
117-214/514

Principles of Software Construction:
Objects, Design, and Concurrency

Design for Robustness: Distributed
Systems

Christian Kästner Vincent Hellendoorn

217-214/514

Outline
● Intro to distributed systems
● Robustness and Failures
● Testing large/distributed systems

○ Mocks, Stubs

317-214/514

Where we are

Subtype
Polymorphism ✓

Information Hiding,
Contracts ✓

Immutability ✓

Types

Unit Testing ✓

Domain Analysis ✓

Inheritance & Del. ✓

Responsibility
Assignment,

Design Patterns,
Antipattern ✓

Promises/
Reactive P. ✓

Integration Testing ✓

GUI vs Core ✓

Frameworks and
Libraries ✓, APIs ✓

Module systems,
microservices

Testing for
Robustness

CI ✓, DevOps,
Teams

Design for

understanding

change/ext.

reuse

robustness

...

Small scale:
One/few objects

Mid scale:
Many objects

Large scale:
Subsystems

417-214/514

Recap: Designing for Robustness
● Single-threaded, local systems:

○ Problems are (usually) deterministic
○ Checked vs. unchecked exceptions

● Key ideas:
○ ???

517-214/514

Recap: Designing for Robustness
● Single-threaded, local systems:

○ Problems are (usually) deterministic
○ Checked vs. unchecked exceptions

● Key ideas:
○ Provide explicit control-flow for normal and abnormal execution

■ Error handling and recovery for the latter
○ Unit testing to increase confidence

■ Cover both typical and atypical/boundary paths

617-214/514

Recap: Designing for Robustness
● Concurrent, local systems:

○ Non-determinism from thread ordering, asynchronous returns
○ Errors can occur at any shared mutable state

● Key ideas:
○ ???

717-214/514

Recap: Designing for Robustness
● Concurrent, local systems:

○ Non-determinism from thread ordering, asynchronous returns
○ Errors can occur at any shared mutable state

● Key ideas:
○ Reduce mutable state

■ Use atomicity, synchronization everywhere else
○ Organize asynchrony with promises

■ Especially natural in a single-threaded environment

817-214/514

Designing for Robustness
● Key ideas:

○ Provide explicit control-flow for normal and abnormal execution
■ Error handling and recovery for the latter

○ Test normal and abnormal execution

917-214/514

Designing for Robustness
● Key ideas:

○ Provide explicit control-flow for normal and abnormal execution
■ Error handling and recovery for the latter

○ Test normal and abnormal execution
● Until now, most of the program was under our control

○ What if something goes wrong and it’s not our fault?
○ What if the system is too big to test?

1017-214/514

What is a distributed system?

“A distributed system is one in which the failure of a computer you
didn't even know existed can render your own computer unusable.”

-- Leslie Lamport

1117-214/514

What is a distributed system?
● Multiple system components (computers) communicating via

some medium (the network) to achieve some goal
● “Concurrent” (shared-memory multiprocessing) vs. Distributed

○ Agents: Threads vs. Processes

■ Processes typically spread across multiple computers

■ Can put them on one computer for testing

○ Communication: changes to Shared Objects vs. Network Messages

1217-214/514

Distributed systems

● A collection of autonomous systems working
together to form a single system
○ Enable scalability, availability, resiliency, performance,

etc …

1317-214/514

Designing for Robustness
● Concurrent, distributed systems:

○ Non-determinism risks almost everywhere
■ Left-pad gone? Better not rebuild your apps.
■ DB busy? Queries could time out.
■ Use any API? Prepare for down-time

○ Errors can occur at any external call
● Key ideas:

○ ???

1417-214/514

What will you do if
● An API your data plugin uses is temporarily down?

○ Or returns a surprising error code

1517-214/514

Retry!
● Maybe wait a bit.

○ How Long? How often?

1617-214/514

Retry!
● Exponential Backoff

○ Retry, but wait exponentially longer each time
○ Assumes that failures are exponentially distributed

■ E.g., a 10h outage is extremely rare, a 10s one not so crazy
○ E.g.:

const delay = retryCount => new Promise(resolve =>
setTimeout(resolve, 10 ** retryCount));

const getResource = async (retryCount = 0, lastError = null) => {
 if (retryCount > 5) throw new Error(lastError);
 try {
 return apiCall();
 } catch (e) {
 await delay(retryCount);
 return getResource(retryCount + 1, e);
 }
};

https://www.bayanbennett.com/posts/retrying-and-exponential-backoff-with-promises/

1717-214/514

Retry!
● Still need an exit-strategy

○ Learn HTTP response codes
■ Don’t bother retrying on a 403 (go find out why)

○ Use the API response, if any
■ Errors are often documented -- e.g., GitHub will send a “rate limit exceeded” message

const delay = retryCount => new Promise(resolve =>
setTimeout(resolve, 10 ** retryCount));

const getResource = async (retryCount = 0, lastError = null) => {
 if (retryCount > 5) throw new Error(lastError);
 try {
 return apiCall();
 } catch (e) {
 await delay(retryCount);
 return getResource(retryCount + 1, e);
 }
};

https://www.bayanbennett.com/posts/retrying-and-exponential-backoff-with-promises/

https://developer.mozilla.org/en-US/docs/Web/HTTP/Status

1817-214/514

Handling Recovery

● We need a fallback plan
○ Can’t just e.printStackTrace()
○ What can we do?

1917-214/514

Proxy Design Pattern
● Local representative for remote object

○ Create expensive obj on-demand
○ Control access to an object

● Hides extra “work” from client
○ Add extra error handling, caching
○ Uses indirection

https://refactoring.guru/design-patterns/proxy

2017-214/514

Example: Caching
interface FacebookAPI {

List<Node> getFriends(String name);
}
class FacebookProxy implements FacebookAPI {

FacebookAPI api;
HashMap<String,List<Node>> cache = new HashMap…
FacebookProxy(FacebookAPI api) { this.api=api;}

List<Node> getFriends(String name) {
result = cache.get(name);
if (result == null) {

result = api.getFriends(name);
cache.put(name, result);

}
return result;

}
}

2117-214/514

Example: Caching and Failover
interface FacebookAPI {

List<Node> getFriends(String name);
}
class FacebookProxy implements FacebookAPI {

FacebookAPI api;
HashMap<String,List<Node>> cache = new HashMap…
FacebookProxy(FacebookAPI api) { this.api=api;}

List<Node> getFriends(String name) {
try {

result = api.getFriends(name);
cache.put(name, result);
return result;

} catch (ConnectionException c) {
return cache.get(name);

}
}

2217-214/514

Example: Redirect to Local Service
interface FacebookAPI {

List<Node> getFriends(String name);
}
class FacebookProxy implements FacebookAPI {

FacebookAPI api;
FacebookAPI fallbackApi;
FacebookProxy(FacebookAPI api, FacebookAPI f) {

this.api=api; fallbackApi = f; }

List<Node> getFriends(String name) {
try {

return api.getFriends(name);
} catch (ConnectionException c) {

return fallbackApi.getFriends(name);
}

}

2317-214/514

Principle: Delegating Recovery

● We need a fallback plan
○ Can’t just e.printStackTrace()
○ What can we do?

● In case of failure, redirect
○ If at all plausible, hand work over to proxy

■ Local data(set), fallback service
○ If not, recruit clean-up service

■ Proces, display errors

2417-214/514

What will you do if
● An API your data plugin uses is temporarily down?

○ Or returns a surprising error code
● Consider caching

○ E.g., store last Twitter feed, Target shopping card offline
○ Not cheap, select caching mechanism carefully
○ If user-facing: be transparent about offline status

2517-214/514

What will you do if
● Your visualization plugin’s latest version has a vulnerability?

2617-214/514

Ever looked at NPM Install’s output?

2717-214/514

Ever looked at NPM Install’s output?

2817-214/514

Vulnerabilities in Distributed Systems
● A lot of software relies on vulnerable code somewhere deep

down
○ Often not disclosed/discovered for quite a while
○ By then, it could be everywhere

● What can you do?
○ Routinely check using tools (e.g. dependabot, CI is great)
○ Upgrade/downgrade where possible, ditch bad packages otherwise
○ Area of active research

2917-214/514

● Facebook withdraws its DNS routing information?

https://blog.cloudflare.com/october-2021-facebook-outage/

What will you do if

https://blog.cloudflare.com/october-2021-facebook-outage/

3017-214/514

Testing Distributed Systems
● Challenges:

○ Volatility
■ Real-world effects -- things crashing, delays.
■ Users are hard to simulate

○ Performance
■ Massive databases? Systems with minutes-long start-up times?
■ Very common in ML

3117-214/514

For example

● 3rd party Facebook apps
● Android user interface
● Backend uses Facebook data

3217-214/514

Testing in real environments
Code FacebookAndroid

client
void buttonClicked() {
 render(getFriends());
}
List<Friend> getFriends() {
 Connection c = http.getConnection();
 FacebookAPI api = new FacebookAPI(c);
 List<Node> persons = api.getFriends("john");
 for (Node person1 : persons) {
 ...
 }
 return result;
}

3317-214/514

Eliminating Android dependency
Code FacebookTest

driver
@Test void testGetFriends() {
 assert getFriends() == ...;
}
List<Friend> getFriends() {
 Connection c = http.getConnection();
 FacebookAPI api = new FacebookAPI(c);
 List<Node> persons = api.getFriends("john");
 for (Node person1 : persons) {
 ...
 }
 return result;
}

3417-214/514

That won’t quite work
● GUI applications process thousands of events

● Solution: automated GUI testing frameworks

○ Allow streams of GUI events to be captured, replayed

● These tools are sometimes called robots

3517-214/514

Eliminating Android dependency
Code FacebookTest

driver
@Test void testGetFriends() {
 assert getFriends() == ...;
}
List<Friend> getFriends() {
 Connection c = http.getConnection();
 FacebookAPI api = new FacebookAPI(c);
 List<Node> persons = api.getFriends("john");
 for (Node person1 : persons) {
 ...
 }
 return result;
}

How about this one?

3617-214/514

Test Doubles
● Stand in for a real object under test
● Elements on which the unit testing depends (i.e. collaborators),

but need to be approximated because they are
○ Unavailable
○ Expensive
○ Opaque
○ Non-deterministic

● Not just for distributed systems!

http://www.kickvick.com/celebrities-stunt-doubles

http://www.kickvick.com/celebrities-stunt-doubles

3717-214/514

How Test Doubles Help
1. Speed: simulate response without going through the API

class FakeFacebook implements FacebookInterface {
 void connect() {}
 List<Node> getFriends(String name) {
 if ("john".equals(name)) {
 List<Node> result=new List();

 result.add(…);
 return result;

 }
 }
}

3817-214/514

How Test Doubles Help
1. Speed: simulate response without going through the API
2. Stability: guaranteed deterministic return, reduces flakiness

class FakeFacebook implements FacebookInterface {
 void connect() {}
 List<Node> getFriends(String name) {
 if ("john".equals(name)) {
 List<Node> result=new List();

 result.add(…);
 return result;

 }
 }
}

3917-214/514

How Test Doubles Help
1. Speed: simulate response without going through the API
2. Stability: guaranteed deterministic return, reduces flakiness
3. Coverage: reliably simulate problems (e.g., return 404)

class FakeFacebook implements FacebookInterface {
 void connect() {}
 List<Node> getFriends(String name) {
 if ("john".equals(name)) {
 List<Node> result=new List();

 result.add(…);
 return result;

 }
 }
}

4017-214/514

How Test Doubles Help
1. Speed: simulate response without going through the API
2. Stability: guaranteed deterministic return, reduces flakiness
3. Coverage: reliably simulate problems (e.g., return 404)
4. Insight: expose internal state

class FakeFacebook implements FacebookInterface {
 void connect() {}
 List<Node> getFriends(String name) {
 if ("john".equals(name)) {
 List<Node> result=new List();

 result.add(…);
 return result;

 }
 }
}

4117-214/514

How Test Doubles Help
1. Speed: simulate response without going through the API
2. Stability: guaranteed deterministic return, reduces flakiness
3. Coverage: reliably simulate problems (e.g., return 404)
4. Insight: expose internal state
5. Development: presume functionality not yet implemented

class FakeFacebook implements FacebookInterface {
 void connect() {}
 List<Node> getFriends(String name) {
 if ("john".equals(name)) {
 List<Node> result=new List();

 result.add(…);
 return result;

 }
 }
}

4217-214/514

● Most often talk about Mocks and Stubs
○ Technically, a few other categories, see next slide

● Mocks give you a lot of power
○ Dictate what should be returned when (very broadly construed)
○ Requires framework using reflection

■ E.g., Mockito in Java; Mock functions in Jest*

● Stubs are way simpler; use when possible

*https://jestjs.io/docs/mock-functions

Types of Test Doubles

https://jestjs.io/docs/mock-functions

4317-214/514

Design Implications
● Think about testability when writing code
● When a mock may be appropriate, design for it
● Hide subsystems behind an interface
● Use factories, not constructors to instantiate
● Use appropriate tools

○ Dependency injection or mocking frameworks

4417-214/514

What will you do if
● Facebook withdraws its DNS routing information?

○ Fact-of-life: be prepared (test for this)
○ Reduce coupling; don’t let someone else’s outage cripple your program

■ Like separating your GUI from the backend

https://blog.cloudflare.com/october-2021-facebook-outage/

https://blog.cloudflare.com/october-2021-facebook-outage/

4517-214/514

Designing for Robustness
● As a client of distributed systems (mainly the Internet):

○ No harm trying again (redundancy)
○ Have a backup plan (resiliency)
○ Maintain awareness of what can go wrong (transparency)

■ HTTP status codes, API documentation, keeping tabs on vulnerabilities

4617-214/514

Designing for Robustness
● As a client of distributed systems (mainly the Internet):

○ No harm trying again (redundancy)
○ Have a backup plan (resiliency)
○ Maintain awareness of what can go wrong (transparency)

■ HTTP status codes, API documentation, keeping tabs on vulnerabilities
○ Isolation, isolation, isolation

■ Use test doubles liberally
■ Rely on protocols to contain and manage failures
■ Never let one module crash another

● More pointers coming up

4717-214/514

For Application Designers
Some considerations when contributing to the distributed system

4817-214/514

Why build a distributed system?

4917-214/514

Why build a distributed system?
● Unlimited scaling

○ Can be used for capacity or speed

● Geographical dispersion – people and data around the world
● Robustness to failures including physical catastrophes

???

5017-214/514

Why build a distributed system?
● Test Santorini all you want, it will die when I turn off my laptop

○ A local server is a Single Point of Failure
● Distributed systems offer robustness through redundancy,

duplication
○ Netflix famously unplugs random servers in production

5117-214/514

Measuring Robustness
● Reliability: works well

○ Often in terms of availability: fraction of time system is working
■ 99.999% available is "5 nines of availability"

● Performance: works fast
○ Low latency
○ High throughput

● Scalability: adapts well to increased demand
○ Ability to handle workload growth

5217-214/514

Robust Distributed System Design
● Consider reading:

https://www.reactivemanifesto.org

○ Yet another meaning for “Reactive”!
○ Short guide identifying key principles

■ Goals: robustness, resilience, flexibility
■ Principles: responsiveness, elasticity, message-driven
■ Patterns/Heuristics: isolation, delegation, verbosity, replication, asynchrony

https://www.reactivemanifesto.org

5317-214/514

Principle: Modular Protection
● Errors should be contained and isolated

○ A failing printer should not corrupt a document
○ Handle exceptions locally as much as possible, return useful feedback
○ Don’t do this:

5417-214/514

Principle: Modular Protection
● Online: use HTTP response status codes effectively

○ Don’t just hand out 404, 500
■ Unless they really apply

○ Provide and document fall-back options, information
■ Good RESTful design helps

5517-214/514

Principle: Delegating Recovery

(Again?)

● Don’t make a failing node/module serve a client
○ It needs to clean itself up
○ Forward clients to designated recovery service

■ A bit like the proxy pattern
○ Consider asynchrony

■ Failure is often expensive

5617-214/514

Principle: Consider Idempotence

● Idempotency: the same call from the same context should have
the same result
○ Hitting “Pay” twice should not cost you double!
○ A resource should not suddenly switch from JSON to XML
○ Makes APIs predictable, resilient

5717-214/514

Ensuring Idempotence

● Fairly easy for read-only requests
○ Ensure consistency of read-only data
○ Never attach side-effects to GET requests*

● Also for updates, deletes
○ Not “safe”, because data is mutated
○ Natural idempotency because the target is identified

● How about writing/sending new data?

*https://twitter.com/rombulow/status/990684463007907840

https://twitter.com/rombulow/status/990684463007907840

5817-214/514

Ensuring Idempotence
● How about writing/sending new data?

○ Could fail anywhere
■ Including in displaying success message after payment!

○ POST is not idempotent
○ Use Unique Identifiers
○ Server keeps track of

requests already handled

https://stripe.com/blog/idempotency

https://stripe.com/blog/idempotency

5917-214/514

Distributed Systems
There are entire courses on getting these right; not a goal here
But do:

● Understand challenges and solutions to achieving robustness
○ Primarily as a client of a distributed system (we all are these days)
○ Test for all scenarios, leveraging test doubles
○ Provide error handling through isolation

● Learn to communicate with, and provide your own, nodes
○ API design, last week
○ Microservices, next week

