
117-214/514

Principles of Software Construction:
Objects, Design, and Concurrency

A Quick Tour of all
23 GoF Design Patterns

Christian Kästner Vincent Hellendoorn

217-214/514

317-214/514

Where we are

Subtype
Polymorphism ✓

Information Hiding,
Contracts ✓

Immutability ✓

Types

Unit Testing ✓

Domain Analysis ✓

Inheritance & Del. ✓

Responsibility
Assignment,

Design Patterns,
Antipattern ✓

Promises/
Reactive P. ✓

Integration Testing ✓

GUI vs Core ✓

Frameworks and
Libraries ✓, APIs ✓

Module systems,
microservices ✓

Testing for
Robustness ✓

CI ✓, DevOps,
Teams

Design for

understanding

change/ext.

reuse

robustness

...

Small scale:
One/few objects

Mid scale:
Many objects

Large scale:
Subsystems

417-214/514

● Published 1994

● 23 Patterns

● Widely known

517-214/514

617-214/514

Warmup: Scenario
You are developing a mobile application for cities where users can
report potholes and similar problems (with photos) and city crews
can investigate, prioritize, and address reports.

Design problem 1: You want to create monthly reports. However
different cities want this report slightly differently, with different text
on top and sorted in different ways. You want to vary text and
sorting in different ways.

717-214/514

Our course so far
● Composite
● Strategy
● Template Method
● Iterator
● Proxy
● Adapter
● Decorator

● Observer
● Factory Method

Not in the book:

● Model view controller
● Promise
● Generator
● Module (JS)

817-214/514

Why?

● Seminal and canonical list of well-known patterns

● Not all patterns are commonly used

● Does not cover all popular patterns

● At least know where to look up when somebody
mentions the “Bridge pattern”

917-214/514

Grouping Patterns
I. Creational Patterns
II. Structural Patterns
III. Behavioral Patterns

1017-214/514

1117-214/514

Pattern Name
● Intent – the aim of this pattern

● Use case – a motivating example

● Key types – the types that define pattern

○ Italic type name indicates abstract class; typically this is an
interface when the pattern is used in Java

● Examples

1217-214/514

Illustration
● Code sample, diagram, or drawing

○ Time constraints make it impossible to include
illustrations from some patterns

1317-214/514

I. Creational Patterns

1. Abstract factory

2. Builder

3. Factory method

4. Prototype

5. Singleton

1417-214/514

1. Abstract Factory
● Intent – allow creation of families of related objects

independent of implementation
● Use case – look-and-feel in a GUI toolkit

○ Each L&F has its own windows, scrollbars, etc.

● Key types – Factory with methods to create each family
member, Products

● Not common in JDK / JavaScript

1517-214/514

Abstract Factory Illustration

Client
Window

PMWindow MotifWindow

PMScrollBar MotifScrollBar

ScrollBar

WidgetFactory
CreateWindow()
CreateScrollBar()

MotifWidgetFactory
CreateWindow()
CreateScrollBar()

PMWidgetFactory
CreateWindow()
CreateScrollBar()

1617-214/514

Builder Pattern

● Intent – separate construction of complex object from
representation so same creation process can create
different representations

● use case – converting rich text to various formats

● types – Builder, ConcreteBuilders, Director, Products

● StringBuilder (Java), DirectoryBuilder (HW2)

1717-214/514

Gof4 Builder
Illustration

https://refactoring.guru/design-patterns/builder

1817-214/514

Builder
Example

1917-214/514

Builder Code Example
NutritionFacts twoLiterDietCoke = new NutritionFacts.Builder(
 "Diet Coke", 240, 8).sodium(1).build();
public class NutritioanFacts {
 public static class Builder {
 public Builder(String name, int servingSize,
 int servingsPerContainer) { ... }
 public Builder totalFat(int val) { totalFat = val; }
 public Builder saturatedFat(int val) { satFat = val; }
 public Builder transFat(int val) { transFat = val; }
 public Builder cholesterol(int val) { cholesterol = val; }
 ... // 15 more setters
 public NutritionFacts build() {
 return new NutritionFacts(this);
 }
 }
 private NutritionFacts(Builder builder) { ... }
}

2017-214/514

Builder Discussion

● Emulates named parameters in languages that don’t
support them

● Emulates 2n constructors or factories with n builder
methods, by allowing them to be combined freely

● Cost is an intermediate (Builder) object

2117-214/514

Recall: Factory Method Pattern
● Intent – abstract creational method that lets subclasses decide which

class to instantiate

● Use case – creating documents in a framework

● Key types – Creator, which contains abstract method to create an
instance

● Java: Iterable.iterator()

● Related Static Factory pattern is very common
○ Technically not a GoF pattern, but close enough, e.g. Integer.valueOf(int)

2217-214/514

Factory Method Illustration
public interface Iterable<E> {
 public abstract Iterator<E> iterator();
}

public class ArrayList<E> implements List<E> {
 public Iterator<E> iterator() { ... }
 ...
}

public class HashSet<E> implements Set<E> {
 public Iterator<E> iterator() { ... }
 ...
}

2317-214/514

Static Factory Method Example
public DatabaseConnection {
 private DatabaseConnection(String address) { … }
 public static DatabaseConnection create

(String address) {
 //optional caching or checking…
 return new DatabaseConnection(address);
 }
}

c = new DatabaseConnection(“localhost”);
c = DatabaseConnection.create(“localhost”);

2417-214/514

Prototype Pattern
● Intent – create an object by cloning another

and tweaking as necessary
● Use case – writing a music score editor in a graphical

editor framework
● Key types – Prototype
● Java: Cloneable, but avoid (except on arrays)
● JavaScript: Builtin language feature

2517-214/514

Singleton Pattern
● Intent – ensuring a class has only one instance

● Use case – GoF say print queue, file system, company in
an accounting system
○ Compelling uses are rare but they do exist

● Key types – Singleton

● Java: java.lang.Runtime.getRuntime(),
 java.util.Collections.emptyList()

2617-214/514

Singleton Illustration
public class Elvis {
 private static final Elvis ELVIS = new Elvis();
 public static Elvis getInstance() { return ELVIS; }
 private Elvis() { }
 ...
}

const elvis = { … }
function getElvis() {

export { getElvis }

2717-214/514

Singleton Discussion
Singleton = global variable

No flexibility for change or extension

Tends to be overused

2817-214/514

II. Structural Patterns
1. Adapter

2. Bridge

3. Composite

4. Decorator

5. Façade

6. Flyweight

7. Proxy

2917-214/514

Recall: Adapter Pattern

● Intent – convert interface of a class into one that
another class requires, allowing interoperability

● Use case – numerous, e.g., arrays vs. collections

● Key types – Target, Adaptee, Adapter

● JDK – Arrays.asList(T[])

3017-214/514

Recall: The Adapter Design Pattern

https://refactoring.guru/design-patterns/adapter

3117-214/514

Recall: The Adapter
Design Pattern

Applicability
● You want to use an existing class,

and its interface does not match the
one you need

● You want to create a reusable class
that cooperates with unrelated
classes that don’t necessarily have
compatible interfaces

● You need to use several subclasses,
but it’s impractical to adapt their
interface by subclassing each one

Consequences
• Exposes the functionality of an object in

another form
• Unifies the interfaces of multiple

incompatible adaptee objects
• Lets a single adapter work with multiple

adaptees in a hierarchy
• -> Low coupling, high cohesion

3217-214/514

Adapter vs Strategy?

3317-214/514

2. Bridge

● Intent – decouple an abstraction from its
implementation so they can vary independently

● Use case – portable windowing toolkit

● Key types – Abstraction, Implementor

● Java: JDBC, Java Cryptography Extension (JCE),
Java Naming & Directory Interface (JNDI)

3417-214/514

Bridge is very similar to Adapter: In Bridge you define both the abstract
interface and the underlying implementation; you do not adapt to some
legacy or third-party code. The goal is to swap out implementations, not
to ensure compatibility after the fact.
In addition, abstraction and implementation can vary independently.

3517-214/514

Recall: Composite Pattern

● Intent – compose objects into tree structures. Let
clients treat primitives & compositions uniformly.

● Use case – GUI toolkit (widgets and containers)

● Key type – Component that represents both primitives
and their containers

● Java: javax.swing.JComponent

3617-214/514

Composite Illustration
public interface Expression {

 double eval(); // Returns value

 String toString(); // Returns infix expression string

}

public class UnaryOperationExpression implements Expression {

 public UnaryOperationExpression(

 UnaryOperator operator, Expression operand);

}

public class BinaryOperationExpression implements Expression {

 public BinaryOperationExpression(BinaryOperator operator,

 Expression operand1, Expression operand2);

}

public class NumberExpression implements Expression {

 public NumberExpression(double number);

}

3717-214/514

The Composite Design Pattern
● Applicability

○ You want to represent part-whole hierarchies
of objects

○ You want to be able to ignore the difference
between compositions of objects and
individual objects

● Consequences
○ Makes the client simple, since it can treat

objects and composites uniformly
○ Makes it easy to add new kinds of

components
○ Can make the design overly general

■ Operations may not make sense on
every class

■ Composites may contain only certain
components

3817-214/514

Recall: Decorator Pattern

● Intent – attach features to an object dynamically

● Use case – attaching borders in a GUI toolkit

● Key types – Component, implement by decorator and
decorated

● Java: Collections (e.g., Synchronized wrappers),
java.io streams, Swing components

3917-214/514

Decorator Illustration

4017-214/514

Decorator
One or multiple base classes
(same interface)

Any number of decorators

Adding decorators at runtime

Base decorator provides
default forwarding logic

No open recursion

4117-214/514

interface GameLogic {

isValidMove(w, x, y)

move(w, x, y)

}

class BasicGameLogic implements GameLogic {

constructor(board) { … }

isValidMove(w, x, y) { … }

move(w, x, y) { … }

}

class AbstractGodCardDecorator implements GameLogic {

readonly gl: GameLogic

constructor(gameLogic) { this.gl = gameLogic }

isValidMove(w, x, y} { return this.gl.isValidMove(w, x, y) }

move(w, x, y} { return this.gl.move(w, x, y) }

}

class PanDecorator extends AbstractGodCardDecorator implements GameLogic {

move(w, x, y} { /* this.gl.move(w, x, y) + checkWinner */ }

}

4217-214/514

Decorator vs Composite?

4317-214/514

Decorator vs Strategy?
interface GameLogic {

isValidMove(w, x, y)

move(w, x, y)

}

class BasicGameLogic

implements GameLogic { … }

class AbstractGodCardDecorator

implements GameLogic { … }

class PanDecorator

extends AbstractGodCardDecorator

implements GameLogic { … }

interface GameLogic {

isValidMove(w, x, y)

move(w, x, y)

}

class BasicGameLogic

implements GameLogic {

constructor(board) { … }

isValidMove(w, x, y) { … }

move(w, x, y) { … }

}

class PanDecorator

extends BasicGameLogic {

move(w, x, y} { /* super.move(w,

x, y) + checkWinner */ }

}

4417-214/514

Design Problem
You are developing a mobile application for cities where users can
report potholes and similar problems (with photos) and city crews
can investigate, prioritize, and address reports.

Design problem 2: City workers after inspecting a problem can
mark the problem as high priority, as delegated, or in several other
ways. Markers change how issues are shown (e.g., in reports).

4517-214/514

Design Problem
You are developing a mobile application for cities where users can
report potholes and similar problems (with photos) and city crews
can investigate, prioritize, and address reports.

Design problem 3: You want to group problems that are related into
a problem group with a new name, and those might be grouped
again, but still count them directly. Those groups should still show
up in reports and all scheduling activities.

4617-214/514

Façade Pattern
● Intent – provide a simple unified interface to a set of

interfaces in a subsystem
○ GoF allow for variants where the complex underpinnings are

exposed and hidden

● Use case – any complex system; GoF use compiler
● Key types – Façade (the simple unified interface)
● JDK – java.util.concurrent.Executors

4717-214/514

Façade Illustration
Façade

√√

√

√

√

√ √

Subsystem classes

4817-214/514

class SantoriniController {

newGame() { … }

isValidMove(w, x, y) { … }

move(w, x, y) { … }

getWinner() { … }

}

4917-214/514

Discussion
Facade vs Controller Heuristic

Same idea
Facade for subsystem, controller for use case

Facade vs Singleton
Facade sometimes a global variable
Typically little design for change/extension

5017-214/514

Flyweight Pattern
● Intent – use sharing to support large numbers

of fine-grained objects efficiently

● Use case – characters in a document

● Key types – Flyweight (instance-controlled!)
○ Some state can be extrinsic to reduce number of instances

● Java: String literals (JVM feature), Integer

● “Hash Consing” in functional programming

5117-214/514

Flyweight
Key idea: Avoid
copies of
structurally equal
objects, reuse
object

Requires
immutable objects
and factory with
caching

https://refactoring.guru/design-patterns/flyweight

5217-214/514

Proxy Pattern
● Intent – surrogate for another object

● Use case – delay loading of images till needed

● Key types – Subject, Proxy, RealSubject

● Gof mention several flavors
○ virtual proxy – stand-in that instantiates lazily
○ remote proxy – local representative for remote obj
○ protection proxy – denies some ops to some users
○ smart reference – does locking or ref. counting, e.g.

● JDK – RMI, collections wrappers

5317-214/514

Proxy Illustrations
Virtual Proxy

Smart Reference Remote Proxy

SynchronizedList ArrayList

aTextDocument
image anImage

data
in memory on disk

anImageProxy
fileName

Client

Proxy

Server

5417-214/514

Proxy Design Pattern
● Local representative for remote object

○ Create expensive obj on-demand
○ Control access to an object

● Hides extra “work” from client
○ Add extra error handling, caching
○ Uses indirection

https://refactoring.guru/design-patterns/proxy

5517-214/514

Proxy vs Adapter?

5617-214/514

Design Problem
You are developing a mobile application for cities where
users can report potholes and similar problems (with photos)
and city crews can investigate, prioritize, and address
reports.

Design problem 4: Some problems point to large pictures
stored in another database and you do not want to keep them
in memory, but load them only when needed.

5717-214/514

Design Problem
You are developing a mobile application for cities where
users can report potholes and similar problems (with photos)
and city crews can investigate, prioritize, and address
reports.

Design problem 5: The county has a different system that
records potholes in a different format. You want to include
them in your reports regardless.

5817-214/514

III. Behavioral Patterns
1. Chain of Responsibility
2. Command
3. Interpreter
4. Iterator
5. Mediator
6. Memento
7. Observer
8. State
9. Strategy

10. Template method
11. Visitor

5917-214/514

Chain of Responsibility Pattern
● Intent – avoid coupling sender to receiver by passing

request along until someone handles it
● Use case – context-sensitive help facility

● Key types – RequestHandler

● JDK – ClassLoader, Properties

● Exception handling could be considered a form of Chain of
Responsibility pattern

6017-214/514 https://refactoring.guru/design-patterns/chain-of-responsibility

https://refactoring.guru/design-patterns/chain-of-responsibility

6117-214/514

Command Pattern
● Intent – encapsulate a request as as an object, letting you

parameterize one action with another, queue or log requests, etc.

● Use case – menu tree

● Key type – Command (Runnable)

● JDK – Common! Executor framework, etc. -- see higher order function

● Is it Command pattern if you run it repeatedly? If it takes an argument?
Returns a val?

6217-214/514

Command Pattern

https://refactoring.guru/design-patterns/command

https://refactoring.guru/design-patterns/command

6317-214/514

Command Illustration
class ClickAction {

constructor(name) { this.name = name }

execute() { /* … update based on click event */ }

}

let c = new ClickAction("Restart Game")

getElementById("menu").addEventListener("click", c.execute)

getElementById("btn").addEventListener("click", c.execute)

setTimeout(c.execute, 2000)

Object (or function) represents an action, execution deferred, arguments possibly configured early.
Can be reused in multiple places. Can be queued, logged, ...

6417-214/514

Interpreter Pattern
● Intent – given a language, define class hierarchy for parse

tree, recursive method to interpret it
● Use case – regular expression matching

● Key types – Expression, NonterminalExpression,
TerminalExpression

● JDK – no uses I’m aware of

● Necessarily uses Composite pattern!

6517-214/514

● Intent – provide a way to access elements of a
collection without exposing representation

● Use case – collections

● Key types – Iterable, Iterator

○ But GoF discuss internal iteration, too

● Java and JavaScript: collections, for-each statement ..

Iterator Pattern

6617-214/514

Iterator Illustration
public interface Iterable<E> {
 public abstract Iterator<E> iterator();
}
public class ArrayList<E> implements List<E> {
 public Iterator<E> iterator() { ... }
 ...
}
public class HashSet<E> implements Set<E> {
 public Iterator<E> iterator() { ... }
 ...
}
Collection<String> c = ...;
for (String s : c) // Creates an Iterator appropriate to c
 System.out.println(s);

6717-214/514

Mediator Pattern
● Intent – define an object that encapsulates how a set of

objects interact, to reduce coupling.
○ 𝓞(n) couplings instead of 𝓞(n2)

● Use case – dialog box where change in one component
affects behavior of others

● Key types – Mediator, Components

● JDK – Unclear

6817-214/514

Mediator Illustration

6917-214/514

Single responsibility
at mediator

Coupling to single
component

God object?

https://refactoring.guru/design-patterns/mediator

https://refactoring.guru/design-patterns/mediator

7017-214/514

Memento Pattern

● Intent – without violating encapsulation, allow client to
capture an object’s state, and restore

● Use case – undo stack for operations that aren’t easily
undone, e.g., line-art editor

● Key type – Memento (opaque state object)

● JDK – none that I’m aware of (not serialization)

7117-214/514

Record snapshots of state

Avoid access to internal state

Allows undo

Consider using immutable
objects to begin with

https://refactoring.guru/design-patterns/memento

https://refactoring.guru/design-patterns/memento

7217-214/514

Observer Pattern

● Intent – let objects observe the behavior of other
objects so they can stay in sync

● Use case – multiple views of a data object in a GUI

● Key types – Subject (“Observable”), Observer

○ GoF are agnostic on many details!

● Examples: All GUIs

7317-214/514

Observer vs. Promise

7417-214/514

Observer vs. Decorator

7517-214/514

Observer vs Generator

7617-214/514

Design Problem
You are developing a mobile application for cities where
users can report potholes and similar problems (with photos)
and city crews can investigate, prioritize, and address
reports.

Design problem 6: Every time a report is resolved, one of
multiple actions should be taken (email, text message, …).
The action is selected by the person creating the report.

7717-214/514

Design Problem
You are developing a mobile application for cities where users can
report potholes and similar problems (with photos) and city crews
can investigate, prioritize, and address reports.

Design problem 7: Every time a report is resolved, multiple
follow-up actions should be performed. Results should be added to
a database, an email should be sent, a supervisor should be
informed, etc. More actions might be added later.

7817-214/514

Observer Characteristics
Inversion of control, remove direct dependency, reduce
coupling
Listen to events, multiple events
Multiple observers possible
Add and remove observers at runtime
Push model/event-based programming: Observable pushes
events to observer

7917-214/514

State Pattern

● Intent – allow an object to alter its behavior when
internal state changes. “Object will appear to change
class.”

● Use case – TCP Connection (which is stateful)

● Key type – State (Object delegates to state!)

● JDK: none that I’m aware of, but easy to use

8017-214/514

State Example

class Connection {

 boolean isOpen = false;
 void open() {

 if (isOpen) throw new Inval…

 …//open connection

 isOpen=true;

 }

 void close() {

 if (!isOpen) throw new Inval…

 …//close connection

 isOpen=false;

 }

}

class Connection {

 private State state = new Closed();

 public void setState(State s) { … }

 void open() { state.open(this); }

 …

}

interface State {

 void open(Connection c);

 void close(Connection c);

}

class Open implements State {

 void open(Connection c) { throw …}

 void close(Connection c) {

 //…close connection

 c.setState(new Closed());

 }

}

class Closed impl. State { … }

Without the pattern:

With the pattern:

8117-214/514

Strategy Pattern

● Intent – represent a behavior that parameterizes an
algorithm for behavior or performance

● Use case – line-breaking for text compositing

● Key types – Strategy

● JDK – Comparator

8217-214/514

Observer vs. Strategy

8317-214/514

Command vs. Strategy

Very similar structure, but different intentions: Command is reusable, delayed function; strategy configures
part of algorithm

8417-214/514

Template Method Pattern

● Intent – define skeleton of an algorithm or data
structure, deferring some decisions to subclasses

● Use case – application framework that lets plugins
implement all operations on documents

● Key types – AbstractClass, ConcreteClass

● JDK – skeletal collection impls (e.g., AbstractList)

8517-214/514

Strategy vs Template Method

8617-214/514

Strategy vs Template Method
Delegation vs inheritance; context ~~ template method

Template method: Single variation point, configured with
constructor call

Strategy: Possibly multiple variation points in context,
configured during constructor or dynamically later

8717-214/514

Visitor Pattern
● Intent – represent an operation to be performed on elements of

an object structure (e.g., a parse tree). Visitor lets you define a
new operation without modifying the type hierarchy.

● Use case – type-checking, pretty-printing, etc.

● Key types – Visitor, ConcreteVisitors, all the element types that
get visited

● JDK – SimpleFileVisitor; AnnotationValueVisitor; very common
in compilers

8817-214/514

Visitor Pattern Discussion
Double dispatch

Add new operations (like Command pattern)

Iterate over object structure (like Iterator pattern)

Provide object-specific visit methods to avoid dynamic type lookup

Most commonly used in context of compilers and other operations
on trees

Different versions exist

8917-214/514

Bonus: Other Design Principles

9017-214/514

Where we are

Subtype
Polymorphism ✓

Information Hiding,
Contracts ✓

Immutability ✓

Types

Unit Testing ✓

Domain Analysis ✓

Inheritance & Del.
✓

Responsibility
Assignment,

Design Patterns,
Antipattern ✓

Promises/
Reactive P. ✓

Integration Testing ✓

GUI vs Core ✓

Frameworks and
Libraries ✓, APIs ✓

Module systems,
microservices ✓

Testing for
Robustness ✓

CI ✓, DevOps,
Teams

Design for

understanding

change/ext.

reuse

robustness

...

Small scale:
One/few objects

Mid scale:
Many objects

Large scale:
Subsystems

9117-214/514

SOLID Principles
Single-responsibility principle: Every class should have only one responsibility
-- cohesion; low coupling; information expert

The Open–closed principle: "Software entities ... should be open for extension,
but closed for modification." -- encapsulation

Liskov substitution principle: Program against interface, even with subclassing

Interface segregation principle: Prefer specific small interfaces; multiple
interfaces per object okay; cohesion

Dependency inversion principle: "Depend upon abstractions, [not]
concretions." -- prefer interfaces over class types; dynamic dispatch

9217-214/514

Other Common Principles
DRY Principle: Don't Repeat Yourself

KISS Principle: Keep It Simple, Stupid

YAGNI Principle: You Aren't Gonna Need It

Principle of Least Astonishment

Boy Scout Rule: Leave the Code Cleaner than you
Found it

9317-214/514

Summary
● Now you know all the Gang of Four patterns
● Definitions can be vague
● Coverage is incomplete
● But they’re extremely valuable

○ They gave us a vocabulary
○ And a way of thinking about software

● Look for patterns as you read and write software
○ GoF, non-GoF, and undiscovered

