Principles of Software Construction:
Objects, Design, and Concurrency

The Last One:
Locking Back & Looking Forward

Christian Kastner Vincent Hellendoorn

Carnegie Mellon University
School of Computer Science

institute for
I S SOFTWARE
RESEARCH

17-214/514 1 [s

Looking Back at the Semester:
194 slides from 23 lectures in 40 min

17-214/514 2 [|g s

RRRRRRRR

Principles of Software Construction:
Objects, Design, and Concurrency

Introduction, Overview, and Syllabus

Christian Kastner Vincent Hellendoorn

Carnegie Mellon University
School of Computer Science

institute for
I S SOFTWARE
RESEARCH

17-214/514 | S

RRRRRRRR

Welcome to the era of "big code”

Software Size (million Lines of Code)

Moder High-end Car | ——

Facebook

Windows Vista

Large Hadron Collider
Boeing 787

Android

Google Chrome
Linux Kernel 2.6.0
Mars Curiosity Rover
Hubble Space Telescope
F-22 Raptor

Space Shuttle

17-214/514

10

20

30

40

50

60

70

80

90

100

(informal reports)

4 i

institute for
SOFTWARE
RESEARCH

Modern Software Engineering

Nobody wants to write a million lines of code.

e Instead, you use libraries
o E.g., import Android => +12M LOC
o You don’t write most of the code you use

[And why would you want to?
e And your libraries use libraries
o Et cetera
o https://npm.anvaka.com/#/view/2d/gatsb

17-214/514

https://npm.anvaka.com/#/view/2d/gatsby

From Programs to Applications and

Systems
Writing algorithms, data

structures from scratch

Functions with inputs
and outputs

Sequential and local computa

Full functional specifications

—

—
o
—

Reuse of libraries,
frameworks

Asynchronous and
reactive designs

Parallel and distributed
computation

Partial, composable,
targeted models

Our goal: understanding both the building blocks and also the

17014 design principles for construction of software systems at scale

-

o

User needs

~

(Requirements)

Miracle?

/

17-214/514

o

Code

Maintainable?

Testable?
Extensible?
Scalable?
Robust? ...

Semester overview

e Introduction to Object-Oriented
Programming
e Introduction to design
o Design goals, principles, patterns
e Designing objects/classes
o Design for change
o Design for reuse
e Designing (sub)systems
o Design for robustness
o Design for change (cont.)

e Design for large-scale reuse

17-214/514

Crosscutting topics:

Building on libraries and frameworks
Building libraries and frameworks
Modern development tools: IDEs,
version control, refactoring, build
and test automation, static analysis
Testing, testing, testing
Concurrency basics

Which version is better?

Version A:

static void sort(int[] list, boolean ascending) {

boolean mustSwap; interface Order {
if (ascending) { boolean lessThan(int i1, int j);
mustSwap = list[i] > 119}
} else { class AscendingOrder implements Order {
mustSwap = list[i] < lid public boolean lessThan(int i, int j) { return i1 < j; .
} }
. class DescendingOrder implements Order {
} public boolean lessThan(int i, int j) { return 1 > j;
}

static void sort(int[] list, Order order) {

Version B': boolean mustSwap =
order.lessThan(list[j], list[i]);

17-214/514

It depends

Depends on what? In this specific case, what
What are scenarios? would you recommend?
What are tradeoffs? (Engineering judgement)

17‘2 14/5 14 10 Sr institute for

SSSSSSSS
RRRRRRRR

Some qualities of interest, i.e., design goals

Functional
correctness

Adherence of implementation to the specifications

Robustness
Flexibility
Reusability
Efficiency
Scalability

Security

17-214/514

Ability to handle anomalous events

Ability to accommodate changes in specifications

Ability to be reused in another application

Satisfaction of speed and storage requirements

Ability to serve as the basis of a larger version of the application

Level of consideration of application security

Source: Braude, Bernstein,
Software Engineering. Wiley
2011

SENIOR CENTER
SENIOR LENTER

WEAR A MASK
WASH YOUR HANDS
SOCIAL DISTANCE

STAY SAFE

Trying to get back to normal with ...
gestures widely™ everything

Talk to us about concerns and
accommodations

Disclaimer:

This semester, we are changing a
lot in this course.

Some things will go wrong.

Have patience with us.

.| Give us feedback.

P

LY o’ CC BY-NC-ND 2.0 Suzanne Hamilton

Principles of Software Construction
(Design for change, class level)

Starting with Objects
(dynamic dispatch, encapsulation)

Christian Kastner Vincent Hellendoorn

“arnegie Mellon University
School of Computer Science

institute for
I S SOFTWARE
RESEARCH

17-214/514 14 [s

Where we are

Design for
understanding
change/ext.
reuse

robustness

17-214/514

Small scale: Mid scale: Large scale:
One/few objects Many objects Subsystems
Subtype Domain Analysis v GUI vs Core v

Polymorphism v

Information Hiding,
Contracts v

Immutability v

Types v
Static Analysis v/

Unit Testing v/

Inheritance & Del. v

Responsibility
Assignment,
Design Patterns,
Antipattern v

Promises/
Reactive P. v

Integration Testing v/

Frameworks and
Libraries v, APIs v

Module systems,
microservices v/

Testing for
Robustness v

Cl v, DevOps v,
Teams

Today: How Objects
Respond to Messages

d:Drawing / /

d
shapes:Shape[]

draw(Canvas)

17-214/514

sO:Square

X, Y, W, h:int

draw(Canvas)
move(int, int)

sl:Line

from, to:Point

draw(Canvas)
move(int, int)
getLength()

nstitute for
SSSSSSSS
RRRRRRRR

Interface declared explicitly with TypeScript

interface Counter {

v must be part of the
v: number; interface in TypeScript.
inc(): void; Ways to avoid this later.

get(): number;
add(y: number): number;

}

const obj: Counter = { The object assigned to
ve 1 obj must have all the
° 3

. . . same methods as the
inc: function() { this.v++; }, interface.

get: function() { return this.v; },
add: function(y) { return this.v + y; }

}
obj.foo();

Multiple Implementations of Interface

interface Point { X
int getX();
int getY();

}
class PolarPoint implements Point {
double len, angle;
PolarPoint(double len, double angle)
{this.len=1len; this.angle=angle;}
int getX() { return this.len * cos(this.angle);}

int getY() { return this.len * sin(this.angle); }
double getAngle() {..}

}
\Point p = new PolarPoint(5, .245);

17-214/514

How to hide information?

class CartesianPoint { const point = {
int x,y; x: 1, y: 0,
(int x, int y) { getX: function() {..}
this.x=x; helper_getAngle:
: this.y=y; function() {..}
int () { return this.x; }
int () { return this.y; }
int OF

17-214/514 19 [B s

RRRRRRRR

Principles of Software Construction:
Objects, Design, and Concurrency

IDEs, Build system, Continuous
Integration, Libraries

Christian Kastner Vincent Hellendoorn

Carnegie Mellon University
School of Computer Science

institute for
I S SOFTWARE
RESEARCH

17-214/514 20 [s

RRRRRRRR

Where we are

Design for
understanding
change/ext.
reuse

robustness

17-214/514

Small scale: Mid scale: Large scale:
One/few objects Many objects Subsystems
Subtype Domain Analysis v GUI vs Core v

Polymorphism v

Information Hiding,
Contracts v

Immutability v

Types v
Static Analysis v/

Unit Testing v/

Inheritance & Del. v

Responsibility
Assignment,
Design Patterns,
Antipattern v

Promises/
Reactive P. v

Integration Testing v/

Frameworks and
Libraries v, APIs v

Module systems,
microservices v/

Testing for
Robustness v

Cl v, DevOps v,
Teams

IDESs

Automate common programming actions:

e Handy refactorings, suggestions
o E.qg., just press alt+enter in Intellid while highlighting nearly

any code
m Keyboard shortcuts are super useful: explore your IDE!
O -;:blic final class Main E I - I Eﬂ I()t ()f

private Main() {
// Disable instantiating this class.
- throw new UnsupportedUperationExceptionEZ;

} =" Add runtime exception(s) to method signature >
‘ Press Ctrl+Shift+| to open preview
public static void main(String[] args) throws ruexceptron {
// TODO: set up options, extract command line arguments, fill in the relevant obje(
CardStore cards = new CardLoader().loadCardsFromFile(new File(pathname: "cards/desic

17-214/514 22 sl

RESEARCH

Build Systems

e These days: intricately tied with IDEs, package managers

e Projects often come with a build config file or two

o ‘pom.xml’ for Maven
o ‘tsconfig.json’ + ‘package.json’ for TypeScript+NPM -- the second deals with
packages

o These can be nested, one per (sub-)directory, to cq

m On GitHub, you can create links across repositories
o Specifies:
m Compilation source and target version
m High-level configuration options
m Targets for various phases in development
e ‘lifecycle” in Maven; e.g. ‘compile’, ‘test’, ‘deploy’
m Often involving plugins
m Dependencies with versions

17-214/514

e Not shown: in package.json

O 0 N OO0 T B W N BB

,_
()

,_
=

"compilerOptions": {
"target": "es2016",
"module": "commonjs",
"sourceMap": true,
"strict": true,
"esModulelInterop": true,
"moduleResolution”: "node",

"outDir": "dist"

te for

— WARE
lﬂ. RESEARCH

Continuous integration — Travi

@ Build #17 - wyvernla. x ___

€« C A @ https;//travis-ci.org/wyve

Automatically builds, test|
and displays the result wyveang e, ©

ent Branche B Jistc Pull Request Builc

M v wyvernlang/wyverr 17 o SimpleWyvern-devel Asserting false (works on Linux, so its O

Build system information

$ git clone --depth=5@ --branch=SimpleWyvern-devel
$ jdk_switcher use oraclejdk8

$ java -Xmx32m -version

java version "1.8.@_31"
Java(TM) SE Runtime Environment (build 1.8.6_31-b13)

Java HotSpot(TM) 64-Bit Server VM (build 25.31-b@7, mixed mode)
$ javac -J-Xmx32m -version

javac 1.8.@_31

$ cd tools

Thy d "cd tools” ited with @.
17-214/514 : :nzo:lel:: cd tools” exited wi

Remove Log Download Log

Using worker: worker-1linux-827f@490-1.bb.travis-ci.org:travis-linux-2

git.checkout

Switching to Oracle JDK8 (java-8-oracle), JAVA_HOME will be set to /usr/lib/jvm/java-8-oracle

HW1: Extending the Flash Card System

17-214/514 25 [v

RRRRRRRR

Principles of Software Construction:
Objects, Design, and Concurrency

Specifications and unit testing,
exceptions

Christian Kastner Vincent Hellendoorn

Carnegie Mellon University
School of Computer Science

institute for
I S SOFTWARE
RESEARCH

17-214/514 26 [

Where we are

Design for
understanding
change/ext.
reuse

robustness

17-214/514

Small scale: Mid scale: Large scale:
One/few objects Many objects Subsystems
Subtype Domain Analysis v GUI vs Core v

Polymorphism v

Information Hiding,
Contracts v

Immutability v

Types v
Static Analysis v/

Unit Testing v

Inheritance & Del. v

Responsibility
Assignment,
Design Patterns,
Antipattern v

Promises/
Reactive P. v

Integration Testing v/

Frameworks and

Libraries v, APIs v

Module systems,
microservices v/

Testing for
Robustness v

Cl v, DevOps v,
Teams

institut r
SSSSSSSS
RRRRRRRR

Handling Exceptions

17-214/514

String read(String path) {

}

try {
return Files.lines(Path.of(path))

.collect(Collectors.joining(“\n”));

}
catch (IOException e) {

// implement fall-back behavior.
}

Testing

How do we kn¢
this works?

Testing

Are we done?

17-214/514

int isPos(int x) {
return x >= 0; // What i1f?
}

@Test
void testlIsPos() {
assertTrue(isPos(1));

}

@Test
void testO@IsNotPos() {
assertFalse(isPos(0)); // Fails

}

Docstring Specification

class RepeatingCardOrganizer {

/**
* Checks if the provided card has been answered correctly the required
number of times.
* @param card The {@link CardStatus} object to check.
* @return {@code true} if this card has been answered correctly at least
{@code this.repetitions} times.
*/
public boolean isComplete(CardStatus card) {
// IGNORE THIS WHEN SPECIFICATION TESTING!
}
}

17-214/514 30 Lo

Principles of Software Construction:
Objects, Design, and Concurrency

Test case design

Christian Kastner Vincent Hellendoorn

Carnegie Mellon University
School of Computer Science

institute for
I S SOFTWARE
RESEARCH

17-214/514 31 [

Where we are

Design for
understanding
change/ext.
reuse

robustness

17-214/514

Small scale: Mid scale: Large scale:
One/few objects Many objects Subsystems
Subtype Domain Analysis v GUI vs Core v

Polymorphism v

Information Hiding,
Contracts v

Immutability v

Types v
Static Analysis v/

Unit Testing v

Inheritance & Del. v

Responsibility
Assignment,
Design Patterns,
Antipattern v

Promises/
Reactive P. v

Integration Testing v/

Frameworks and

Libraries v, APIs v

Module systems,
microservices v/

Testing for
Robustness v

Cl v, DevOps v,
Teams

nstitute for
SSSSSSSS
RRRRRRRR

CreditWallet.pay()

public boolean pay(int cost, boolean useCredit) {
if (useCredit) {
if (enoughCredit) {
return true;
}
}

Enough [Enoug
Credit Coverage
if (enoughCash) { .M

return true;

) Pass
; return false; 2 =) n Pass B
3 F - F Fails Statement

17-214/514 33 [s

Structures in Code

® ®
®
®
® L]
sequence If .. then If .. then .. else
9
o
Do .. While While .. Do Switch

17-214/514 34 [

Writing Testable Code

Aim to write easily testable code

e \Which is almost by definition more modular

public List<String> getlLines(String path) throws IOException {
return Files.readAllLines(Path.of(path));
}

public boolean hasHeader(List<String> lines) {
return !lines.get(0).isEmpty()
}

// Test:
// - hasHeader with empty, non-empty first line
// - getLines (if you must) with null, real path

17-214/514 35 Lo

Boundary Value Testing

We need a strategy to identify plausible mistakes

e Boundary Value Testing: errors often occur at boundary conditions

o Select: a nominal/normal case, a boundary value, and an abnormal case
o Useful for few categories of behavior (e.g., null/not-null) per value

e Test:cost < credit, cost == credit, cost > credit,
cost < cash, cost == cash, cost > cash

/** Pays with credit if useCredit is set and enough
* credit is available; otherwise, pays with cash if

v
public boolean pay(int cost, boolean useCredit);

* enough cash is available; otherwise, returns false.

17-214/514

o
institute for
| S SOFTWARE
RESEARCH

HW 2: Testing the Flash Card System

17-214/514 37 [s

RRRRRRRR

Principles of Software Construction:
Objects, Design, and Concurrency

Object-oriented analysis

Christian Kastner Vincent Hellendoorn

glﬂrm‘gic Mellon University
School of Computer Science
. . .
institute for
I S SOFTWARE
RESEARCH

17-214/514 38 [[f

Where we are

Design for
understanding
change/ext.
reuse

robustness

17-214/514

Small scale: Mid scale: Large scale:
One/few objects Many objects Subsystems
Subtype Domain Analysis v GUI vs Core v

Polymorphism v

Information Hiding,
Contracts v

Immutability v

Types v
Static Analysis v/

Unit Testing v/

Inheritance & Del. v

Responsibility
Assignment,
Design Patterns,
Antipattern v

Promises/
Reactive P. v

Integration Testing v/

Frameworks and

Libraries v, APIs v

Module systems,
microservices v/

Testing for
Robustness v

Cl v, DevOps v,
Teams

nstitute for
SSSSSSSS
RRRRRRRR

Lufthansa Flight 2904

e The Airbus A320-200
airplane has a
software-based braking
system

e Engaging reverse thrusters
while in the air is very
dangerous: Only allow
breaking when on the
ground

40 0 insitute
17-214/514 40 [s

SSSSSSSS
H

Solution
Space

Problem
Space I

: (Domain \ (Object Model) |
\/
e Real-world concepts e System implementation
e Requirements, Concepts e (lasses, objects
e Relationships among concepts e References among objects and
e Solving a problem inheritance hierarchies
e Building a vocabulary e Computing a result

e Finding a solution
17-214/514 a1 [s

RRRRRRRR

An object-oriented design process

—

Model / diagram the problem, define concepts

e Domain model (a.k.a. conceptual model), glossary OO Analysis:
Define system behaviors - Understanding
e System sequence diagram the problem

e System behavioral contracts

J \

Assign object responsibilities, define interactions

e Object interaction diagrams OO Design:
Model / diagram a potential solution - Defining d
e Object model solution

17'2 14/5 14 42 Sf ms:tuteior

SSSSSSSS

Visual notation: UML

Name of
real-world
concept

(not software class)

Properties
of concept

17-214/514

Library Account

accountlD
lateFees

Book
borrow title
1 * | author
Associations
between Multiplicities/cardinalities
concepts indicate “how many”

o
institute for
4 3 SOFTWARE
RESEARCH

One domain model for the library system
I

l
L\me——’“\b hag man I;:?
©n (<8 100(
\{’/w_——’——_‘} ‘a+(F€<
i . s a

6. %] AMDJW

.
\\M o e
\ \03 M_N\\)e‘/_ S5 ecdl T

17-214/514 a4 | s

RRRRRRRR

UML Sequence Diagram Notation

User System
login(card)
>
<. _________________
borrow(book)
-

success?, due date

17-214/514

\

Actors in this
use case
(systems and
real-world
objects/people)

Time proceeds
from top to
bottom

Messages and
responses for
interactions,

text describes what
happens conceptually

o
4 5 institute for
SOFTWARE
RESEARCH

UML Sequence Diagram Notation

User System
login(card)
>
<. _________________
borrow(book)
-

success?, due date

17-214/514

\

Actors in this
use case
(systems and
real-world
objects/people)

Time proceeds
from top to
bottom

Messages and
responses for
interactions,

text describes what
happens conceptually

o
4 6 institute for
SOFTWARE
RESEARCH

Formalize system at boundary

A system behavioral contract /
describes the pre-conditions and i o
post-conditions for some operation "™

identified in the system sequence >
diagrams %,@,N#”N

| “Libear
i [

o System-level textual specifications,
like software specifications

17-214/514

Principles of Software Construction:
Objects, Design, and Concurrency

Assigning Responsibilities

Christian Kastner Vincent Hellendoorn

gl; lllllll gie Mellon University
School of Computer Science
. . .
institute for
I S SOFTWARE
RESEARCH

17-214/514

Where we are

Design for
understanding
change/ext.
reuse

robustness

17-214/514

Small scale: Mid scale: Large scale:
One/few objects Many objects Subsystems
Subtype Domain Analysis v GUI vs Core v

Polymorphism v

Information Hiding,
Contracts v

Immutability v

Types v
Static Analysis v/

Unit Testing v/

Inheritance & Del. v

Responsibility
Assignment,
Design Patterns,
Antipattern v

Promises/
Reactive P. v

Integration Testing v/

Frameworks and

Libraries v, APIs v

Module systems,
microservices v/

Testing for
Robustness v

Cl v, DevOps v,
Teams

institut r
SSSSSSSS
RRRRRRRR

Object Diagrams

Objects/classes with
fields and methods

Interfaces with
methods

Associations,
visibility, types

17-214/514

—
L ”C)(<F7 §7ﬂlcr"\ {~

- C‘Arf\d* S“Sl\oﬂ‘ Lf‘)ﬁ(‘y A(m«r\‘\'

+ login Memker{ ey Cedl ke
+ bocrow (Them ¢ L‘Lrﬁr\/nm)
+)og,ou'\- f‘\em\zef‘()

& poflete Fee [corls: k)

LS
L;L“‘?WAc(mﬁ}’

—~bo ﬁ'ow\r‘\'ﬂ\g

0%

B ,;L“ (crd Number: '\"*
- L\rshv ane 1 gsm\,a/

~ JasHNeoe = St

— lade Foes Owal I\{ﬁ_

5,Q,+ F)\r ﬁ'Nu\ (_) 4 S‘}y‘r

~ o Per(od
- late Fee

—dueD«‘)‘(v Dade
~ felurred © Date

+ éasgaah Pobuned): beokesy

+ 1§ Overdlue (correntDie: Dife)
. \ book<n

SSSSSSSS
H

always start with
an initial method

(ajfnmcm\h((l"i"""yc“‘d\ 5 ‘3 fl

(!{brqr7 (.ch 1d anlzef‘\

rériew Acconcst
i
GCCM‘\' i
[
et Cutresst (ess '}lﬂ(“C(M‘\Jr\ i
E—— - s -7 1
&-- - -] |

17-214/514

Doing and Knowing Responsibilities

Responsibilities are related to the obligations of an object in terms of its
behavior.
Doing responsibilities of an object include:
» doing something itself, such as creating an object or doing a calculation
 initiating action in other objects
« controlling and coordinating activities in other objects
Knowing responsibilities of an object include:

o knowing about private encapsulated data
» knowing about related objects
o knowing about things it can derive or calculate

17-214/514

Low Representational Gap

|dentified concepts provide inspiration for classes in the implementation

Classes mirroring domain concepts often
intuitive to understand, rarely change
(low representational gap)

Library Account

accountlD
lateFees

borrow

Book

17-214/514

*

title
author

class LibraryDatabase {

Map<Int, List<Int>>
borrowedBookIds;
Map<Int, Int> lateFees;
Map<Int, String>
bookTitles;
}

class DatabaseRow { .. }

class Shipment {
private List<Box> boxes;
int getWeight() {
int w=0;
for (Box box: boxes)
for (Item item: box.getItems())
w += item.weight;
return w;

Which classes are coupled?
How can coupling be improved?

}

class Box {

private List<Item> items;

Iterable<Item> getItems() { return items;}
}
class Item {

Box containedIn;

int weight;

x

: Student : System
login(id)
checkout(bookid) :

(_________________ d_u_e__c_l_a_t_e______________________E
logout() :
IR receipt |

17-214/514

CheckoutController

login(id: Int)
checkout(bid: Int)
logout()

RRRRRRRR

| class Chat {

Antl_Pattern List<String> channels;
GOd ObJeCt Map<String, List<Msg>> messages;

Map<String, String> accounts;

class Chat { Set<String> bannedUsers;
Content content;

AccountMgr accounts;

File logFile;

File logFile; File bannedWords;
ConnectionMgr conns; URL serverAddress;

ilass ChatUT { Map<String, Int> globalSettings;
Chat chat: Map<String, Int> userSettings;
Widget sendButton, ..; Map<String, Graphic> smileys;

} CryptStrategy encryption;

class AccountMgr {

. acounts, bannedUsr.. Widget sendButton, messagelist;

}

17-29

Information Expert ->
"Do It Myself Strategy”

Expert usually leads to designs where a software object
does those operations that are normally done to the
iInanimate real-world thing it represents

o a sale does not tell you its total; it is an inanimate thing

In OO design, all software objects are "alive" or "animated,”
and they can take on responsibilities and do things.

They do things related to the information they know.

17-214/514 57 Lo

Creator: Discussion of Design
Goals/Principles

Promotes low coupling, high cohesion

e class responsible for creating objects it needs to reference

e creating the objects themselves avoids depending on another class to create the object
Promotes evolvability (design for change)

e Object creation is hidden, can be replaced locally

Contra: sometimes objects must be created in special ways
e complex initialization
e instantiate different classes in different circumstances

e then cohesion suggests putting creation in a different object. see design patterns such as
builder, factory method

17-214/514 58 sl

RESEARCH

HW3: Santorini (Base game)

. HowToPlay |

Players take turns, starting with the Start Player, who first If one of your Workers moves
placed their Workers. On your turn, select one of your up on top of level 3 during
Workers. You must move and then build with the selected your turn, you instantly

Video Tulotiqls More of a visual learner? We've got
you covered! Head over to roxley.com/santorini-video
for video tutorials on how to play, as well as complete

visual demonstrations of all God Powers! Worker. win!
Sqnlorini App Can't decide which God Powers to Move your selected Q*& (2] :;?ﬁ m i:fmu':a
match up? Head over to Google Play Store or the Apple Worker into one of the (up \‘ & e s unabyl:
| App Store and download the Santorini App absolutely to) eight leIi)mng L" - < - ! lz:e
free. Complete with video tutorials, match randomizer spaces <G> you lose.

and much more! A Worker may move up a maximum of one level higher,
move down any number of levels
lower, or move along the same
level. A Worker may not move up

more than one level

\ Place the smaller side of the Cliff Pedestal {J) on
the Ocean Board), using the long and short
tabs on the Cliff Pedestal to guide assembly.

0\ Place the Island Board @ on top of the Cliff
Pedestal {J), again using the long and short tabs

18 X Domel] (22 X dewel) |15 X lovel2 14 X level 3

to guide assembly. a\
o‘ The youngest player is the Start Player, who The space your Worker moves into must be unoccupied
) begins by placing 2 Workers 0 S thosen (not containing a Worker or Dome).

color into any unoccupied spaces on the board. b -

The other player(s) then places their Workers (3. Build, ablock &) or ‘

| IX cugg Pedestal W

dome (4.) on an unoccupied
space neighboring the moved =

— <
% .‘\‘m - Worker. AN

institute for
SOFTWARE
RESEARCH

Principles of Software Construction:
Objects, Design, and Concurrency

Design Patterns

Christian Kastner Vincent Hellendoorn

Carnegie Mellon University
School of Computer Science

institute for
I S SOFTWARE
RESEARCH

17-214/514 60 [If s

Where we are

Design for
understanding
change/ext.
reuse

robustness

17-214/514

Small scale: Mid scale: Large scale:
One/few objects Many objects Subsystems
Subtype Domain Analysis v GUI vs Core v

Polymorphism v

Information Hiding,
Contracts v

Immutability v

Types v
Static Analysis v/

Unit Testing v/

Inheritance & Del. v

Responsibility
Assignment,
Design Patterns,
Antipattern v

Promises/
Reactive P. v

Integration Testing v/

Frameworks and

Libraries v, APIs v

Module systems,
microservices v/

Testing for
Robustness v

Cl v, DevOps v,
Teams

institut r
SSSSSSSS
RRRRRRRR

Discussion with design patterns

e Carpentry:

o "ls a dovetail joint or a miter joint better here?"

e Software Engineering:

o "Is a strategy pattern or a.template method better here?"
/
<
|
y/

17-214/514 62

History:
Design Patterns %;'
(1994)]

SIS ONILOdWOD TWNOISSTIOND ATISIM-NOSIAQY. « b

SOPISSIA e uosuyof
wWiap ewwen

17-214/514

17-214/514

Context

Y

algorithm()

Strategy

execute()

T

ConcreteStrA

ConcreteStrB

execute()

execute()

Module pattern: Decide what to export

var MODULE = (function () {

var my = {},
privateVariable = 1;

function privateMethod() {

}

my.moduleProperty = 1;
my.moduleMethod = function () {

s

return my;

3O));

The Composite Design Pattern

Context

«interface»)
Component
+operation () -children
Leaf Composite

+operation()

operation() {
for (cin children)
c.operation();

}

17-214/514

_[Froperation()
+add(in c : Component)
+remove(in c : Component

-parent

66
66 [i

institute for
SOFTWARE
RESEARCH

Principles of Software Construction:
Objects, Design, and Concurrency

Inheritance and delegation

Christian Kastner Vincent Hellendoorn

Carnegie Mellon University
School of Computer Science

institute for
I S SOFTWARE
RESEARCH

17-214/514 67 [

Where we are

Design for
understanding
change/ext.
reuse

robustness

17-214/514

Small scale: Mid scale: Large scale:
One/few objects Many objects Subsystems
Subtype Domain Analysis v GUI vs Core v

Polymorphism v

Information Hiding,
Contracts v

Immutability v

Types v
Static Analysis v/

Unit Testing v/

Inheritance & Del.
v

Responsibility
Assignment,
Design Patterns,
Antipattern v

Promises/
Reactive P. v

Frameworks and
Libraries v, APls v

Module systems,
microservices v/

Testing for
Robustness v

Cl v, DevOps v,
Teams

ntegration Testing v

Class Hierarchy

In Java:

%{
Error [Collection]

\
[RuntimeError] [List]

[Exception]

17-2 14/5 14 69 Sf gég?ﬁ%

Behavioral Subtyping

e Formalizes notion of extension

Animal dog = new Dog();

o Roughly: anything an Animal does, a Dog should do
o You should be able to use a subtype as if it was its parent
o But, dog may be more specific

The Liskov substitution principle:

“Let q(x) be a property provable about objects x of type T. Then q(y)
should be provable for objects y of type S where S is a subtype of T.”

Barbara Liskov

17-214/514

So why inheritance?

public interface PaymentCard { class CreditCard implements PaymentCard {
String getCardHolderName(); private final String cardHolderName;
BigInteger getDigits(); private final BigInteger digits;

Date getExpiration();
int getValue();

boolean pay(int amount); _ _ _
} private int currentCredit;

private final Date expirationDate;
private final int creditlLimit;

public CreditCard(String cardHolderName,

BigInteger digits, Date expirationDate,
int creditLimit, int credit) {

this.cardHolderName = cardHolderName;

this.digits = digits;

this.expirationDate = expirationDate;

this.creditlLimit = creditlLimit;

this.currentCredit = credit;

17-214/514 b 71 o

RESEARCH

Template Method Pattern

abstract class AbstractCashCard class GiftCard extends AbstractCashCard {
implements PaymentCard { @Override
private int balance; void chargeFee() {
public AbstractCashCard(int balance) { return; // Do nothing.
this.balance = balance; }
b }

public boolean pay(int amount) {
if (amount <= this.balance) {
this.balance -= amount;
chargeFee();
return true;

‘Pay’ is already
implemented

}

return false;

}

abstract void chargeFee();

}

17-214/514 72 S3F st

Template Method vs. Strategy Pattern

e Template method uses inheritance to vary part of an algorithm

o Template method implemented in supertype, primitive operations
implemented in subtypes

e Strategy pattern uses delegation to vary the entire algorithm

o Strategy objects are reusable across multiple classes
o Multiple strategy objects are possible per class

17-2 14/5 14 73 Sf gé;{"ui{%

Refactoring

e Rename class, method, variable to something not

In-scope

Extract method/inline method
Extract interface

Move method (up, down, laterally
Replace duplicates

| Show Context Actions

| Paste
Copy / Paste Special
Column Selection Mode

Find Usages

Folding

Analyze

Go To

Generate...

OpenIn

Local History
- Compare with Clipboard
) Create Gist...

17-214/514

Alt+Enter its, String name) {

Cirl+V

Alt+Shift+Insert

Alt+F7

Alt+Insert

>

>
>

>

>

>

atCardHolderName());

Rename... Shift+F6
Change Signature... Ctrl+F6
Introduce Parameter Object...

Extract Delegate...

Extract Interface...

Extract Superclass...

Inline Method... Ctrl+Alt+N
Find Method Duplicates and Replace with Calls...
Move Instance Method... F6
Copy Class... F5
Safe Delete... Alt+Delete
Make Static...

Wrap Method Return Value...
Invert Boolean...

Migrate to AndroidX...

Add Right-to-Left (RTL) Support...

Principles of Software Construction:
Objects, Design, and Concurrency

Refactoring & Anti-patterns

Christian Kastner Vincent Hellendoorn

Carnegie Mellon University
School of Computer Science

institute for
I S SOFTWARE
RESEARCH

17-214/514 75 [

Where we are

Design for
understanding
change/ext.
reuse

robustness

17-214/514

Small scale: Mid scale: Large scale:
One/few objects Many objects Subsystems
Subtype Domain Analysis v GUI vs Core v

Polymorphism v

Information Hiding,
Contracts v

Immutability v

Types v
Static Analysis v/

Unit Testing v/

Inheritance & Del. v

Responsibility
Assignment,
Design Patterns,
Antipattern v/

Promises/
Reactive P. v

Integration Testing v/

Frameworks and

Libraries v, APIs v

Module systems,
microservices v/

Testing for
Robustness v

Cl v, DevOps v,
Teams

institut r
SSSSSSSS
RRRRRRRR

The Decorator Pattern

You have a complex drawing that consists of many shapes and want to save it. Some logic of the
saving functionality is always the same (e.g., going through all shapes, reducing them to drawable
lines), but others you want to vary to support saving in different file formats (e.g., as png, as svg,
as pdf). You want to support different file formats later.

Why is this not:

17-214/514

This binding

class Parent {

private int i; Child m = new Child();
public Parent() {

this.i = 5; System.out.println(m.i);
}

m.print();
void print() {
System.out.println(this.i);
b

}

class Child extends Parent
private int 1i;
public Child() {
this.i = 7;
}

}

17-214/514

Details: type-casting

e Sometimes you want a different type than you have

o e.g.,, double pi = 3.14; InTS:
int indianaPi = (int) pi;

(dog as Animal).identify()

e Useful if you know you have a more specific subtype:
Account acct = ...;
CheckingAccount checkingAcct = (CheckingAccount) acct;
long fee = checkingAcct.getFee();
o Will get a ClassCastException if types are incompatible

e Advice: avoid downcasting types
o Never(?) downcast within superclass to a subclass

17-214/514

Anti-patterns

e Zooming in: common code smells

O

O

O

17-214/514

Not necessarily bad, but worthwhile indicators to check

m When problematic, often point to design problems

Long methods, large classes, and the likes. Suggests bad
abstraction

m Tend to evolve over time; requires restructuring

Inheritance despite low coupling (“refused bequest”)

m Replace with delegation, or rebalance hierarchy
‘instanceof’ (or ‘switch’) instead of polymorphism
Overly similar classes, hierarchies
Any change requires lots of edits

m High coupling across classes (“shotgun surgery”), or heavily entangled implementation
(intra-class)

HW4: Refactoring of
Static Website Generator

17-214/514 81 [|j 5

RRRRRRRR

Principles of Software Construction:
Objects, Design, and Concurrency

Asynchrony and Concurrency

Christian Kastner Vincent Hellendoorn

Carnegie Mellon University
School of Computer Science

institute for
I S SOFTWARE
RESEARCH

17-214/514 82 [If

Where we are

Design for
understanding
change/ext.
reuse

robustness

17-214/514

Small scale: Mid scale: Large scale:
One/few objects Many objects Subsystems
Subtype Domain Analysis v GUl vs Core v

Polymorphism v

Information Hiding,
Contracts v

Immutability v

Types v
Static Analysis v/

Unit Testing v/

Inheritance & Del. v

Responsibility
Assignment,
Design Patterns,
Antipattern v

Promises/
Reactive P. v

Integration Testing v/

Frameworks and

Libraries v, APIs v

Module systems,
microservices v/

Testing for
Robustness v

Cl v, DevOps v,
Teams

institut r
SSSSSSSS
RRRRRRRR

Interaction with CLI

Terminal — 0

File Edit View Search Terminal Help

scripts/kconfig/conf arch/x86/Kconfig
*

Linux Kernel Configuration

*
*
*
*

General setup

*

Prompt for developr

Pestapepeaaaees Scanner input = new Scanner(System.in);

Automatically appen : :
S while (questions.hasNext()) {

Kernel compression Question q = question.next();

i Sitﬁz‘?iizﬁtzf System.out.println(qg.toString());

3. LZMA (KERNEL_L - _ - .
4. LZO (KERNEL_LZ String answer = input.nextlLine();

choice[1-47]: 3 q.respond(answer) ;
Support for paging
System V IPC (SYSVI

POSIX Message QUEUES \rwvoain_itigurviry iy
BSD Process Accounting (BSD_PROCESS_ACCT) [Y/n/?2] n

Export task/process statistics through netlink (EXPERIMENTAL) (TASKSTATS) [Y/n/?
11

84 [Hi

institute for
SOFTWARE
RESEARCH

Event-based programming

e Style of programming where control-flow is driven by (usually
external) events

public void performAction (ActionEvent e) {
List<String> lst = Arrays.asList (bar);
foo.peek (42)

public void performAction (ActionEvent e) {
bigBloatedPowerPointFunction (e) ;
withANameSoLongIMadeItTwoMethods (e) ;
yesIKnowJavaDoesntWorkLikeThat (e) ;

public void performAction (ActionEvent e) {
List<String> lst = Arrays.aslist (bar);
foo.peek (40)

17-214/514 85 Ll

RESEARCH

Concurrency with file 1/0

Asynchronous code requires Promises

e Captures an intermediate state

laitbhAar fataAl A Al £l Al ’II-F'nnIA-I-
O eftneéerrercnea nNoraheta—wen it out

let imageToBe: Promise<Image> = fetch('myImag

eventually

e.png’);

imageToBe.then((image) => display(image))
.catch((err) => console.log('aw: ' + err));

17-214/514 86 [i

RRRRRRRR

Concurrency with file I/O

An example from Machine Learning

Different devices: <:

17-214/514

ttttttt

A GUI design challenge, extended

e \What if we want to show the points won?

Game GUI PointsPanel
I I |
I hit | I
[V
[N | |
I getData | I
K l
: b update :
I | update |
I | |
| getData |
[%
K |]
| | g
I | update

17-214/514 88 [|j s

RRRRRRRR

Recall the Observer

Publisher s
«interface»
- subscribers: Subscriber[] [<>—=>| Subscriber
foreach (s in subscribers) - mainState + update(context)
s.update(this) + subscribe(s: Subscriber) A
+ unsubscribe(s: Subscriber) |
S W, Concrete |
mainBusinessLogic() Subscribers

A

s = new ConcreteSubscriber() und 2
publisher.subscribe(s) update(context)

L~ l
Client

-
-
-
-
-

17-214/514 https://refactoring.guru/design-patterns/observer 89 A

RESEARCH

An architectural pattern:
Model-View-Controller (MVC)

Manage inputs from user: }

= m e —————— Controller \\mouse, keyt)Oard, menu, etc.
\'%

:
]
]
V
View r -
Manage display of
Linformation on the screen

Manage data related to the
application domain

17-214/514 90 [|j 5

RRRRRRRR

Principles of Software Construction:
Objects, Design, and Concurrency

Basic GUI concepts, HTML

Christian Kastner Vincent Hellendoorn

Carnegie Mellon University
School of Computer Science

institute for
I S SOFTWARE
RESEARCH

17-214/514 o1 [

Where we are

Design for
understanding
change/ext.
reuse

robustness

17-214/514

Small scale: Mid scale: Large scale:
One/few objects Many objects Subsystems
Subtype Domain Analysis v GUI vs Core v

Polymorphism v

Information Hiding,
Contracts v

Immutability v

Types v
Static Analysis v/

Unit Testing v/

Inheritance & Del. v

Responsibility
Assignment,
Design Patterns,
Antipattern v

Promises/
Reactive P. v

Integration Testing v/

Frameworks and

Libraries v, APIs v

Module systems,
microservices v/

Testing for
Robustness v

Cl v, DevOps v,
Teams

institut r
SSSSSSSS
RRRRRRRR

Anatomy of an HTML Page

Nested elements

e Sizing
e Attributes
o Jext

17-214/514

17-214 Fall 2021

header#top.container 355.2x 1416

[—]
—

Principles of Software
Construction
Objects, Design, and Concurrency

Overview

Software engineers today are less likely to design
data structures and algorithms from scratch and
more likely to build systems from library and
framework components. In this course, students
engage with concepts related to the construction
of software systems at scale, building on their
understanding of the basic building blocks of data
structures, algorithms, program structures, and
computer structures. The course covers technical
topics in four areas: (1) concepts of design for
complex systems, (2) object oriented
programming, (3) static and dynamic analysis for

x 4]

Styles

Elements Console Sources Network — »
s=¥<body> == $0
» <nav id="navigation" class="hidden">..</nav>
» <header id="top" class="container">..</header>

v<div id="main" class="container">
: :before
<h2 id="overview">Overview</h2>
> <p>.</p>
<p style="color: red">..</p>

v

<p>After completing this course, students
»..
P<n> </n>
html body
Computed Layout Event Listeners DOM

will:</p

Breakpoints|

padding 50

e

50

-1355.200x14052.300 | -

- |

T2 RESEARCH

The composite pattern

e Problem: Collection of objects has behavior similar to the
iIndividual objects

e Solution: Have collection of objects and individual objects
implement the same interface

e Consequences:
o Client code can treat collection as if it were an individual object
o Easier to add new object types
o Design might become too general, interface insufficiently useful

17-214/514 94 Sf 2?}3}&{%

A few Tags

e <html>
o The root of the visible page
e <head>
o Stores metadata, imports
o <p>
o A paragraph
e <button>
o Attributes include ‘name’, ‘type’, value
e <div>
o Generic section -- very useful
o <table>
o The obvious
e Many more; dig into a real page!
17-214/514

2 institute For
95 [H] e

https://www.w3schools.com/tags/tag_button.asp

Style: CSS
e (Cascading Style Sheets

o Reuse: styling rules for tags, classes, types
o Reuse: not just at the leafs!

Hello again!

VS.

<style type="text/css">
span {
font-family: arial
}
</style>

17-214/514 96 Lo

Strategy or Observer?
Either could apply

e Both involve callback
e Strategy:

o Typically single

o Often involves a return

e Observer:
o Arbitrarily many
o |Involves external updates

17-214/514

nts

ainer

Console Sources

Network — » B 1 a : X

» <div class="month-row" style="top:16.666666666666668%;heig 1
ht:17.666666666666668%" >..</div>
v<div class="month-row" style="top:33.333333333333336%;heig
ht:17.666666666666668%" >
» <table cellpadding="0"
e">..</table>
v<table cellpadding="0"
v <tbody>
v<tpe
r;<td class="st-dtitle st-dtitle—fc”>m</Ej>
P <td class="st-dtitle st-dtitle-today">.k/td> == %0
> <td class="st-dtitle st-dtitle-next">..<ftd>
> <td class="st-dtitle">..</td>
» <td class="st-dtitle">..</td>
> <td class="st-dtitle">..</td>
\r<td class="st-dtitle">..</td>

JGT

cellspacing="0" class="st-bg-tabl

cellspacing="0" class="st-grid">

b LRSS ERD
»<tr>.</tr>
»<ctr>.</tr>
P ZEPSTERS

div.month-row table.st-grid tbody tr td.st-dtitle.st-dtitle-today

c 3 S s

- v o
st T

97 SOFTWARE
RESEARCH

Static Web Pages

e Delivered as-is, final
o Consistent, often fast
o Cheap, only storage needed
e “Static” a tad murky with JavaScript

o We can still have buttons, interaction
o Butitwon’t “go” anywhere -- the server is mum

Server-side Client-side

«— — — — — — —
Wb Seiver HTTP Request Browser

Pre-created: [~ T HTTP Response

HTML

CSS ./

Javascript

other files

17-214 /51h1ttps://developer.m02|IIa.org/en-US/docs/Learn/Server-S|de/F|rst_steps/CI|ent-Server_overV|ew#anatomy of a dynamlc_requgsé

e institute for
SOFTWARE

RESEARCH

Web Servers

Dynamic sites can do more work

Server-side

Files

HTML
Templates

Static resources:;,

» CSS

« Javascript
Images

« other files

r—=———=————

Request data:

* URL encoding
* GET/POST data
* Cookies

A J

Web HTML

Web Server

Client-side

HTTP GET Request
Browser

—~ 48

Application @

HTTP Response

@ HTML

CSss
JavaScript

https://developer.mozilla.org/en-US/docs/Learn/Server-side/First_steps/Client-Server_overview#anatomy of a_dynamic_request

17-214/514

29 [Hi

institute for
SOFTWARE
RESEARCH

Principles of Software Construction:
Objects, Design, and Concurrency

Concurrency: Safety & Immutability

Christian Kastner Vincent Hellendoorn

Carnegie Mellon University
School of Computer Science

institute for
I S SOFTWARE
RESEARCH

17-214/514 100 [Jf s

RRRRRRRR

Where we are

Design for
understanding
change/ext.
reuse

robustness

17-214/514

Small scale: Mid scale: Large scale:
One/few objects Many objects Subsystems
Subtype Domain Analysis v GUI vs Core v

Polymorphism v

Information Hiding,
Contracts v

Immutability v

Types v
Static Analysis v/

Unit Testing v/

Inheritance & Del. v

Responsibility
Assignment,
Design Patterns,
Antipattern v

Promises/
Reactive P. v

Integration Testing v/

Frameworks and

Libraries v, APIs v

Module systems,
microservices v/

Testing for
Robustness v

Cl v, DevOps v,
Teams

nstitute for
SSSSSSSS
RRRRRRRR

Components of a Swing application

(2] WindowTitle [-Woix]

MenuWidgetl MenuWidget2

J Fra m e : 7T99|7b7;17r3u17tqn [v] ToolbarCheckBox

PanelCaption

J P I Panel [SelectedTab | OtherTab
Item 1 @® RadioButtonl [] UncheckedCheckBox
e © RadioButton2 v] CheckedCheckBox
Item 3 : ; —

() RadioButton3] InactiveCheckBo

Resa | e] InactiveChecke
Item 5 ~HBELINEBACIO

JButton Buwon | | o

TextField | [TextArea

JTeXtFIeId [e000esssscsee 1

’Item 1 |v‘

17-214/514 102 el

Event Loop in JS

Web APIs

DOM (document)

J s q AJAX (XMLHttpRequest)

Timeout (setTimeout)

Memory Heap Call Stack

Event Loop Callback Queue

‘ ’ ¢ onClick onLoad onDone

https://blog.sessionstack.com/how-javascript-works-event-loop-and-the-rise-of-async-programming-5-w_ .. __
17-214/514 avs-to-better-coding-with-2f077c4438b5 103 [H] e

What will Happen:

Where does this fail?

What if single threaded

Could we make it work
with 2 threads?

17-214/514

.
[

public class Synchronization {

static long balancel =
static long balance2 =

public static void
Thread threadl
Thread thread2

100;
100;

main(String[] args) throws InterruptedException {
= new Thread(Synchronization::fromiTo2);
= new Thread(Synchronization::from2Tol);

threadl.start(); thread2.start();
threadl.join(); thread2.join();

System.out.println(balancel + ",

}

private
for

}

private
for
}

}

static void
0;
balancel -=

(Iinkt i:=

balance2 +=

static void
0;
balance2 -=

Cinkt i:=

balancel +=

" + balance2);

fromlTo2() {

i < 10000; i++) {
100;

100;

from2Tol() A

i < 10000; i++) {
100;

100;

nstitute for

SOFTWARE
RESEARCH

Ensuring Immutability

Don’t provide any mutators

Ensure that no methods may be overridden
Make all fields final

Make all fields private

Ensure security of any mutable components

17-214/514 105 [s

Making a Class Immutable

public final class Complex {
private final double re, im;

public Complex(double re, double im) {

this.re = re;
this.im = im;
}
// Getters without corresponding setters
public double getRealPart() { return re; }

public double getImaginaryPart() { return im; }
// subtract, multiply, divide similar to add

public Complex add(Complex c) {
return new Complex(re + c.re, im + c.im);
}

17-214/514 106 [Jj s

Shared State

e \olatile fields always return the most recently written

value
o Does not guarantee atomicity
o Useful if only one thread writes

e Are atomicity + coordinated communication sufficient
for thread safety?

17-214/514 107 i

Principles of Software Construction:
Objects, Design, and Concurrency

Concurrency: Patterns & Promises

Christian Kastner Vincent Hellendoorn

Carnegie Mellon University
School of Computer Science

institute for
I S SOFTWARE
RESEARCH

17-214/514 108 [Jj i

RRRRRRRR

Where we are

Design for
understanding
change/ext.
reuse

robustness

17-214/514

Small scale: Mid scale: Large scale:
One/few objects Many objects Subsystems
Subtype Domain Analysis v GUI vs Core v

Polymorphism v

Information Hiding,
Contracts v

Immutability v

Types v
Static Analysis v/

Unit Testing v/

Inheritance & Del. v

Responsibility
Assignment,
Design Patterns,
Antipattern v

Promises/
Reactive P. v

Integration Testing v/

Frameworks and

Libraries v, APIs v

Module systems,
microservices v/

Testing for
Robustness v

Cl v, DevOps v,
Teams

institut r
SSSSSSSS
RRRRRRRR

Design Goals

e \What are we looking for in design?
o Reuse

Readability

Robustness

Extensibility

Performance

O O O O O

17-214/514 110 [

function copyFileSync(source: string, dest: string) {
// Stat dest.

try {
fs.statSync(dest);

A simple function

console.log("Destination already exists™)

return;
. ¥
...In sync world e

let fd;

try {
fd = fs.openSync(source, 'r');

} catch {
console.log("Destination already exists")
return;

b

How to make this asynchronous?

// Read source.
let buff = Buffer.alloc(1000)

e \What needs to “happen first”? 'W (

fs.readSync(fd, buff, ©, 9, 1009);

e \What is the control-flow in callback world? PR

console.log("Could not read source file")

return;
¥
// Write to dest.
try {
fs.writeFileSync(dest, buff)
} catch () {
17_214/514 console.log("Failed to write to dest") e fo

1Y ESEARCH

Next Step: Async/Await

e Async functions return a promise
o May wrap concrete values

o May return rejected promises on exceptions
e Allowed to ‘await’ synchronouslv

async function cop

ait(source: string, dest: string) {
let statPromise = promisify(fs.stat)

[/ stat dest.
try {

await statPromise(dest)

} catch () {

console.log("Destination already exists")
return

17-214/514

The Promise Pattern

e Problem: one or more values we will need will arrive later
o At some point we must wait

e Solution: an abstraction for expected values

e (Consequences:
o Declarative behavior for when results become available (conf.
callbacks)

o Need to provide paths for normal and abnormal execution
m E.g., then() and catch()

o May want to allow combinators
o Debugging requires some rethinking

17-214/514 113 [s

Generator Pattern

e Problem: process a collection of indeterminate size
e Solution: provide data points on request when available

e (Consequences:
o Each call to ‘next’ is like awaiting a promise
o A generator can be infinite, and can announce if it is complete.
o Generators can be lazy, only producing values on demand

m Or producing promises

e \Where might this be useful?

17-214/514 114 [s

Traversing a collection

e Since Java 1.0:
Vector arguments = ..;
for (int 1 = 0; 1 < arguments.size(); ++1) {

System.out.println(arguments.get(i));

}
e Java 1.5: enhanced for loop
List<String> arguments = ..;

for (String s : arguments) {
System.out.println(s);

}
e Works for every implementation of Iterable
public interface Iterable<E> {
public Iterator<E> iterator();
}
public interface Iterator<E> {
boolean hasNext();
E next();

17-21 void remove();

In JavaScript (ES6)

let arguments = .|
for (const s of arguments) {

console.log(s)

Works for every implementation with a “magic”

function [N EEIEI| providing an iterator

next(value?: any): IteratorResult<T>;

return?(value?: any): IteratorResult<T>;

throw?(e?: any): IteratorResult<T>;

interface IteratorReturnResult<TReturn> {
value: TReturn;

==

o
1 1 5 institute for
I S SOFTWARE
RESEARCH

<String> = . (Object::)
(s -> . (s). ()
(: ());

int = . (). (0, Integer::);
for (let [odd, even] in numbers.split(n => n % 2, n => !(n % 2)).zip()) {

console.log(odd = ${odd}, even = ${even}’);
}

Stream(people).filter({age: 23}).flatMap("children").map("firstName")
.distinct().filter(/a.*/i1).join(", ");

17-214/514 116 [s

HW5: Santorini with God Cards and GUI

17-214/514 117 [s

RRRRRRRR

Principles of Software Construction:
Objects, Design, and Concurrency

Events Everywhere

Christian Kastner Vincent Hellendoorn

Carnegie Mellon University
School of Computer Science

institute for
I S SOFTWARE
RESEARCH

17-214/514 118 [[f i

Where we are

Design for
understanding
change/ext.
reuse

robustness

17-214/514

Small scale: Mid scale: Large scale:
One/few objects Many objects Subsystems
Subtype Domain Analysis v GUl vs Core v

Polymorphism v

Information Hiding,
Contracts v

Immutability v

Types v
Static Analysis v/

Unit Testing v/

Inheritance & Del. v

Responsibility
Assignment,
Design Patterns,
Antipattern v

Promises/
Reactive P. v

Integration Testing v/

Frameworks and

Libraries v, APIs v

Module systems,
microservices v/

Testing for
Robustness v

Cl v, DevOps v,
Teams

institut
SSSSSSSS
RRRRRRRR

17-214/514 120 [

class Stack {
readonly #inner: any[]

IfT]fT]l]tEit)IEB’? constructor (inner: any[]) {

this.#inner=1i1nner
}
push(o: any): Stack {
const newInner = this.#inner.slice()
newInner.push(o)
return new Stack(newInner)

}
peek(): any {
return this.#inner[this.#inner.length-1]
}
getInner(): any[] {
return this.#inner

}

17-214/514

Useful analogy: Spreadsheets

Cells contain data or

A B
formulas 1 1 o
Formula cells are 2 1] |
computed automatically _° 2 3
whenever input data i 3 6

changes

17-214/514 122 [

Beyond Spreadsheet Cells

SINGLE MULTIPLE
Pull Function Iterator
Push Promise Observable

https://rxjs.dev/guide/observable

17-214/514

The Adapter Design Pattern

17-214/514

«interface»

Client

> Client Interface

+ method(data)

A

Adapter

Service

- adaptee: Service ——=>>...

+ method(data)

+ serviceMethod(specialData)

specialData = convertToServiceFormat(data)
return adaptee.serviceMethod(specialData)

https://refactoring.guru/design-patterns/adapter

124

institute FOT
SOFTWARE
RESEARCH

Recall: Separating application core and GUI

e Reduce coupling: do not allow core to depend on Ul

e Create and test the core without a GUI

o Use the Observer pattern to communicate information from the core
(Model) to the GUI (View)

GUI Tests

CoreTests

17-214/514

Client-Server Programming forces
Frontend-Backend Separation

Backend Frontend

(Java/Node): (Browser, HTML,

Data, logic, http calls | JavaScript):

rendering Text, buttons
keep open

connection

Trick to let backend push information to frontend: Keep http
request open, append to page (compare to stream)

Alternative: regular pulling
17-214/514

llllllllllll
SSSSSSSS
RRRRRRRR

Principles of Software Construction:
Objects, Design, and Concurrency

Libraries and Frameworks

(Design for large-scale reuse)

ot ICE N Hetend
Michael Hilton

Carnegie Mellon University
School of Computer Science

institute for
I S SOFTWARE
RESEARCH

17-214/514

Where we are

Design for
understanding
change/ext.
reuse

robustness

17-214/514

Small scale: Mid scale: Large scale:
One/few objects Many objects Subsystems
Subtype Domain Analysis v GUI vs Core v

Polymorphism v

Information Hiding,
Contracts v

Immutability v

Types v
Static Analysis v/

Unit Testing v/

Inheritance & Del. v

Responsibility
Assignment,
Design Patterns,
Antipattern v

Promises/
Reactive P. v

Integration Testing v/

Frameworks and
Libraries v, APIs v

Module systems,
microservices v/

Testing for
Robustness v

Cl v, DevOps v,
Teams

Reuse and variation:
Flavors of Linux

17-214/514

Linux Kernel v2.6.18-53.1.14.el5.customxen Configuration

Arrow keys navigate the menu. <Enter> selects submenus --->.

Highlighted letters are hotkeys. Pressing <Y> includes, <N> excludes,
<M> modularizes features. Press <Esc><Esc> to exit, <?> for Help, </>
for Search. Legend: [*] built-in [] excluded <M> module < > module

[1] rovide NFS client caching support (EXPERIMENTAL)

[*1 1low direct I/0 on NFS files (EXPERIMENTAL)

<M> N S server support

[*1 rovide NFSv3 server support

[*] rovide server support for the NFSv3 ACL protocol extension
[*1 rovide NFSv4 server support (EXPERIMENTAL)

--- rovide NFS server over TCP support

[[*] Root file system on NFS

--- ecure RPC: Kerberos V mechanism (EXPERIMENTAL)

< Exit > < Help >

129

institute for
SOFTWARE
RESEARCH

Terminology: Libraries

e Library: A set of classes and methods that provide reusable
functionality

£~

Math

Streams Graphs 1/0

Collections CLI Parsing

17-214/514 130 [[f s

Terminology: Frameworks
e Framework:"Reusable skeleton code that can be

customized into an application

e Framework calls back into client code
o The Hollywood principle: “Don’t call us. We’'ll call you.”

d-getieight()); IntelliJ Fll'efOX Swing

your code

Express NanoHttpd Spring

17-214/514

An aside: Plugins could be reusable too...

public class Application extends JFrame implements InputProvider {

private JTextField textField;

private Plugin plugin;

public Application() { }

protected void init(Plugin p) {
p.setApplication(this);
this.plugin = p;

=1 N A - =1 N

public interface Plugin {
String getApplicationTitle();
String getButtonText();
String getInititalText();
void buttonClicked() ;

void setApplication(InputProvider app);

private InputProvider app;

}

public class CalcPlugin implements Plugin {

public void setApplication(InputProvider app)
public String getButtonText() { return "calcul —
public String getInititalText() { return "10 / 2 + 6"; }
public void buttonClicked() {

JOptionPane. showMessageDialog(null, "The result of "

}

public interface InputProvider {
String getInput();

+ application.getInput() + " 1is
+ calculate(application.getInput()));

public String getApplicationTitle() { return "My Great Calculator": }

The use vs. reuse dilemma

e Large rich components are very useful, but rarely fit
a specific need

e Small or extremely generic components often fit a
specific need, but provide little benefit

“maximizing reuse minimizes use”
C. Szyperski

17-214/514 133 [[f s

Principles of Software Construction

API Design

Christian Kastner Vincent Hellendoorn
(Many slides originally from Josh Bloch)

Carnegie Mellon University
School of Computer Science

institute for
I S SOFTWARE
RESEARCH

17-214/514 134 [s

Where we are

Design for
understanding
change/ext.
reuse

robustness

17-214/514

Small scale: Mid scale: Large scale:
One/few objects Many objects Subsystems
Subtype Domain Analysis v GUI vs Core v

Polymorphism v

Information Hiding,
Contracts v

Immutability v

Types v
Static Analysis v/

Unit Testing v/

Inheritance & Del. v

Responsibility
Assignment,
Design Patterns,
Antipattern v

Promises/
Reactive P. v

Integration Testing v/

Frameworks and
Libraries v, APIs v

Module systems,
microservices v/

Testing for
Robustness v

Cl v, DevOps v,
Teams

function Welcome(props) {

CompOS|ng return Hello, {props.name}
Templates

}
function App() { return (

(Corresponds to
Fragments in Handlebars) name="sara’

name="Edite"

Nest templates
)3}

Pass arguments
ReactDOM. render (

(lpyrlppertles) between

/redirect-to-code
en/corhponenfs-and-props/composi document.getElementById('root')

components
17 91AT51a);

https://reactjs.org/redirect-to-codepen/components-and-props/composing-components
https://reactjs.org/redirect-to-codepen/components-and-props/composing-components
https://reactjs.org/redirect-to-codepen/components-and-props/composing-components

Public APIs are forever

JDT Plugin (IBM)

CDT Plugin (IBM)

third party plugin

17-214/514 137 sl

[CRIEST? 1017 WFDAIE] |

| CHONGES I VERSION 10.17:
Hyrum’'s Law WHEN YOU HOLD DOWN SPACEBAR.

“With a sufficient number of users of | (onetMeUseRY wRiEs:

an API, it does not matter what you | | xeonteot ker 15 o BReRa,

; ; . 50 T HOLD SPACEBAR INSTERD, AND T
promise in the contract: all CONFIGURED EMACS TO INTERPRET A

observable behaviors of your RAPID TEMPERATURE. RISE: is CONTROL.
ADVMIN \WRITES

system will be depended on by THATS. HORRIFYING.

” [onGTHEUsERY WRITES:
somebody. LOOK, MY SETOP WORKS FOR VE-
J0sT ADD AN OPTON To REENABLE

SPACEBAR HERTING.
EVERY CHANGE BREAKS SOMEONES WORKFLOW.

https://www.hyrumslaw.com/

https://xkcd.com/1172/ 138 e b

17-214/514

https://xkcd.com/1172/
https://www.hyrumslaw.com/

The process of API design — 1-slide version

Not sequential; if you discover shortcomings, iterate!
1. Gather requwements skeptically, including use cases

2. Choose an abstraction (model) that appears to address use
cases
Compose a short API sketch for abstraction

4. Apply API sketch to use cases to see if it works
o If not, go back to step 3, 2, or even 1

5. Show API to anyone who will look at it

6. Write prototype implementation of API

7. Flesh out the documentation & harden implementation
8. Keep refining it as long as you can

17-214/514 139 Lo

Applying Information hiding: Factories

public class Rectangle {
public Rectangle(Point e, Point f) ..

}

/] .
Point pl = PointFactory.Construct(..);

// new PolarPoint(..); inside
Point p2 = PointFactory.Construct(..);
// new PolarPoint(..); inside

Rectangle r = new Rectangle(pl, p2);

17-214/514 140 [s

Aside: The Factory Method Design Pattern

Product p = createProduct()

p.doStuff()
Creator
«interface»
_____________________ Product
+ someOperation() >
+ createProduct(): Product + doStuff()
l I ! !

ConcreteCreatorA ConcreteCreatorB Concrete Concrete
ProductA ProductB

+ createProduct(): Product

+ createProduct(): Product

return new ConcreteProductA()

From: https://refactoring.guru/design-patterns/factory-method

17-214/514

141

institute for
SOFTWARE
RESEARCH

https://refactoring.guru/design-patterns/factory-method

Boilerplate Code

import org.w3c.dom.*; .
import java.io.*; » Generally done via cut-and-paste

import javax.xml.transform.*; ° Ugly, annoying’ and error-prone
import javax.xml.transform.dom.*;

import javax.xml.transform.stream.*;

/** DOM code to write an XML document to a specified output stream. */
static final void writeDoc(Document doc, OutputStream out) throws IOException{
try {
Transformer t = TransformerFactory.newInstance().newTransformer();
t.setOutputProperty(OutputkKeys.DOCTYPE_SYSTEM, doc.getDoctype().getSystemId());
t.transform(new DOMSource(doc), new StreamResult(out)); // Does actual writing
} catch(TransformerException e) {
throw new AssertionError(e); // Can’t happen!

}
}

17-214/514 142 [[Jf s

RESEARCH

Principles of Software Construction

API Design (Part 2)

Christian Kastner Vincent Hellendoorn
(With slides from Josh Bloch)

Carnegie Mellon University
School of Computer Science

institute for
I S SOFTWARE
RESEARCH

17-214/514 143 [s

Where we are

Design for
understanding
change/ext.
reuse

robustness

17-214/514

Small scale: Mid scale: Large scale:
One/few objects Many objects Subsystems
Subtype Domain Analysis v GUI vs Core v

Polymorphism v

Information Hiding,
Contracts v

Immutability v

Types v
Static Analysis v/

Unit Testing v/

Inheritance & Del. v

Responsibility
Assignment,
Design Patterns,
Antipattern v

Promises/
Reactive P. v

Integration Testing v/

Frameworks and
Libraries v, APIs v

Module systems,
microservices v/

Testing for
Robustness v

Cl v, DevOps v,
Teams

Teamwork

Teamwork essential in software projects

Teamwork needed to scale available work and available
skills

Teamwork is a key motivation for
design for understandability, documentation, etc

17-214/514 145 ek

Good names drive good design

® Be consistent
O computeX() vs. generateX()?
O deleteX() vs. removeX()?

® Avoid cryptic abbreviations

O Good: Font, Set, PrivateKey, Lock, ThreadFactory,
TimeUnit, Future<T>

O Bad: DynAnyFactoryOperations, BindingIteratorImplBase,
ENCODING_CDR_ENCAPS, OMGVMCID

17-214/514 146 Lo

Principle: Favor composition over inheritance

// A Properties instance maps Strings to Strings
public class Properties extends HashTable {
public Object put(Object key, Object value);

}

public class Properties {
private final HashTable data = new HashTable();
public String put(String key, String value) {
data.put(key, value);

17-214/514

147

Principle: Fail fast

® Report errors as soon as they are detectable
O Check preconditions at the beginning of each method

O Avoid dynamic type casts, run-time type-checking

// A Properties instance maps Strings to Strings
public class Properties extends HashTable {

public Object put(Object key, Object value);

// Throws ClassCastException if this instance
// contains any keys or values that are not Strings

public voild save(OutputStream out, String comments);

17-214/514 148 ek

CRUD Operations

Path correspond to nouns, not
verbs, nesting common:

Ol /articlesl/statell/game
/articles/:1d/comments

GET (receive), POST (submit new),
PUT (update), and DELETE
requests sent to those paths

Parameters for filtering, searching,

SlelutlgloM-NeM /articles?sort=date

17-214/514

const express = require('express');

const bodyParser = require('body-parser');

const app = express();

app.use(bodyParser.json());

app.get('/articles', (req, res) => {
const articles = [];

res.json(articles);

1)
app.post('/articles', (req, res) => {

res.json(req.body);

1)
app.put('/articles/:1d', (req, res) => {
const { id } = req.params;

res.json(req.body);

1)
app.delete('/articles/:1d', (req, res) => {
const { id } = req.params;

res.json({ deleted: id });

1)
app.listen(3000, () => console.log('server started'));

o
institute for
I S r SOFTWARE
RESEARCH

Upstream

Downstream

Announcements
Documentation
Migration guide

nede

Easy and fast to
publish and use
for developers

- &

17-214/514

Breaking changes easy

More common to remove technical
debt, fix APIs

Sighaling intention with SemVer
No central release planning
Parallel releases more common

Upstream

HWG6: Data Analytics Framework

17-214/514 152 [Jj s

RRRRRRRR

Principles of Software Construction:
Objects, Design, and Concurrency

Design for Robustness:
Distributed Systems

Christian Kastner Vincent Hellendoorn

Carnegie Mellon University

arnegie Mel Iniversity
School of Computer Science
. . .
institute for
I S SOFTWARE
RESEARCH

17-214/514 153 [Jj s

RRRRRRRR

Where we are

Design for
understanding
change/ext.
reuse

robustness

17-214/514

Small scale: Mid scale: Large scale:
One/few objects Many objects Subsystems
Subtype Domain Analysis v GUI vs Core v

Polymorphism v

Information Hiding,
Contracts v

Immutability v

Types v
Static Analysis v/

Unit Testing v/

Inheritance & Del. v

Responsibility
Assignment,
Design Patterns,
Antipattern v

Promises/
Reactive P. v

Integration Testing v/

Frameworks and

Libraries v, APIs v

Module systems,
microservices v/

Testing for
Robustness v

Cl v, DevOps v,
Teams

institut r
SSSSSSSS
RRRRRRRR

Retry!

e Still need an exit-strategy

o Learn HTTP response codes
m Don’t bother retrying on a 403 (go find out why)

o Use the API response, if any

const delay = retryCount => new Promise(resolve =>
setTimeout(resolve, 10 ** retryCount));

const getResource = async (retryCount = 0, lastError = null) => {
if (retryCount > 5) throw new Error(lastError);

try {
return apiCall();

} catch (e) {
await delay(retryCount);
return getResource(retryCount + 1, e);
} https://www.bayanbennett.com/posts/retrying-and-exponential-backoff-with-promises/ v

RESEARCH

https://developer.mozilla.org/en-US/docs/Web/HTTP/Status

Proxy Design Pattern

e Local representative for remote object | cient [—
o Create expensive obj on-demand

o Control access to an object
e Hides extra “work” from client

o Add extra error handling, caching

o Uses indirection

17-214/514

Servicelnterface

«interface»

+ operation()

Service

- realService: Service

+ Proxy(s: Service)
+ checkAccess()
+ operation()

+ operation()

realService = s

if (checkAccess() {

realService.operation()

}

SSSSSSSS
RRRRRRRR

Ever looked at NPM Install’s output?

npm [TARY babel-eslint@10.1.0: babel-eslint is now @babel/eslint-parser. This package will no longer receiv
updates.

npm mﬂﬂm chokidar@2.1.8: Chokidar 2 will break on node v14+. Upgrade to chokidar 3 with 15x less dependenc
S .

npm svgo@l.3.2: This SVGO version is no longer supported. Upgrade to v2.x.X.

1]sJ(MWARN querystring@0.2.1: The querystring API is considered Legacy. new code should use the URLSearchPar
s API instead.

npm @hapi/joi@15.1.1: Switch to 'npm install joi'

npm AR rollup-plugin-babel@4.4.0: This package has been deprecated and is no longer maintained. Please U
@rollup/plugin-babel.

npm ﬁnﬂm fsevents@l.2.13: fsevents 1 will break on node v14+ and could be using insecure binaries. Upgrade
o fsevents 2.

npm mn]ﬂ uuid@3.4.0: Please upgrade to version 7 or higher. O0lder versions may use Math.random() in cert

n circumstances, which is known to be problematic. See https://v8.dev/blog/math-random for details.

npm MBEE querystring@0.2.0: The querystring API is considered Legacy. new code should use the URLSearchPar
s API instead.

npm ﬂﬂﬂﬂ sane@4.1.0: some dependency vulnerabilities fixed, support for node < 10 dropped, and newer ECMAS
ipt syntax/features added

1]sJ(MWARN flatten@1.0.3: flatten is deprecated in favor of utility frameworks such as lodash.

1]s](MWARN urix@e.1.0: Please see https://github.com/lydell/urix#deprecated

npm [JUAY @hapi/bourne@l.3.2: This version has been deprecated and is no longer supported or maintained

17-214/514 157 [Jf s

Eliminating Android dependency

Test

. Code Facebook
river
@Test void testGetFriends() {
assert getFriends() == ...;

}
List<Friend> getFriends() {

Connection c = http.getConnection();
FacebookAPI api = |new FacebookAPI(c);“””’
List<Node> persons = api.getFriends("john");
for (Node personl : persons) {

How about this one?

}

return result;
17-214¥514 158 [[f i

RRRRRRRR

Test Doubles

e Stand in for a real object under test
e Elements on which the unit testing depends (i.e.
collaborators), but need to be approxmated because

they are
o Unavailable
o EXxpensive
o Opaque
o Non-deterministic
e Not just for distributed systems!

17-214/514

http://www.kickvick.com/celebrities-stunt-doubles

Principle: Modular Protection

e Errors should be contained and isolated

o Afailing printer should not corrupt a document
o Handle exceptions locally as much as possible, return

[ol 1_C 11 1

S T ——
HTTP Status 500 -

o Dg

{372 Exception report

A Thany The server encountered an internal error that prevented it from fulfilling this request.

java.lang.NullPointerException
nl.hu.sp.lessonl.dynamicexample.LogoutServliet.doGet (LogoutServliet.java:39)
javax.servliet.http.HttpServliet.service (HttpServliet.java:618)
javax.servlet.http.HttpServliet.service (HttpServliet.java:725)
org.apache.tomcat.websocket.server.WsFilter.doFilter (WsFilter.java:52)

fITIT The full stack trace of the root cause is available in the Apache Tomcat/8.0.5 logs.

Apache Tomcat/8.0.5
17-214/514

o
institute for
160 [H]

Ensuring ldempotence

e How about writing/sending new data?

o Could fail anywhere
m Including in displaying success message after payment!

o POST is not idempotent

curl https://api.stripe.com/vl/charges \

USG Unique |dentiﬁerS -u sk_test_BQokikJOvBiI2HlWgH40l1fQ2: \
Server keeps track of -H "Idempotency-Key: AGI6FIMKGQIpHUTX" \
requests already handled pilleitsaue tapte

-d currency=usd \
-d description="Charge for Brandur" \
-d customer=cus_A8Z5MHwQS7jUmZ

https://stripe.com/blog/idempotency

17-214/514 161 [y s

https://stripe.com/blog/idempotency

Principles of Software Construction:

Objects, Design, and Concurrency

Organizing Systems at Scale:
Modules, Services, Architectures

Christian Kastner Vincent Hellendoorn

Carnegie Mellon University
School of Computer Science

institute for
I S SOFTWARE
RESEARCH

17-214/514

institute for
SSSSSSSS
RRRRRRRR

Where we are

Design for
understanding
change/ext.
reuse

robustness

17-214/514

Small scale: Mid scale: Large scale:
One/few objects Many objects Subsystems
Subtype Domain Analysis v GUI vs Core v

Polymorphism v

Information Hiding,
Contracts v

Immutability v
Types
Unit Testing v/

Inheritance & Del. v

Responsibility
Assignment,
Design Patterns,
Antipattern v

Promises/
Reactive P. v

Integration Testing v/

Frameworks and

Libraries v, APIs v

Module systems,
microservices

Testing for
Robustness v

Cl v/, DevOps,
Teams

institut r
SSSSSSSS
RRRRRRRR

Libraries.io

Search open source packages, frameworks and tools...

Libraries.io monitors 6,216,328 open source packages across 32 different package managers, so you don't have to. Find out more

i1\ Discover new software X Monitor your dependencies #° Maintain your OSS project € Use Libraries.io data
Search 6.22M packages by license, Stay up to date with notifications of Understand your users and make Use Libraries.io data in your
language or keyword, or explore updates, license incompatibilities or informed decisions about features applications, services or research.
new, trending or popular packages. deleted dependencies. with usage and version data. Use our AP to stay up to date.

Supported Package Managers

npm &\ Go Maven PyPI
2.1M Packages)) 444K Packages maven 443K Packages 405K Packages
v
9 Packagist ‘’am NuGet P/~ Rubygems PPN CocoaPods

1/-214/514 164 SOFTWARE

RESEARCH

Packages enough?

edu.
edu.
edu.
edu.
edu.

edu.

cmu

cmu

cmu.

cmu.

cmu.

cmu.

17-214/514

.Cs214
.Cs214

cs214.
cs214.
cs214.
cs214.

.santorini

.santorini.

santorini
santorini
santorini

santorini

gui

.godcards
.godcards.impl
.logic

.utils

ES2015 Modules

Syntax extension for modules (instead of module
pattern)

Explicit imports /

import { Location } from './location

exports import { Game } from './game'

Static import names import { Board } from './board
(like Java), supports
better reasoning by tools

export { Worker, newWorker }

17-214/514

The Diamond Problem

What now?

17-214/514 167 [s

RRRRRRRR

EQUIFAX

Recommended reading:
https://republicans-oversight.house.gov/wp-content/uploads/2018/12/Equifax-Report.pdf

17-214/514 168 sl

RESEARCH

https://republicans-oversight.house.gov/wp-content/uploads/2018/12/Equifax-Report.pdf

Database Server

Credit card server

17-214/514 169 o

RESEARCH

Microservices

/’.

& .. H
e af
\4} '

ik

»

Microservices Everywhere

17-214/514

Handle Errors Locally

Service A
Service B Service C Service D A

l

Service EA

/\

Service encapsulation hides failure Service E behind

Service B such that it is not observable by Service A.
(execution either the same as Service B, C success and D failure combo
or Service C success and B and D failure combo, depending on B.)

17-214/514 http://christophermeiklejohn.com/filibuster/2021/10/14/filibuster-4.html 171 wf

http://christophermeiklejohn.com/filibuster/2021/10/14/filibuster-4.html

S'ou.rce

P\'OCCSSON Lo
Apache Kafka O\ P,

Stream processor

/K/ stream

/ sink processot

State store O

FRocESS oR TO‘POLOG—Y

HEENENEENEN

Input stream

JIIINENENEN

Output stream

https://www.novatec-gmbh.de/en/blog/kafka-101-series-part-2-stream-processing-and-kafka-streams-api/
17-214/514 172 ek

https://www.novatec-gmbh.de/en/blog/kafka-101-series-part-2-stream-processing-and-kafka-streams-api/

Principles of Software Construction:
Objects, Design, and Concurrency

A Quick Tour of all
23 GoF Design Patterns

Christian Kastner Vincent Hellendoorn

Carnegie Mellon University
School of Computer Science

institute for
I S SOFTWARE
RESEARCH

17-214/514 173 [s

Where we are

Design for
understanding
change/ext.
reuse

robustness

17-214/514

Small scale: Mid scale: Large scale:
One/few objects Many objects Subsystems
Subtype Domain Analysis v GUI vs Core v

Polymorphism v

Information Hiding,
Contracts v

Immutability v
Types
Unit Testing v/

Inheritance & Del. v

Responsibility
Assignment,
Design Patterns,
Antipattern v

Promises/
Reactive P. v

Integration Testing v/

Frameworks and

Libraries v, APIs v

Module systems,
microservices v/

Testing for
Robustness v

Cl v/, DevOps,
Teams

institut
SSSSSSSS
RRRRRRRR

|. Creational Patterns

1. Abstract factory

2. Builder

3. Factory method
4. Prototype

5. Singleton

17-214/514

Singleton lllustration

public class Elvis {

private static final = new OF
public static () { return 5

private () {}

const elvis = { .. }
function getElvis() {

export { getElvis }

17-214/514 176 [s

RRRRRRRR

ll. Structural Patterns

Adapter
Bridge
Composite
Decorator
Facade
Flyweight

N o U s WwNhRE

Proxy

17-214/514

177

||||||||||||
SSSSSSSS
RRRRRRRR

Decorator vs Strategy?

interface GamelLogic {
isValidMove(w, X, V)
move(w, X, V)

class BasicGamelogic
implements GamelLogic { .. }

class AbstractGodCardDecorator
implements GamelLogic { .. }

class PanDecorator
extends AbstractGodCardDecorator
implements GamelLogic { .. }

interface GamelLogic {
isValidMove(w, x, V)
move(w, X, V)

}

class BasicGamelogic

implements GamelLogic {

constructor(board) { .. }
isValidMove(w, x, v) { .. }
move(w, x, y) { .. }

}

class PanDecorator
extends BasicGamelLogic {
move(w, x, y} {

=

lll. Behavioral Patterns

RPOWLOONOUNAEWNE

Chain of Responsibility
Command
Interpreter
lterator

Mediator
Memento
Observer

State

Strateg%/
Template method
Visitor

17-214/514

Strategy vs Template Method

AbstractClass step1()
if (step2() {
step3()
+ templateMethod() }
+stepl() else {
+ step2() step4()
+step3() }
+ step4()
I I
ConcreteClass1 ConcreteClass2
+ step3() + stepl()
+ step4() + step2()
+ step3()
+ step4()

17-214/514

strategy.execute()

| Client I- -----

Context

- strategy

>—s Strategy

+ setStrategy(strategy)
+ doSomething()

str = new SomeStrategy()
context.setStrategy(str)
context.doSomething()

Wfexe

other = new OtherStrategy()
context.setStrategy(other)
context.doSomething()

«interface»

+ execute(data)

ConcreteStrategies

+ execute(data)

180

institute for
SOFTWARE
RESEARCH

Principles of Software Construction: Objects,
Design, and Concurrency

{Static & Dynamic} x {Typing & Analysis}

Christian Kastner Vincent Hellendoorn

Carnegie Mellon University
School of Computer Science

institute for
I S SOFTWARE
RESEARCH

17-214/514 181 [s

RRRRRRRR

Where we are

Design for
understanding
change/ext.
reuse

robustness

17-214/514

Small scale: Mid scale: Large scale:
One/few objects Many objects Subsystems
Subtype Domain Analysis v GUI vs Core v

Polymorphism v

Information Hiding,
Contracts v

Immutability v

Types vV
Static Analysis v

Unit Testing v/

Inheritance & Del. v

Responsibility
Assignment,
Design Patterns,
Antipattern v

Promises/
Reactive P. v

Integration Testing v/

Frameworks and

Libraries v, APIs v

Module systems,
microservices v/

Testing for
Robustness v

Cl v, DevOps v,
Teams

institut r
SSSSSSSS
RRRRRRRR

How Do You Find Bugs?

® Run Itf) public class Fails {
public static void main(String[] args) {

getValue(©: null);

private static int getValue(Integer i) {
return i.intValue();

Exception in thread "main" java.lang.NullPointe ion Create breakpoint : Cannot invoke "java.lang.Integer.intValue()" because "i" is null

at misc.Fails.getValue(Fails.java:9)
at misc.Fails.main(Fails.java:5)

17-214/514 183 sl

RESEARCH

Static vs. Dynamic Typing
e The more knowledge we inject in the code, the more

bugs we can catch at compile time
o Types, nullity annotations, invariants

e |[s it worth it?
o Dynamic typing can severely limit inference

Improve the Maintainabih'ty

o But... stati
s? An Empirica] Study

Sebastian KJej
> cmschmager
- Stt?fan Hanenberg Rotpain Robbes,
CI'SH)’ of Duisbu;g Ess, EnC Tan(e Andreag Stefi
-Esse r s Stefik
Essen, Gern en Computer Scie
sebastian Kleinschmaaer i Unive.es e2¢e Dept (DCCy) D
; schmage 1 nivers . 2 artme;
P agt‘r@slud.um.du,:‘dc ;r\xly of Chile, Chjle Southe:, m_“"f of C'ompuler Science
12 @icb.uni-dye. de Z: bes@dcc.uchile.] 'E(‘;'-" University Edwardsvijje
anter@dce uchila 1 wardsville 11 =

17-214/514

Static Analysis

e How?
o Program analysis +

Vocabulary of patterns

17-214/514

color = input("Enter your favourite color: ")

| | HEH | | I
T L el e e S Rt | e T
H l»-—-lﬂ | — | -_‘ Sc NG:
' v - - + w - ANNI !
'
H | ENCODING NAME oP NAME oP NAME oP ENDMARKER ‘ '
: !
N '
i ‘ ‘utf-8' color = input (“Enter your favourite color: “) ’ | I
! !
!
!
""""" TOKEN i
Module ANALYZER '
......... (Top '
l nod '
Bodyl0] |
e e STATICCODE |
________ ANALYSIS
Assign
A
4 ¥ AST
";4 """ i e ANALYZER
ame . '
id = ‘color’ : Call :
Lo —
Store 1 ' Str
----- Name "
' ¥ i 8 Enter your
. id ="input’ | ' %]
Yotes valu 5 . , favourite color: '
isbelng === leecececeewd leccccccccopm-
tored) (Den:
e
Load |
PARSING

https://deepsource.io/blog/introduction-static—code—anall)és!i_’s/ .

institute for
| S SOFTWARE
RESEARCH

Statl C An a I yS I S class UnusedImportChecker(BaseChecker):

def __init_ (self):
self.import_map = defaultdict(set)

o Step 3: register analyz self.name_map = defaultdict(set)
O At the Core Walk the tr‘ def _add_imports(self, node):

for import_name in node.names:
. # Store only top-level module name ("os.path" -> "os").
O Sometlmes more ComF # We can't easily detect when "os.path" 1is used.
name = import_name.name.partition(”.")[@]
self.import_map[self.filename].add((name, node.lineno))

def visit_Import(self, node):
self._add_imports(node)

def visit_ImportFrom(self, node):
self._add_imports(node)

def visit_Name(self, node):
We only add those nodes for which a value is being read from.
if isinstance(node.ctx, ast.Load):
self.name_map[self.filename].add(node.id)

institute for

17-214/514 httos://deepsource.io/bloa/introduction-static-code-analvsis/186 SOFTWARE

Static Analysis at Google
e Centered around FindBugs (succeeded by SpotBugs)

o Essentially, a huge collection of risky patterns on Java

bytecode

o Annotated with five levels of concern

CONTRIBUTED AR TICLES

10.1145/3188720
Comments

; ; —) i .

— §0ff\vare bugs cost developers and cos.

|
Password

» Forgot Passwon“

SSSSSSSS
H

TriCoder

package com.google.devtools.staticanalysis;
public class Test {

~ Lint Missing a Javadoc comment.
Java
1:02 AM, Aug 21

Please fix

Not useful

public boolean foo() {
return getString() == "foo".toString();

~ ErrorProne String comparison using reference equality instead of value equality

StringEquality
1:03 AM, Aug 21

Please fix

(see h

)

[lIdepotIgoogIe3ljavalcomlgoogIeldevtoolslstaticanalysisl‘l’ est.java

package com.google.devtools.staticanalysis;

public class Test {
public boolean foo() {
return getString() == "foo".toString();
}

public String getString() {
return new String("foo");
}
}

17'2 m Cancel

package com.google.devtools.staticanalysis;
import java.util.Objects;

public class Test {
public boolean foo() {
return Objects.equals(getString(), "foo".toString());
}

public String getString() {
return new String("foo");
}
}

188

institute for
SOFTWARE
RESEARCH

Principles of Software Construction:
Objects, Design, and Concurrency

DevOps

Christian Kastner Vincent Hellendoorn

Carnegie Mellon University
School of Computer Science

institute for
I S SOFTWARE
RESEARCH

17-214/514 189 [[j i

Where we are

Design for
understanding
change/ext.
reuse

robustness

17-214/514

Small scale: Mid scale: Large scale:
One/few objects Many objects Subsystems
Subtype Domain Analysis v GUI vs Core v

Polymorphism v

Information Hiding,
Contracts v

Immutability v

Types v
Static Analysis v/

Unit Testing v/

Inheritance & Del. v

Responsibility
Assignment,
Design Patterns,
Antipattern v

Promises/
Reactive P. v

Integration Testing v/

Frameworks and

Libraries v, APIs v

Module systems,
microservices v/

Testing for
Robustness v

Cl v/, DevOps,
Teams

nstitute for
SSSSSSSS
RRRRRRRR

Release management

with branches

Bus fix

Release 2 ;

1

A A

QA passes - goes alpla Public release

' Bug fix a :

Release 1 ; A A ~ x
QA passes - goes|alpha| Public release
Development
A

End of Release 1| development

New festime ¥ (for Relesse 2)

N 5
New festime 2 (for ase 2)

T A
il‘.nd of Release 2 developipent

17-

New festime 3 (for Relesse 3)

X

A Project milestone

x End of branch

T Create branch/merge changes
191

SSSSSSSS
RRRRRRRR

Continuous Delivery

Deliver to
Staging

Unit Test Platform Test

Application
Acceptance tests

Deploy to
Production

Post
deploy tests

Continuous Deployment

Unit Test Platform Test Deliver to Application Deploy to Post
Staging Acceptance tests Production deploy tests
17-214/514

192

17-214/514 193 sl

C|

Heavy Tooling and Automation
“

~Application Lifecycle Mgmt. — SCM/VCS ————Testing —————Deployment ———————Cloud / laa$S / PaaS

[heroki
YIRA @mingle @77l s R bt *Octopus Deploy (XL) DepLoY ""3“‘35&‘" Eflheroku
0 glt & © Selenium Dokky Flynn (Y)
@ ¥ "“"““e ZRUNDECK (o -

(S

mercurial S — AZUrE CLOUDFOUNDRY
Team Foundation Server piuotaTracker 6 Q GitHub GAUNTLT S @ N NOLIO Google Cloud Platform arackspace
& Basecamp’ J»asana - © Bitbucket V gé} @atling ZAP > Juju) n openstack c‘f) O i
mm.::cnon TGitBucket CIthad U B0 7 ElasticBox Spraler # DEIS 2PPfog opemerrr LR
nit
r Communication & ChatOps rCl . ‘\K ARMA r~Config Mgmt. /Provisioning [Orchestration & Scheduling
: H g) wercker SNa :
4> slack QHipChat #irc 9 ' & snap BFitNesse . “\ - e (57 MESOSPHERE o
TC. TeamClty @Jenkins / CHEF ANSIBLE MARATHON

o
{:Bamboo

RYVERE @ Mattermost

Js unit testing

& AR

) 1] E’
g Dcircleci : e Ne Poweri 65 @ oy Q) Nomad

008 | ._I > go Travis CI cucumber RANCHER 585

ws Nestor mA l CODESHIP VVAGRANT .TFRW FORM B MESOS
~Knowledge Sharing rBuild % & O Galen Framework Artefact Management —————— Bl / Monitoring / Logging
i 7 MRGradle GRUNT logstash == elasticsearch

Jebylly Gsht prae i @ LOAD IMPACT {0 QUAY ;,ungk; Vectér [kibana E

githl.b pages * RS DATADOG

docker Js ‘A W /JMeter ‘* g Z2EBR 2 APPDYNAMICS]
Y A — 24
X Confluence \(‘-" Nant ‘/.\ e i 5 =BlazeMeter DockerHUB 2 GR{K Z!PKIN |GoogleAna\yucs x-pack
. 4 ot W

oS
‘ " REGISTRY Bower d)senrrr g Prometheus
Mark i Read the Docs _ L)) MSBuild pytest < © New Relic. wzcsmu.

down ' & PINPOINT
° . Leiningen Rake Frog Artifact) 7
@4 apiblueprint - m ‘ Q JFrog Artifactory pqtf;&g Lo

N4
'j Browsersync BRunscope sensu

dynatrace |

- Database Management . S {5Grafana g | 2
[a Pall roprite e
WFLARUM \“,) ﬁiOPEN‘API 4\ DBmaestio DBDeploy - SpeCﬂC?IV d @nuget @ R."VCUNNATSII
\“"(Mw v Flocker TPV N = Unitnet rch*,;: ” NISonatype [A] Alrbracl;e;o . Z
i - jockeR! = . N xUnit.ne archive pagerduty
Diiscourse Treddit || 3 redgate LIQUIsBASE (L) Newman ocm INeXUsS e @ o I Kesn10

17-z14/514 194 - kel

RESEARCH

A/B Testing

Original: 2.3% Long Form: 4.3%
t G'owe : 'Er-c " Gfoove o - o
SaaS!;& eCommerce Everything you need to deliver awesome,
§ustomer Support. personal support to every customer.

WS Managing customer support requests
in Groove is so easy. Way better
than'trying to use Gmail or a mote

In'.w.'.-.).\ ! and alw

ALLAN UBLS CROOVE 10 COOW ol BUSIALYE 1ORES HOW

complicated help desk.”

Tl Gritfin. Custimer Crumplon M Alscate

Howr (1 works What you got What #t costs How wo're atfedent

You'll be up and running in less than a minute.

17-214/514 195 [s

RESEARCH

Looking Forward:
Beyond Code-Level Concerns

17-214/514 196 [s

RRRRRRRR

Where we are

Design for
understanding
change/ext.
reuse

robustness

17-214/514

Small scale: Mid scale: Large scale:
One/few objects Many objects Subsystems
Subtype Domain Analysis v GUI vs Core v

Polymorphism v

Information Hiding,
Contracts v

Immutability v

Types v
Static Analysis v/

Unit Testing v/

Inheritance & Del. v

Responsibility
Assignment,
Design Patterns,
Antipattern v

Promises/
Reactive P. v

Integration Testing v/

Frameworks and

Libraries v, APIs v

Module systems,
microservices v/

Testing for
Robustness v

Cl v, DevOps v,
Teams

nstitute for
SSSSSSSS
RRRRRRRR

This Course
We focused on code-level concerns

Writing maintainable, extensible, robust, and correct
code

Design from classes to subsystems

Testing, concurrency, basic user interfaces

17-214/514 198 [y s

From Programming to Software Engineering

17-214/514 199 [[j s

RRRRRRRR

“Software Engineering”
was a provocative term

17-214/514

e e.g., Producing a car or bridge
o Estimable costs and risks
o Well-defined expected results
o High quality
e Separation between plan and production

o Simulation before construction

o Quality assurance through measurement

o Potential for automation

17-214/514 201 [s

Software engineering in the real world

|th C HealthCare.gov
e €.9., Hea are.gov ,
Get Coverage Keep or Update Your Plan SeeTopics ~ Get Answers Q

o Estimable costs and risks 2019 Open Enrollment S it
here - and ends Dec 15 - .

o Well-defined expected results

o High quality
o Separation between plan and production
o Simulation before construction
o Quality assurance through measurement

o Potential for automation

17-214/514 202 [[f s

Software is written by humans

Sociotechnical system: interlinked system of people,
technology, and their environment

Key challenges in how to

identify what to build (requirements)

coordinate people building it (process)

assure quality (speed, safety, fairness)

contain risk, time and budget (management)
sustain a community (open source, economics)

17-214/514 203 [s

Process

17-214/514 204 || 5

Example: Process

= Win Royce and Barry Boehm, 1970
Engineering

— T -
— I -
w ..
— I -
o

17-214/514

Cost to
Correct

Phase Thata
Defect Is Created

Requirements

Architecture

Detailed design \

LN

Requirements Architecture Detailed Construction Maintenance
design

Construction

Phase That a Defect Is Corrected

Copyright 1998 Steven C. MeConnell. Reprinted with permission
17-214 /5 14 frora Soffware Project Survival Guide (Ilicrosoft Press, 1998). 206 etiute for

SOFTWARE
RESEARCH

Agile in a nutshell

e A project management approach that seeks to
respond to change and unpredictability, primarily using
incremental, iterative work sequences (often called
“sprints”).

e Also: a collection of practices to facility that approach.

e All predicated on the principles outlined in “The
Manifesto for Agile Software Development.”

17-214/514 |

207 it for

SSSSSSSS
RRRRRRRR

The Manifesto for Agile Software

Development (2001)

Value

Individuals and
interactions

Working software

Customer collaboration

Responding to change

17-214/514

over

over

over

over

Processes and tools

Comprehensive
documentation

Contract negotiation

Following a plan

Pair Programming

17-214/514

Scrum Process

17-214/514

PrRoOopucT
BACkLOG

DAILY SCRUM
MEETING

SPRINT
BAckLOG

: 2-4 WEEKS

POTENTIALLY
SHIPPABLE
PrROopDucCT
INCREMENT

210 peanelEy
RESEARCH

QA and Process

17-214/514 211 [s

Beyond testing

Many QA approaches
Code review, static analysis, formal verification, ...

Which to use when, how much?

Requirrments
specificdon

Detailed
design

System
specificdon

System Sub-system Module and
Acceptance . . ; . .
test plan integation integation unit code
test plan test plan and test

System Sub-system Y}
integation tes integation test)

Acceptance Y},
test /

17-214/514

L N .
institute for

(Y ff sorrvare
RESEARCH

@Workspace ‘ “+) Steven Bromley - Inbox... x| %} Replication)(1 @ Sten

x

9) Do you want to send this notice with these comments?
~

Choose Yes to send as is.
To: Choose No to send without comments.
' Choose Cancel to continue editing.

e~
N

e~
S

Yes No Cancel

Subj

17-214/514

How to get students to write tests?

17-214/514 215 [5

RRRRRRRR

“‘We had initially scheduled time to write tests for both
front and back end systems, although this never
happened.”

17-214/514 216 Lo

“Due to the lack of time, we could only conduct
individual pages’ unit testing. Limited testing was done
using use cases. Our team felt that this testing process

was rushed and more time and effort should be

allocated.”

17-214/514 217 [s

RRRRRRRR

Time estimates (in hours):

Activity Estimated | Actual ___

testing plans
unit testing
validation testing
test data

, A W W
_ N Rk O

17-214/514 218 Lo

219 . "
17-214/514 219 [H] v

RRRRRRRR

How to get students to write tests?

How to get them to take testing seriously,
not just as an afterthought?

17-214/514 220 [| 5

RRRRRRRR

How to get developers to write tests?

17-214/514 221 [|f 5

RRRRRRRR

Test Driven Development

e Tlestsfist! < - - -7 —Repeat- — — -

Test
succeeds

o Popular agile technique
« Write tests as specifications before code
« Never write code without a failing test

o Claims:
+ Design approach toward testable design
« Think about interfaces first
« Avoid writing unneeded code
« Higher product quality (e.g. better code, less defects)
« Higher test suite quality

succeed

« Higher overall productivity

(CC BY-SA 3.0)
Excirial

17-214/514 222 sl

RESEARCH

http://en.wikipedia.org/wiki/User:Excirial

How to get developers to run tests?

17-214/514 223 [| 5

RRRRRRRR

& Build #17 - wyvernla: x 5
€« C A @ https://travis-ci.org/y

sernlang/wyvern

Help

o

o

| wyvernlang / wyvern ©

17 ° SimpleWyvern-devel Asserting false (works on Linux, soits C

-

X= Remove Log Download Log

Using worker: worker-linux-027f08490-1.bb.travis-ci.org:travis-linux-2 (J

Build system information system_info

$ git clone --depth=5@ --branch=SimpleWyvern-devel git.checkout

$ jdk_switcher use oraclejdk8

Switching to Oracle JDK8 (java-8-oracle), JAVA_HOME will be set to /usr/lib/jvm/java-8-oracle
$ java -Xmx32m -version

java version "1.8.0_31"

17-214/514 SE Runtime Environment (build 1.8.0 31-b13

How to get developers to use static analysis?

17-214/514 225 [| 5

RRRRRRRR

/ O Refactorings by ckaestne = x

» E=Tiod X

€ - C |8 GitHub, Inc. [US]|https://github.com/ckaestne/fypeChef/puII/28

Qdede R C B9 O =

GitHub This repository Search Explore Features Enterprise Blog

Q ckaestne / TypeChef

Refactorings #28

joliebig merged 17 commits into 1ivenezz from cs116rapr 9 months ago

¥® Conversation 3 o Commits 17 [#) Files changed 97
. ckaestne commented on Jan 29 Owner
@joliebig

Please have a look whether you agree with these refactorings in CRewrite

key changes: Moved ASTNavigation and related classes and tumed EnforceTreeHelper into an object

[ﬂ ckaestne added some commits on Jan 29

[l remove obsolete test cases
. refactoring: move AST helper classes to CRewrite package where it is .. -
[l improve readability of test code

[l removed unused fields

- ckaestne commented on Jan 29 Owner

Can one of the adm

BN | i o g g e S e S g L S e

* Star 20 Y Fork 12

(&4
(0}
+1,149 -10,129 HEER
. : i |
Labels "
None yet
fole
Milestone
No milestone
Assignee

No one assigned

2 participants

https://help.github.com/articles/using-pull-requests/]

Code Improvements
Understanding

Social Communication
Defects

External Impact
Testing

Review Tool
Knowledge Transfer
Misc

]...,””

0% 10% 20% 30%

17-214/514 227 i

How to get developers to use static analysis?

package com.google.devtools.staticanalysis;
public class Test {

~ Lint Missing a Javadoc comment.
Java
1:02 AM, Aug 21

Please fix Not useful

public boolean foo() {
return getString() == "foo".toString();

~ ErrorProne String comparison using reference equality instead of value equality

fg'g?ﬁq'-i ty 1 (see http://code.google.com/p/error-prone/wiki/StringEquality)
03 AM, Aug 2
Please fix

Suggested fix attached: show Not useful

}

public String getString() {

PGy AP e el 7 W EOCS N b <Y LT

Are code reviews worth it?

17-214/514 229 [s

Requirements

17-214/514 230 [s

Requirements

o What does the customer want?
o What is required, desired, not necessary? Legal, policy constraints?

» Customers often do not know what they really want; vague, biased
by what they see; change their mind; get new ideas...

» Difficult to define requirements precisely

o (Are we building the right thing? Not: Are we building the thing
right?)

231 2 f
17-214/514 231

Lufthansa Flight 2904

e The Airbus A320-200
airplane has a
software-based braking
system

e Engaging reverse thrusters
while in the air is very
dangerous: Only allow
breaking when on the
ground

232 .
17-214/514 232 [Hj o

Lufthansa Flight 2904

Two conditions needed to “be on the ground”:

1. Both shock absorber bear a load of 6300 kgs
2. Both wheels turn at 72 knots (83 mph) or faster

233)
17-214/514 233 Lo

>

17-214/%

institute for
4 I S SOFTWARE
RESEARCH

Call for tenders,

_ Project contract
proposal evaluation Project workplan
Project estimations

(size, cost, schedules) \Y\ / / Follow-up directives

Software prototype, . >, (Requirements
mockup Document

> Software architecture

\ Software evolution

Acceptance test da’a / \ directives

Quality Assurance Implementation Software documentation
checklists d|re chives User manual

N\

17-214/514 235 [fj s

Interviews

Abb J on es1 You can edit anything in blue print Abby has always liked music. When she is on her way to work in the morning.
y B N * 28 years old she listens to music that spans a wide variety of styles. But when she arrives at

» Eifbloved A tant work, she turns it off, and begins her day by scanning all her emails first to get
) P .ye as_an ccouman an overall picture before answering any of them. (This exira pass takes time
* Lives in Cardiff, Wales but seems worth it.) Some nights she exercises or stretches, and sometimes
she likes to play computer puzzle games like Sudoku

G;ckground and skills \

Abby works as an accountant. She is comfortable with the technologies she uses regularly, but
she just moved to this employer 1 week ago, and their software systems are new to her.

Abby says she's a “numbers person’, but she has never taken any computer programming or IT

systems classes. She likes Math and knows how to think with numbers She writes and edits
spreadsheet formulas in her work.

In her free time, she also enjoys working with numbers and logic. She especially likes working out

{uzzles and puzzle games, either on paper or on the computer /‘
Motivations and Attitudes * Attitude toward Risk: Abby'’s life is a little \‘
= Motivations: Abby uses technologies to = Computer Self-Efficacy: Abby has low complicated and she rarely has spare time. So
accomplish her tasks. She learns new confidence about doing ynfamiliar computing she is risk averse about using unfamiliar
technologies if and when she needs to, but tasks. If problems arise with her technology, technologies that might need her to spend extra
prefers to use methods she is already familiar she often blames herself for these problems. fime on them, even if the new features might be
and comfortable with, to keep her focus on the This affects whether and how she will persevere relevant. She instead performs tasks using
tasks she cares about. with a task if technology problems have arisen. familiar features, because they're more
predictable about what she will get from them
and how much time they will take.

% /
N

ﬁlow Abby Works with Information and Learns:

Infarmatinm Droarcroaccinrm fulas ARhywv teande tawarde A AcAarmnrabanch/e e | earnina: bv Proceses ve bv Tinkerina: When learnina new technoloav

Advertisement:. SE @ CMU

Many courses

Spring: SE for Startups, ML in Production, Program Analysis, WebApps
Fall: Foundations of SE, API Design

Master level: Formal methods, Requirements, Architecture, Agile, QA, DevOps,

Software Project Mgmt, Scalable Systems, Embedded Sys., ...
Technical foundations: ML, Distributed Systems

Many research opportunities -- contact us for pointers

https://www.cmu.edu/scs/isr/reuse/
https://se-phd.isri.cmu.edu/

Software Engineering Concentration / Minor

17-214/514

https://www.cmu.edu/scs/isr/reuse/
https://se-phd.isri.cmu.edu/

One Last Survey E

hitps://bit.ly/214last

17-214/514 239 [5

RRRRRRRR

https://bit.ly/214last

Summary

Looking back at one semester of code-level design,
testing, and concurrency

Looking forward to human aspects of software
engineering, including process and requirements

17-214/514 240 ek

