHandlerImpl.java:273)
at com.ibm.rmi.io.ValueHandlerImpl.readValue (ValueHandlerImpl.java:189)
at com.ibm.rmi.iiop.CDRInputStream.read value (CDRInputStream.java:1429)
at com.ibm.ejs.sm.beans. EJSRemoteStatelessPmiService Tie._ invoke (_EJSRemoteStat
at com.ibm.CORBA.iiop.ExtendedServerDelegate.dispatch (ExtendedServerDelegate.jav

at com.ibm.CORBA.iiop.ORB.process (ORB.java:2377)

at com.ibm.CORBA.iiop.OrbWorker.run (OrbWorker.java:186)
at com.ibm.ejs.oa.pool.ThreadPool$PooledWorker.run (ThreadPool.java:104)
at com.ibm.ws.util.CachedThread.run (ThreadPool.java:137)

<?xml version="1.0" encoding="UTF-8"?>
<?eclipse version="3.2"?>

<plugin>

<extension

ties, il

point="gra.eclipse.ui.editors" >

<editor

name="Sample XML Editor"

[S] size();
AbstractAction s .
AbstractAnnot] Roolean. isEmpty();
AbstractAnnots &

AbstractBorde| Iterator<E> iterator();
AbstractButton .

AbstractCellEd Object[] toArray()
AbstractCollec

AbstractColorC E[] toArray(E[] a);

AbstractDocun
AbstractDocurrienit. AUroute COrnext
AbstractDocument.Content
AbstractDocument.ElementEdit
AbstractElementVisitoré
AbstractElementVisitor7
AbstractExecutorService
AbstractinterruptibleChannel
AbstractLayoutCache
AbstractLayoutCache.NodeDimensions
AbstractList

AbstractListModel

AbstractMap
AbstractMap.SimpleEntry
AbstractMap.SimplelmmutableEntry
AbstractMarshallerimpl
AbstractMethodError
AbstractOwnableSvnchronizer

java.awt.dnd

java.awt.event

java.awt.font
java.awt.geom
java.awt.im
java.awt.im.spi

java.awt.image
java.awt.image.renderable

iava awt nrint

otherwise desc . i i Jring 9
De extensions= and re
Pr icon="icons/sample.gif" ce ge
co List user repositories contributorClass="ora.eclipse.ui.text ;mus
Cq ORI e " editor.BasicTextEditorActionContributibya

ist public repositories for the specified user. s
Pry or
: SETY/usecs:Usecname pepos class="myveditor.editors.XMLEditor" |
r
me b id="myeditor.editors. XMLEditor"> raver
Pr arameters
</editor>

Pri Name Type
Pr wpe strim Cambeoneoran] </@Xtension> o
ge |
Pr sort string Can be one of cre: eporti
Provides interfaces that enable the d¢ SRo———— </p|ug in> en it |
environment. Queue<E>| N A PIOCE
Provides classes for creating and mo RandomAccess Marker interface used by List implementations to indic
Provides classes and interfaces for pi Set<E> A collection that contains no duplicate elements.
Drovidae clacene and intarfacae for o SortedMap<K,V> A Map that further provides a total ordering on its keys.

21

institute for
SOFTWARE
RESEARCH

Libraries and frameworks both define APIs
API.

public MyWidget extends JContainer {

ublic MyWidget (int param) {/ setup
internals, without rendering

}

/ render component on first view and
resizing

protected void

paintComponent (Graphics g) {

// draw a red box on his
componentDimension d = getSize() ;

g.drawRect (0, 0, d.getWidth(),
d.getHeight()) ;}

"your code

public MyWidget extends JContainer {

ublic MyWidget (int param) {/ setup
internals, without rendering

}

/ render component on first view and
resizing

protected void

paintComponent (Graphics g) {

// draw a red box on his
componentDimension d = getSize();

g.drawRect (0, 0, d.getWidth(),

yoUur code

/
/
\ I
\
N\
N
N
N
-
API.
/
/
—‘
\
N\
N
N
N

SOFTWARE
RESEARCH

17'2 14/5 14 22 institute for

Exponential growth in the power of APls

This list is approximate and incomplete, but it tells a story

'50s-'60s — Arithmetic. Entire library was 10-20 functions!

'/0s — malloc, bsearch, gsort, rnd, 1/O, system calls,
formatting, early databases

'80s — GUIs, desktop publishing, relational databases

'90s — Networking, multithreading

'00s — Data structures(!), higher-level abstractions,
Web APIs: social media, cloud infrastructure

'10s — Machine learning, 10T, pretty much everything

17-214/514 23 Sf i?ﬁfﬁ{%

What the dramatic growth in APIs has done for us

e Enabled code reuse on a grand scale
e Increased the level of abstraction dramatically

e A single programmer can quickly do things that would
have taken months for a team

e \What was previously impossible is now routine
e APIs have given us super-powers

17'2 14/5 14 24 Sf institute for

SSSSSSSS
RRRRRRRR

Why is API design important?

e A good APl is a joy to use; a bad APl is a nightmare

e APIs can be among your greatest assets
o Users invest heavily: learning, using
o Cost to stop using an API can be prohibitive
o Successful public APls capture users

e APIs can also be among your greatest liabilities
o Bad API can cause unending stream of support requests
o Can inhibit ability to move forward

e Public APIs are forever — one chance to get it right

17-214/514 25 Sf 2?}3}&{%

Positive and Negative Experiences with
APIls?

17-214/514 26 [v

RRRRRRRR

Public APIs are forever

17-214/514

Your code

Your
colleague

Another
colleague

o~ _ ___ _ - _ .. __
Y - WS U
Y o W S
Y - WS U
Y o W S
Y - WS U
Y - WS R [

- Somebody on
the web

SOF’ E
RRRRRRRR

Public APIs are forever

JDT Plugin (IBM)

CDT Plugin (IBM)

17-214/514

third party plugin

institute for

O .

Evolutionary problems: Public (used) APIs

are forever

® "One chance to get it right"

® Can only add features to library

® Cannot;

O remove method from library
O change contract in library

O change plugin interface of framework

® Deprecation of APls as weak workaround

17-214/514

@Deprecated
public void ensble()

Deprecated. As of JOXK version 1.1, replaced by setEnabled(boolean,

enable

@Deprecated
public void enable (boolean b)

Deprecated. As of JOK version 1.1, replaced by setEnabled (boolean

disable

Deprecated. As of JOK version 1.1, replaced by setEnabled (boolean

awt.Component,

).

deprecated since Java 1.1

still included in 7.0

[CRIEST? 1017 WFDAIE] |

| CHONGES I VERSION 10.17:
Hyrum’'s Law WHEN YOU HOLD DOWN SPACEBAR.

“With a sufficient number of users of | (onetMeUseRY wRiEs:

an API, it does not matter what you | | xeonteot ker 15 o BReRa,

; ; . 50 T HOLD SPACEBAR INSTERD, AND T
promise in the contract: all CONFIGURED EMACS TO INTERPRET A

observable behaviors of your RAPID TEMPERATURE. RISE: is CONTROL.
ADVMIN \WRITES

system will be depended on by THATS. HORRIFYING.

" [onGTHEUseRY WRITES:
somebody. LOOK, MY SEROP WORKS FOR VE..
J0sT ADD AN OPTION To REENABLE

SPACEBAR HERTING.
EVERY CHANGE BREAKS SOMEONES WORKFLOW.

https://www.hyrumslaw.com/

https://xkcd.com/1172/ 30 [ius

17-214/514

https://xkcd.com/1172/
https://www.hyrumslaw.com/

Why is API design important to you?

e If you program, you are an API| designer

o Good code is modular — each object/class/module has an
API

e Useful modules tend to get reused
o Once a module has users, you can’t change its API at will

e Thinking in terms of APIs improves code quality

17-2 14/5 14 31 Sf gégi{%

Characteristics of a good API

e Easytolearn
e Easy to use, even without documentation

e Hard to misuse

e Easy to read and maintain code that uses it
e Sufficiently powerful to satisfy requirements
e Easy to evolve

e Appropriate to audience

17-214/514 32 [s

The Process of API Design

17-214/514 33 [s

RRRRRRRR

An APl design process

® Define the scope of the API
O Collect use-case stories, define requirements

O Be skeptical: Distinguish true requirements from so-called solutions,
"When in doubt, leave it out."

® Draft a specification, gather feedback, revise, and repeat
O Keep it simple, short
® Code early, code often

O Write client code before you implement the API

17-214/514 34 [s

SSSSSSSS
H

Plan with Use Cases
® Think about how the API might be used?

O e.g., get the current time, compute the difference between
two times, get the current time in Tokyo, get next week's date
using a Maya calendar, ...

® \What tasks should it accomplish?
® Should all the tasks be supported?
O If in doubt, leave it out!
® How would you solve the tasks with the API?

17'2 14/5 14 35 Sf institute for

SSSSSSSS
RRRRRRRR

Respect the rule of three

® Via Will Tracz, Confessions of a Used Program

Salesman:
Write 3 implementations of each abstract class
or interface before release

O "If you write one, it probably won't support another.”
O "If you write two, it will support more with difficulty.”

O "If you write three, it will work fine."

17-214/514 36 Lo

The process of API design — 1-slide version

Not sequential; if you discover shortcomings, iterate!

No=

5
6
7.
8

Gather requirements skeptically, including use cases
Choose an abstraction (model) that appears to address use
cases

Compose a short API sketch for abstraction

Apply API sketch to use cases to see if it works
o If not, go back to step 3, 2, or even 1

Show API to anyone who will look at it

Write prototype implementation of API

Flesh out the documentation & harden implementation
Keep refining it as long as you can

17-214/514 37

Gather requirements — with a healthy degree

of skepticism
e Often you'll get proposed solutions instead
o Better solutions may exist

e Your job is to extract true requirements
o You need use-cases; if you don’t get them, keep trying

e You may get requirements that don’'t make sense
o Ask questions until you see eye-to-eye

e You may get requirements that are wrong
o Push back

e You may get requirements that are contradictory
o Broker a compromise

e Requirements will change as you proceed

17-214/514 38 [[;

tttttttttttt
SSSSSSSS
RRRRRRRR

Requirements gathering

e Key question: what problems should this API solve?
o Goals - Define scope of effort

e Also important: what problems shouldn’t API solve?
o Explicit non-goals - Bound effort

e Requirements can include performance, scalability
o These factors can (but don’t usually) constrain API

e Maintain a requirements doc
o Helps focus effort, fight scope creep
o Provides defense against cranks
o Saves rationale for posterity

17-214/514 39 Lo

Choosing an abstraction (model)

e Embed use cases in an underlying structure
o Note their similarities and differences
o Note similarities to physical objects (“reasoning by analogy”)
o Note similarities to other abstractions in the same platform
e This step does not have to be explicit
o You can start designing the spec without a clear model
o Generally a model will emerge
e For easy APIls, this step is almost nonexistent
o It can be as simple as deciding on static method vs. class

e For difficult APls, can be the hardest part of the process

17-214/514 40 Sf e

Start with short spec — one page is ideal!

e At this stage, comprehensibility and agility are more
important than completeness

e Bounce spec off as many people as possible
o Start with a small, select group and enlarge over time
o Listen to their input and take it seriously
o API Design is not a solitary activity!

e |f you keep the spec short, it's easy to read, modify, or
scrap it and start from scratch

e Don’t fall in love with your spec too soon!

e Flesh it out (only) as you gain confidence in it

17-214/514 a1 s

Sample Early API Draft

// A collection of elements (root of the collection hierarchy)
public interface Collection<E> {

// Ensures that collection contains o
boolean add(E o0);

// Removes an instance of o from collection, if present
boolean remove(Object 0);

// Returns true iff collection contains o
boolean contains(Object o0);

// Returns number of elements in collection
int size() ;

// Returns true if collection is empty
boolean isEmpty();

titute for
OFTWARE
ESEARCH

Write to the API, early and often

e Start before you've implemented the API
o Saves you from doing implementation you’ll throw away

e Start before you've even specified it properly
o Saves you from writing specs you’ll throw away

e Continue writing to API as you flesh it out
o Prevents nasty surprises right before you ship
o If you haven't written code to it, it probably doesn’t work

e Code lives on as examples, unit tests
o Among the most important code you’ll ever write

17-214/514 43 Sf 2?}3}&{%

When you think you're on the right track, then write a
prototype implementation

e Some of your client code will run; some won't

e You will find “embarrassing” errors in your API

o Remember, they are obvious only in retrospect
o Fix them and move on

17-214/514 a4 | s

Then flesh out documentation so it's usable

by people who didn’t help you write the API

e You'll likely find more problems as you flesh out the docs
o Fix them

e Then you'll have an artifact you can share more widely

e Do so, but be sure people know it's subject to change

e If you're lucky, you'll get bug reports & feature requests

e Use the API feedback while you can!
o Readitall...
o But be selective: act only on the good feedback

17-214/514 45 [

||||||||||||
SSSSSSSS
RRRRRRRR

Maintain realistic expectations

e Most API designs are over-constrained
o You won’t be able to please everyone...
o So aim to displease everyone equally’
o But maintain a unified, coherent, simple design!

e EXxpect to make mistakes
o Afew years of real-world use will flush them out
o Expect to evolve API

* Well, not equally — | said that back in 2004 because | thought it sounded funny, and it stuck;
actually you should decide which uses are most important and favor them.

17-214/514 46 Lo

Issue tracking

e Throughout process, maintain a list of design issues
o Individual decisions such as what input format to accept

B Write down all the options
B Say which were ruled out and why

B When you decide, say which was chosen and why

e Prevents wasting time on solved issues

e Provides rationale for the resulting API
o Reminds its creators
o Enlightens its users

e | used to use text files and mailing lists for this
o now there are tools (github, Jira, Bugzilla, IntelliJ’s TODO facility, etc.)

17-214/514 47 sl

RESEARCH

Disclaimer — one size does not fit all

e This process has worked for me

e Others developed similar processes independently
e But I'm sure there are other ways to do it

e The smaller the API, the less process you need

e Do not be a slave to this or any other process

o It's good only to the extent that it results in a better APl and
makes your job easier

17-214/514 a8 [s

RRRRRRRR

Information Hiding

17-214/514 49 [

Which one do you prefer?

public class Point {
public double x;
public double y;

}
/] vs.
public class Point {
private double x;
private double y;
public double getX() { /* .. */ }
public double getY() { /* .. */ }

17-214/514

Information hiding also for APIs

® Make classes, members as private as possible

O You can add features, but never remove or change the
behavioral contract for an existing feature

® Public classes should have no public fields
(with the exception of constants)

® Minimize coupling

O Allows modules to be, understood, used, built, tested,
debugged, and optimized independently

17-214/514

Key design principle: Information hiding

® "\When in doubt, leave it out.”

® Implementation details in APIs are harmful
O Confuse users
O Inhibit freedom to change implementation

17-214/514 52 Sf é?éi‘i”é‘i’ii

Which one do you prefer?

public class Rectangle {
public Rectangle(Point e, Point f) ..

}
/] vs.

public class Rectangle {
public Rectangle(PolarPoint e, PolarPoint f) ..

17-214/514 53 Sf 2?}3}&{%

Applying Information hiding: Factories

public class Rectangle {
public Rectangle(Point e, Point f) ..

}

/] .
Point pl = PointFactory.Construct(..);

// new PolarPoint(..); inside
Point p2 = PointFactory.Construct(..);
// new PolarPoint(..); inside

Rectangle r = new Rectangle(pl, p2);

17-2 14/5 14 54 Sf g\é}}:i{%

Aside: The Factory Method Design Pattern

Product p = createProduct()

p.doStuff()
Creator
«interface»
_____________________ Product
+ someOperation() >
+ createProduct(): Product + doStuff()
l I ! !

ConcreteCreatorA ConcreteCreatorB Concrete Concrete
ProductA ProductB

+ createProduct(): Product

+ createProduct(): Product

return new ConcreteProductA()

From: https://refactoring.guru/design-patterns/factory-method

17-214/514

55 [Hi

institute for
SOFTWARE
RESEARCH

https://refactoring.guru/design-patterns/factory-method

Aside: The Factory Method Design Pattern

Product p = createProduct()
p.doStuff()

+ Object creation separated from object

Creator
dnterface» + Able to hide constructor from clients,
+someOperation() [~~~ T ->| Product H H
+ createProduct(): Product + doStuff() ContrOI ObJeCt Creatlon
[2 | — 2 + Able to entirely hide implementation

et | o | s | | roducs objects, only expose interfaces + factory
+ createProduct(): Product + createProduct(): Product + Can Swap Out Concrete ClaSS Iater
return new ConcreteProductA() +

Can add caching (e.g. Integer.from())
+ Descriptive method name possible

- Extra complexity

Harder to learn API and write code
From: https://refactoring.guru/design-patterns/factory-method

17-214/514 56 sl

RESEARCH

https://refactoring.guru/design-patterns/factory-method

Be Aware: Unintentionally Leaking
Implementation Detalls

® Subtle leaks of implementation details through

O Documentation: e.g., do not specify hashCode() return

O Implementation-specific return types / exceptions: e.g., Phone
number API that throws SQL exceptions

O Output formats: e.g., implements Serializable

® | ack of documentation [J Implementation/StackOverflow
becomes specification [] no hiding

17'214/514 57 Sf gé;{"u;"?é%

But: Don’t overspecify method behavior

e Don't specity internal details

o It's not always obvious what's an internal detail

e All tuning parameters are suspect
o Let client specify intended use, not internal detail
o Bad: number of buckets in table; Good: intended size
o Bad: number of shards; Good: intended concurrency level

17-214/514 58 Sf 2?2;*}’.{{%

LRIES): 10.17 m—
Be Aware: Unintentionally Leaki $&%00oasoniors

WHEN YOU HOLD DOWN SPACEBAR.

Implementation Details o

LONGTME UsERY WRITES:

. . _ THIS DPDATE BROKE. NY WORKFLOW!
® Subtle leaks of implementation detail{ % swosmass xoes oz
CONFIGURED EMACS TO INTERPRET A
RAPID TEMPERATURE. RISE As CONTROL.
ms%mm

O Implementation-specific return types / eX| aemeusssy wies

Phone number API that throws SQL excg 00 FYsErr s Foe re.
SPACEBAR HERTING.

EVERY CHANGE BREAKS SOMEONES WORKFLOW.
® |Lack of documentation [Implementation becomes

specification [no hiding

O Documentation: e.g., do not specify has

O Qutput formats: e.g., implements Seria

llllllllllll

17-214/514 59 |Ij o

Minimizing Conceptual Weight

17-214/514 60 [Jj i

RRRRRRRR

Principle: Minimize conceptual weight

® API should be as small as possible but no smaller

O When in doubt, leave it out

® Conceptual weight.: How many concepts must a
programmer learn to use your API?

O APls should have a "high power-to-weight ratio”

17'214/514 61 Sf gé;{"u;“a%

Conceptual weight (a.k.a. conceptual surface area)

e Conceptual weight more important than “physical size”

e def. The number & difficulty of new concepts in API
o i.e., the amount of space the API takes up in your brain
e Examples where growth adds little conceptual weight:
o Adding overload that behaves consistently with existing methods

o Adding arccos when you already have sin, cos, and arcsin
o Adding new implementation of an existing interface

e Look for a high power-to-weight ratio
o In other words, look for API that lets you do a lot with a little

17-214/514

“Perfection is achieved not when there is nothing more to
add, but when there is nothing left to take away.”

— Antoine de Saint-Exupéry, Airman’s Odyssey, 1942

17-214/514 63 [i

Example: generalizing an APl can make it smaller
Subrange operations on Vector - legacy List implementation

public class Vector {
public int (Object , int);
public int (Object , int);

}

e Not very powerful

O Supports only search operation, and only over certain ranges

e Hard to use without documentation

o What are the semantics of index? | don’t remember, and it isn’t obvious.

17-214/514 64 [i

Example: generalizing an API can make it smaller
Subrange operations on List

public interface List<T> {
List<T> subList(int fromIndex, int toIndex);

e Supports all List operations on all subranges
e Easy to use even without documentation

tttttttttttt

17-214/514 65 [i

Boilerplate Code

import org.w3c.dom.*; .
import java.io.*; » Generally done via cut-and-paste

import javax.xml.transform.*; ° Ugly, annoying’ and error-prone
import javax.xml.transform.dom.*;

import javax.xml.transform.stream.*;

/** DOM code to write an XML document to a specified output stream. */
static final void writeDoc(Document doc, OutputStream out) throws IOException{
try {
Transformer t = TransformerFactory.newInstance().newTransformer();
t.setOutputProperty(OutputkKeys.DOCTYPE_SYSTEM, doc.getDoctype().getSystemId());
t.transform(new DOMSource(doc), new StreamResult(out)); // Does actual writing
} catch(TransformerException e) {
throw new AssertionError(e); // Can’t happen!

}
}

17-214/514 66 sl

RESEARCH

Boilerplate Code

Generally created via cut-and-paste
Ugly, annoying, and error-prone

Sign of API not supporting common use cases directly

Consider creating APIs for most common use cases,
hiding internals

17-214/514 67 Lo

Principle: Make it easy to do what's common,
make it possible to do what's less so

e |[fit's hard to do common tasks, users get upset

® For common use cases
o Don’t make users think about obscure issues - provide reasonable defaults

o Don’t make users do multiple calls - provide a few
well-chosen convenience methods

o Don’t make user consult documentation
® For uncommon cases, it's OK to make users work more

e Don’t worry too much about truly rare cases
o It's OK if your APl doesn’t handle them, at least initially

17-214/514 68 [Jj i

Tradeoffs

How to balance

e Low conceptual weight
e Avoiding boilerplate code

?

17-214/514 69 Lo

Lecture summary (to be continued)

e APIs took off in the past thirty years, and gave us
super-powers

e Good APlIs are a blessing; bad ones, a curse

e API Design is hard

e Following an API design process greatly improves API
quality

e Most good principles for good design apply to APIs

o Don't adhere to them slavishly, but...
o Don't violate them without good reason

17'2 14/5 14 70 Sf :::::;For

SSSSSSSS
H

