
117-214/514

Principles of Software Construction:
Objects, Design, and Concurrency

The Last One:
Locking Back & Looking Forward

Christian Kästner Vincent Hellendoorn

217-214/514

Looking Back at the Semester:
194 slides from 23 lectures in 40 min

317-214/514

Principles of Software Construction:
Objects, Design, and Concurrency

Introduction, Overview, and Syllabus

Christian Kästner Vincent Hellendoorn

417-214/514

Welcome to the era of “big code”

(informal reports)

517-214/514

Modern Software Engineering
Nobody wants to write a million lines of code.

● Instead, you use libraries
○ E.g., import Android => +12M LOC
○ You don’t write most of the code you use

■ And why would you want to?

● And your libraries use libraries
○ Et cetera
○ https://npm.anvaka.com/#/view/2d/gatsby

https://npm.anvaka.com/#/view/2d/gatsby

617-214/514

Our goal: understanding both the building blocks and also the
design principles for construction of software systems at scale

From Programs to Applications and
Systems
Writing algorithms, data

structures from scratch

Functions with inputs
and outputs

Sequential and local computation

Full functional specifications

Reuse of libraries,
frameworks

Asynchronous and
reactive designs

Parallel and distributed
computation

Partial, composable,
targeted models

717-214/514

User needs
(Requirements) CodeMiracle?

Maintainable?
Testable?
Extensible?
Scalable?
Robust? ...

817-214/514

Semester overview
● Introduction to Object-Oriented

Programming
● Introduction to design

○ Design goals, principles, patterns

● Designing objects/classes
○ Design for change
○ Design for reuse

● Designing (sub)systems
○ Design for robustness
○ Design for change (cont.)

● Design for large-scale reuse

Crosscutting topics:
● Building on libraries and frameworks
● Building libraries and frameworks
● Modern development tools: IDEs,

version control, refactoring, build
and test automation, static analysis

● Testing, testing, testing
● Concurrency basics

917-214/514

Which version is better?
static void sort(int[] list, boolean ascending) {
 …
 boolean mustSwap;
 if (ascending) {
 mustSwap = list[i] > list[j];
 } else {
 mustSwap = list[i] < list[j];
 }
 …
}

interface Order {
 boolean lessThan(int i, int j);
}
class AscendingOrder implements Order {
 public boolean lessThan(int i, int j) { return i < j; }
}
class DescendingOrder implements Order {
 public boolean lessThan(int i, int j) { return i > j; }
}

static void sort(int[] list, Order order) {
 …
 boolean mustSwap =
 order.lessThan(list[j], list[i]);
 …
}

Version A:

Version B':

1017-214/514

it depends
Depends on what?
What are scenarios?
What are tradeoffs?

In this specific case, what
would you recommend?
(Engineering judgement)

1117-214/514

Some qualities of interest, i.e., design goals
Functional

correctness Adherence of implementation to the specifications

Robustness Ability to handle anomalous events

Flexibility Ability to accommodate changes in specifications

Reusability Ability to be reused in another application

Efficiency Satisfaction of speed and storage requirements

Scalability Ability to serve as the basis of a larger version of the application

Security Level of consideration of application security

Source: Braude, Bernstein,
Software Engineering. Wiley

2011

1217-214/514

Trying to get back to normal with …
gestures widely everything

Talk to us about concerns and
accommodations

1317-214/514

Disclaimer:
This semester, we are changing a
lot in this course.
Some things will go wrong.
Have patience with us.
Give us feedback.

CC BY-NC-ND 2.0 Suzanne Hamilton

1417-214/514

Principles of Software Construction
(Design for change, class level)

Starting with Objects
(dynamic dispatch, encapsulation)

Christian Kästner Vincent Hellendoorn

1517-214/514

Where we are

Subtype
Polymorphism ✓

Information Hiding,
Contracts ✓

Immutability ✓

Types ✓
Static Analysis ✓

Unit Testing ✓

Domain Analysis ✓

Inheritance & Del. ✓

Responsibility
Assignment,

Design Patterns,
Antipattern ✓

Promises/
Reactive P. ✓

Integration Testing ✓

GUI vs Core ✓

Frameworks and
Libraries ✓, APIs ✓

Module systems,
microservices ✓

Testing for
Robustness ✓

CI ✓, DevOps ✓,
Teams

Design for

understanding

change/ext.

reuse

robustness

...

Small scale:
One/few objects

Mid scale:
Many objects

Large scale:
Subsystems

1617-214/514

Today: How Objects
Respond to Messages

d:Drawing

shapes:Shape[]

draw(Canvas)

s0:Square

x, y, w, h:int

draw(Canvas)
move(int, int)
…

s1:Line

from, to:Point

draw(Canvas)
move(int, int)
getLength()
…

1717-214/514

Interface declared explicitly with TypeScript
interface Counter {
 v: number;
 inc(): void;
 get(): number;
 add(y: number): number;
}
const obj: Counter = {
 v: 1,
 inc: function() { this.v++; },
 get: function() { return this.v; },
 add: function(y) { return this.v + y; }
}
obj.foo();
// Compile-time error: Property 'foo' does not exist

v must be part of the
interface in TypeScript.
Ways to avoid this later.

The object assigned to
obj must have all the
same methods as the
interface.

1817-214/514

Multiple Implementations of Interface
interface Point {

int getX();
int getY();

}
class PolarPoint implements Point {

double len, angle;
PolarPoint(double len, double angle)

{this.len=len; this.angle=angle;}
int getX() { return this.len * cos(this.angle);}
int getY() { return this.len * sin(this.angle); }
double getAngle() {…}

}
Point p = new PolarPoint(5, .245);

1917-214/514

How to hide information?
class CartesianPoint {

int x,y;
Point(int x, int y) {

this.x=x;
this.y=y;

}
int getX() { return this.x; }
int getY() { return this.y; }
int helper_getAngle();

}

const point = {
x: 1, y: 0,
getX: function() {…}
helper_getAngle:

function() {…}
}

2017-214/514

Principles of Software Construction:
Objects, Design, and Concurrency

IDEs, Build system, Continuous
Integration, Libraries

Christian Kästner Vincent Hellendoorn

2117-214/514

Where we are

Subtype
Polymorphism ✓

Information Hiding,
Contracts ✓

Immutability ✓

Types ✓
Static Analysis ✓

Unit Testing ✓

Domain Analysis ✓

Inheritance & Del. ✓

Responsibility
Assignment,

Design Patterns,
Antipattern ✓

Promises/
Reactive P. ✓

Integration Testing ✓

GUI vs Core ✓

Frameworks and
Libraries ✓, APIs ✓

Module systems,
microservices ✓

Testing for
Robustness ✓

CI ✓, DevOps ✓,
Teams

Design for

understanding

change/ext.

reuse

robustness

...

Small scale:
One/few objects

Mid scale:
Many objects

Large scale:
Subsystems

2217-214/514

IDEs
Automate common programming actions:
● Handy refactorings, suggestions

○ E.g., just press `alt+enter` in IntelliJ while highlighting nearly
any code

■ Keyboard shortcuts are super useful: explore your IDE!
○ These can make you a better programmer: encode a lot of

best-practices
■ Though, don’t read into them too much

2317-214/514

Build Systems
● These days: intricately tied with IDEs, package managers
● Projects often come with a build config file or two

○ ‘pom.xml’ for Maven
○ ‘tsconfig.json’ + ‘package.json’ for TypeScript+NPM -- the second deals with

packages
○ These can be nested, one per (sub-)directory, to compose larger systems

■ On GitHub, you can create links across repositories

○ Specifies:
■ Compilation source and target version
■ High-level configuration options
■ Targets for various phases in development

● “lifecycle” in Maven; e.g. ‘compile’, ‘test’, ‘deploy’
■ Often involving plugins
■ Dependencies with versions

● Not shown: in package.json

2417-214/514

Continuous integration – Travis CI
Automatically builds, tests,
and displays the result

2517-214/514

HW1: Extending the Flash Card System

2617-214/514

Principles of Software Construction:
Objects, Design, and Concurrency

Specifications and unit testing,
exceptions

Christian Kästner Vincent Hellendoorn

2717-214/514

Where we are

Subtype
Polymorphism ✓

Information Hiding,
Contracts ✓

Immutability ✓

Types ✓
Static Analysis ✓

Unit Testing ✓

Domain Analysis ✓

Inheritance & Del. ✓

Responsibility
Assignment,

Design Patterns,
Antipattern ✓

Promises/
Reactive P. ✓

Integration Testing ✓

GUI vs Core ✓

Frameworks and
Libraries ✓, APIs ✓

Module systems,
microservices ✓

Testing for
Robustness ✓

CI ✓, DevOps ✓,
Teams

Design for

understanding

change/ext.

reuse

robustness

...

Small scale:
One/few objects

Mid scale:
Many objects

Large scale:
Subsystems

2817-214/514

String read(String path) {
 try {
 return Files.lines(Path.of(path))
 .collect(Collectors.joining(“\n”));
 }
 catch (IOException e) {

// implement fall-back behavior.
 }
}

Handling Exceptions

2917-214/514

Testing
How do we know
this works?

Testing

Are we done?

int isPos(int x) {
 return x >= 0; // What if?
}

@Test
void test1IsPos() {
 assertTrue(isPos(1));
}

@Test
void test0IsNotPos() {
 assertFalse(isPos(0)); // Fails
}

3017-214/514

Docstring Specification
class RepeatingCardOrganizer {
 ...
 /**
 * Checks if the provided card has been answered correctly the required
number of times.
 * @param card The {@link CardStatus} object to check.
 * @return {@code true} if this card has been answered correctly at least
{@code this.repetitions} times.
 */
 public boolean isComplete(CardStatus card) {
 // IGNORE THIS WHEN SPECIFICATION TESTING!
 }
}

3117-214/514

Principles of Software Construction:
Objects, Design, and Concurrency

Test case design

Christian Kästner Vincent Hellendoorn

3217-214/514

Where we are

Subtype
Polymorphism ✓

Information Hiding,
Contracts ✓

Immutability ✓

Types ✓
Static Analysis ✓

Unit Testing ✓

Domain Analysis ✓

Inheritance & Del. ✓

Responsibility
Assignment,

Design Patterns,
Antipattern ✓

Promises/
Reactive P. ✓

Integration Testing ✓

GUI vs Core ✓

Frameworks and
Libraries ✓, APIs ✓

Module systems,
microservices ✓

Testing for
Robustness ✓

CI ✓, DevOps ✓,
Teams

Design for

understanding

change/ext.

reuse

robustness

...

Small scale:
One/few objects

Mid scale:
Many objects

Large scale:
Subsystems

3317-214/514

CreditWallet.pay()
public boolean pay(int cost, boolean useCredit) {
 if (useCredit) {
 if (enoughCredit) {
 return true;
 }
 }
 if (enoughCash) {
 return true;
 }
 return false;
}

Test
case

useCredit
Enough
Credit

Enough
Cash

Result Coverage

1 T T - Pass --

2 F - T Pass --

3 F - F Fails Statement

3417-214/514

Structures in Code

3517-214/514

Writing Testable Code

Aim to write easily testable code

● Which is almost by definition more modular

public List<String> getLines(String path) throws IOException {
 return Files.readAllLines(Path.of(path));
}

public boolean hasHeader(List<String> lines) {
 return !lines.get(0).isEmpty()
}

// Test:
// - hasHeader with empty, non-empty first line
// - getLines (if you must) with null, real path

3617-214/514

 Boundary Value Testing

We need a strategy to identify plausible mistakes

● Boundary Value Testing: errors often occur at boundary conditions
○ Select: a nominal/normal case, a boundary value, and an abnormal case
○ Useful for few categories of behavior (e.g., null/not-null) per value

● Test: cost < credit, cost == credit, cost > credit,
 cost < cash, cost == cash, cost > cash

/** Pays with credit if useCredit is set and enough
 * credit is available; otherwise, pays with cash if
 * enough cash is available; otherwise, returns false.
 */
public boolean pay(int cost, boolean useCredit);

3717-214/514

HW 2: Testing the Flash Card System

3817-214/514

Principles of Software Construction:
Objects, Design, and Concurrency

Object-oriented analysis

Christian Kästner Vincent Hellendoorn

3917-214/514

Where we are

Subtype
Polymorphism ✓

Information Hiding,
Contracts ✓

Immutability ✓

Types ✓
Static Analysis ✓

Unit Testing ✓

Domain Analysis ✓

Inheritance & Del. ✓

Responsibility
Assignment,

Design Patterns,
Antipattern ✓

Promises/
Reactive P. ✓

Integration Testing ✓

GUI vs Core ✓

Frameworks and
Libraries ✓, APIs ✓

Module systems,
microservices ✓

Testing for
Robustness ✓

CI ✓, DevOps ✓,
Teams

Design for

understanding

change/ext.

reuse

robustness

...

Small scale:
One/few objects

Mid scale:
Many objects

Large scale:
Subsystems

4017-214/514

Lufthansa Flight 2904
● The Airbus A320-200

airplane has a
software-based braking
system

● Engaging reverse thrusters
while in the air is very
dangerous: Only allow
breaking when on the
ground

40

4117-214/514

Problem
Space
(Domain
Model)

Solution
Space

(Object Model)

● Real-world concepts

● Requirements, Concepts

● Relationships among concepts

● Solving a problem

● Building a vocabulary

● System implementation

● Classes, objects

● References among objects and
inheritance hierarchies

● Computing a result

● Finding a solution

4217-214/514

An object-oriented design process
Model / diagram the problem, define concepts

● Domain model (a.k.a. conceptual model), glossary

Define system behaviors

● System sequence diagram
● System behavioral contracts

Assign object responsibilities, define interactions

● Object interaction diagrams

Model / diagram a potential solution

● Object model

OO Analysis:
Understanding
the problem

OO Design:
Defining a
solution

4317-214/514

Visual notation: UML

Library Account

accountID
lateFees

Name of
real-world
concept
(not software class)

Properties
of concept

Book

title
author

borrow

1 *

Associations
between
concepts

Multiplicities/cardinalities
indicate “how many”

4417-214/514

One domain model for the library system

4517-214/514

UML Sequence Diagram Notation
User System Actors in this

use case
(systems and
real-world
objects/people)

Messages and
responses for
interactions,
text describes what
happens conceptually

Time proceeds
from top to
bottom

login(card)

borrow(book)

success?, due date

4617-214/514

UML Sequence Diagram Notation
User System Actors in this

use case
(systems and
real-world
objects/people)

Messages and
responses for
interactions,
text describes what
happens conceptually

Time proceeds
from top to
bottom

login(card)

borrow(book)

success?, due date

4717-214/514

Formalize system at boundary

A system behavioral contract
describes the pre-conditions and
post-conditions for some operation
identified in the system sequence
diagrams

○ System-level textual specifications,
like software specifications

4817-214/514

Principles of Software Construction:
Objects, Design, and Concurrency

Assigning Responsibilities

Christian Kästner Vincent Hellendoorn

4917-214/514

Where we are

Subtype
Polymorphism ✓

Information Hiding,
Contracts ✓

Immutability ✓

Types ✓
Static Analysis ✓

Unit Testing ✓

Domain Analysis ✓

Inheritance & Del. ✓

Responsibility
Assignment,

Design Patterns,
Antipattern ✓

Promises/
Reactive P. ✓

Integration Testing ✓

GUI vs Core ✓

Frameworks and
Libraries ✓, APIs ✓

Module systems,
microservices ✓

Testing for
Robustness ✓

CI ✓, DevOps ✓,
Teams

Design for

understanding

change/ext.

reuse

robustness

...

Small scale:
One/few objects

Mid scale:
Many objects

Large scale:
Subsystems

5017-214/514

Object Diagrams
Objects/classes with
fields and methods

Interfaces with
methods

Associations,
visibility, types

5117-214/514

always start with
an initial method

5217-214/514

Doing and Knowing Responsibilities
Responsibilities are related to the obligations of an object in terms of its
behavior.
Doing responsibilities of an object include:

● doing something itself, such as creating an object or doing a calculation
● initiating action in other objects
● controlling and coordinating activities in other objects

Knowing responsibilities of an object include:
● knowing about private encapsulated data
● knowing about related objects
● knowing about things it can derive or calculate

5317-214/514

Low Representational Gap
Identified concepts provide inspiration for classes in the implementation

Classes mirroring domain concepts often
intuitive to understand, rarely change
(low representational gap)

Library Account

accountID
lateFees

Book

title
author

borrow

1 *

class LibraryDatabase {

Map<Int, List<Int>>

borrowedBookIds;

Map<Int, Int> lateFees;

Map<Int, String>

bookTitles;

}

class DatabaseRow { … }

5417-214/514
54

class Shipment {
private List<Box> boxes;
int getWeight() {

int w=0;
for (Box box: boxes)

for (Item item: box.getItems())
w += item.weight;

return w;
}
class Box {

private List<Item> items;
Iterable<Item> getItems() { return items;}

}
class Item {

Box containedIn;
int weight;

}

Which classes are coupled?
How can coupling be improved?

5517-214/514
55

: Student : System
login(id)

checkout(bookid)

due date

logout()

receipt

CheckoutController

login(id: Int)
checkout(bid: Int)
logout()

5617-214/514

Anti-Pattern:
God Object

class Chat {

List<String> channels;

Map<String, List<Msg>> messages;

Map<String, String> accounts;

Set<String> bannedUsers;

File logFile;

File bannedWords;

URL serverAddress;

Map<String, Int> globalSettings;

Map<String, Int> userSettings;

Map<String, Graphic> smileys;

CryptStrategy encryption;

Widget sendButton, messageList;

}

class Chat {
Content content;
AccountMgr accounts;
File logFile;
ConnectionMgr conns;

}
class ChatUI {

Chat chat;
Widget sendButton, …;

}
class AccountMgr {

… acounts, bannedUsr…
}

5717-214/514

Information Expert ->
"Do It Myself Strategy"

Expert usually leads to designs where a software object
does those operations that are normally done to the
inanimate real-world thing it represents

○ a sale does not tell you its total; it is an inanimate thing

In OO design, all software objects are "alive" or "animated,"
and they can take on responsibilities and do things.

They do things related to the information they know.

5817-214/514

Creator: Discussion of Design
Goals/Principles
Promotes low coupling, high cohesion
● class responsible for creating objects it needs to reference
● creating the objects themselves avoids depending on another class to create the object
Promotes evolvability (design for change)
● Object creation is hidden, can be replaced locally

Contra: sometimes objects must be created in special ways
● complex initialization
● instantiate different classes in different circumstances
● then cohesion suggests putting creation in a different object: see design patterns such as

builder, factory method

5917-214/514

HW3: Santorini (Base game)

6017-214/514

Principles of Software Construction:
Objects, Design, and Concurrency

Design Patterns

Christian Kästner Vincent Hellendoorn

6117-214/514

Where we are

Domain Analysis ✓

Inheritance & Del. ✓

Responsibility
Assignment,

Design Patterns,
Antipattern ✓

Promises/
Reactive P. ✓

Integration Testing ✓

Subtype
Polymorphism ✓

Information Hiding,
Contracts ✓

Immutability ✓

Types ✓
Static Analysis ✓

Unit Testing ✓

GUI vs Core ✓

Frameworks and
Libraries ✓, APIs ✓

Module systems,
microservices ✓

Testing for
Robustness ✓

CI ✓, DevOps ✓,
Teams

Design for

understanding

change/ext.

reuse

robustness

...

Small scale:
One/few objects

Mid scale:
Many objects

Large scale:
Subsystems

6217-214/514

Discussion with design patterns
● Carpentry:

○ "Is a dovetail joint or a miter joint better here?"

● Software Engineering:
○ "Is a strategy pattern or a template method better here?"

6317-214/514

History:
Design Patterns
(1994)

6417-214/514

Context

Strategy
execute()

ConcreteStrA ConcreteStrB

algorithm()

execute() execute()

6517-214/514

var MODULE = (function () {
var my = {},
privateVariable = 1;

function privateMethod() {
// ...

}

my.moduleProperty = 1;
my.moduleMethod = function () {

// ...
};

return my;
}());

Module pattern: Decide what to export

6617-214/514

The Composite Design Pattern

66

6717-214/514

Principles of Software Construction:
Objects, Design, and Concurrency

Inheritance and delegation

Christian Kästner Vincent Hellendoorn

6817-214/514

Where we are

Subtype
Polymorphism ✓

Information Hiding,
Contracts ✓

Immutability ✓

Types ✓
Static Analysis ✓

Unit Testing ✓

Domain Analysis ✓

Inheritance & Del.
✓

Responsibility
Assignment,

Design Patterns,
Antipattern ✓

Promises/
Reactive P. ✓

Integration Testing ✓

GUI vs Core ✓

Frameworks and
Libraries ✓, APIs ✓

Module systems,
microservices ✓

Testing for
Robustness ✓

CI ✓, DevOps ✓,
Teams

Design for

understanding

change/ext.

reuse

robustness

...

Small scale:
One/few objects

Mid scale:
Many objects

Large scale:
Subsystems

6917-214/514

Class Hierarchy
In Java:

Object

CollectionError

ListRuntimeError
Exception

7017-214/514

Behavioral Subtyping
● Formalizes notion of extension

Animal dog = new Dog();

○ Roughly: anything an Animal does, a Dog should do
○ You should be able to use a subtype as if it was its parent
○ But, dog may be more specific

The Liskov substitution principle:
“Let q(x) be a property provable about objects x of type T. Then q(y)
should be provable for objects y of type S where S is a subtype of T.”

Barbara Liskov

7117-214/514

So why inheritance?
public interface PaymentCard {
 String getCardHolderName();
 BigInteger getDigits();
 Date getExpiration();
 int getValue();
 boolean pay(int amount);
}

class CreditCard implements PaymentCard {
 private final String cardHolderName;
 private final BigInteger digits;
 private final Date expirationDate;
 private final int creditLimit;
 private int currentCredit;

 public CreditCard(String cardHolderName,
 BigInteger digits, Date expirationDate,
 int creditLimit, int credit) {
 this.cardHolderName = cardHolderName;
 this.digits = digits;
 this.expirationDate = expirationDate;
 this.creditLimit = creditLimit;
 this.currentCredit = credit;
 }

 @Override
 public String getCardHolderName() {
 return this.cardHolderName;
 }

 @Override
 public BigInteger getDigits() {
 return this.digits;
 }

 @Override
 public Date getExpiration() {
 return this.expirationDate;
 }

7217-214/514

Template Method Pattern
class GiftCard extends AbstractCashCard {
 @Override
 void chargeFee() {
 return; // Do nothing.
 }
}

abstract class AbstractCashCard
 implements PaymentCard {
 private int balance;
 public AbstractCashCard(int balance) {
 this.balance = balance;
 }

 public boolean pay(int amount) {
 if (amount <= this.balance) {
 this.balance -= amount;
 chargeFee();
 return true;
 }
 return false;
 }
 abstract void chargeFee();
}

‘Pay’ is already
implemented

7317-214/514

● Template method uses inheritance to vary part of an algorithm
○ Template method implemented in supertype, primitive operations

implemented in subtypes

● Strategy pattern uses delegation to vary the entire algorithm
○ Strategy objects are reusable across multiple classes
○ Multiple strategy objects are possible per class

Template Method vs. Strategy Pattern

7417-214/514

Refactoring
● Rename class, method, variable to something not

in-scope
● Extract method/inline method
● Extract interface
● Move method (up, down, laterally)
● Replace duplicates

7517-214/514

Principles of Software Construction:
Objects, Design, and Concurrency

Refactoring & Anti-patterns

Christian Kästner Vincent Hellendoorn

7617-214/514

Where we are

Subtype
Polymorphism ✓

Information Hiding,
Contracts ✓

Immutability ✓

Types ✓
Static Analysis ✓

Unit Testing ✓

Domain Analysis ✓

Inheritance & Del. ✓

Responsibility
Assignment,

Design Patterns,
Antipattern ✓

Promises/
Reactive P. ✓

Integration Testing ✓

GUI vs Core ✓

Frameworks and
Libraries ✓, APIs ✓

Module systems,
microservices ✓

Testing for
Robustness ✓

CI ✓, DevOps ✓,
Teams

Design for

understanding

change/ext.

reuse

robustness

...

Small scale:
One/few objects

Mid scale:
Many objects

Large scale:
Subsystems

7717-214/514

The Decorator Pattern
You have a complex drawing that consists of many shapes and want to save it. Some logic of the
saving functionality is always the same (e.g., going through all shapes, reducing them to drawable
lines), but others you want to vary to support saving in different file formats (e.g., as png, as svg,
as pdf). You want to support different file formats later.

Why is this not:

https://refactoring.guru/design-patterns/decorator

7817-214/514

This binding
class Parent {
 private int i;
 public Parent() {
 this.i = 5;
 }

 void print() {
 System.out.println(this.i);
 }
}

class Child extends Parent {
 private int i;
 public Child() {
 this.i = 7;
 }
}

Child m = new Child();

System.out.println(m.i);

m.print();

7917-214/514

Details: type-casting
● Sometimes you want a different type than you have

○ e.g., double pi = 3.14;
 int indianaPi = (int) pi;

● Useful if you know you have a more specific subtype:
 Account acct = …;

 CheckingAccount checkingAcct = (CheckingAccount) acct;

 long fee = checkingAcct.getFee();

○ Will get a ClassCastException if types are incompatible

● Advice: avoid downcasting types
○ Never(?) downcast within superclass to a subclass

In TS:
(dog as Animal).identify()

8017-214/514

Anti-patterns
● Zooming in: common code smells

○ Not necessarily bad, but worthwhile indicators to check
■ When problematic, often point to design problems

○ Long methods, large classes, and the likes. Suggests bad
abstraction

■ Tend to evolve over time; requires restructuring
○ Inheritance despite low coupling (“refused bequest”)

■ Replace with delegation, or rebalance hierarchy
○ ‘instanceof’ (or ‘switch’) instead of polymorphism
○ Overly similar classes, hierarchies
○ Any change requires lots of edits

■ High coupling across classes (“shotgun surgery”), or heavily entangled implementation
(intra-class)

8117-214/514

HW4: Refactoring of
Static Website Generator

8217-214/514

Principles of Software Construction:
Objects, Design, and Concurrency

Asynchrony and Concurrency

Christian Kästner Vincent Hellendoorn

8317-214/514

Where we are

Subtype
Polymorphism ✓

Information Hiding,
Contracts ✓

Immutability ✓

Types ✓
Static Analysis ✓

Unit Testing ✓

Domain Analysis ✓

Inheritance & Del. ✓

Responsibility
Assignment,

Design Patterns,
Antipattern ✓

Promises/
Reactive P. ✓

Integration Testing ✓

GUI vs Core ✓

Frameworks and
Libraries ✓, APIs ✓

Module systems,
microservices ✓

Testing for
Robustness ✓

CI ✓, DevOps ✓,
Teams

Design for

understanding

change/ext.

reuse

robustness

...

Small scale:
One/few objects

Mid scale:
Many objects

Large scale:
Subsystems

8417-214/514

Scanner input = new Scanner(System.in);
while (questions.hasNext()) {
 Question q = question.next();
 System.out.println(q.toString());
 String answer = input.nextLine();
 q.respond(answer);
}

Interaction with CLI

8517-214/514

Event-based programming

● Style of programming where control-flow is driven by (usually
external) events

public void performAction(ActionEvent e) {
 List<String> lst = Arrays.asList(bar);
 foo.peek(42)
}

public void performAction(ActionEvent e) {
 bigBloatedPowerPointFunction(e);
 withANameSoLongIMadeItTwoMethods(e);
 yesIKnowJavaDoesntWorkLikeThat(e);
}

public void performAction(ActionEvent e) {
 List<String> lst = Arrays.asList(bar);
 foo.peek(40)
}

8617-214/514

Concurrency with file I/O
Asynchronous code requires Promises

● Captures an intermediate state
○ Neither fetched, nor failed; we’ll find out eventually

let imageToBe: Promise<Image> = fetch('myImage.png');
imageToBe.then((image) => display(image))
 .catch((err) => console.log('aw: ' + err));

8717-214/514

Concurrency with file I/O
An example from Machine Learning

Different devices:

8817-214/514

A GUI design challenge, extended
● What if we want to show the points won?

8917-214/514

Recall the Observer

https://refactoring.guru/design-patterns/observer

9017-214/514

An architectural pattern:
Model-View-Controller (MVC)

Manage inputs from user:
mouse, keyboard, menu, etc.

Manage display of
information on the screen

Manage data related to the
application domain

9117-214/514

Principles of Software Construction:
Objects, Design, and Concurrency

Basic GUI concepts, HTML

Christian Kästner Vincent Hellendoorn

9217-214/514

Where we are

Subtype
Polymorphism ✓

Information Hiding,
Contracts ✓

Immutability ✓

Types ✓
Static Analysis ✓

Unit Testing ✓

Domain Analysis ✓

Inheritance & Del. ✓

Responsibility
Assignment,

Design Patterns,
Antipattern ✓

Promises/
Reactive P. ✓

Integration Testing ✓

GUI vs Core ✓

Frameworks and
Libraries ✓, APIs ✓

Module systems,
microservices ✓

Testing for
Robustness ✓

CI ✓, DevOps ✓,
Teams

Design for

understanding

change/ext.

reuse

robustness

...

Small scale:
One/few objects

Mid scale:
Many objects

Large scale:
Subsystems

9317-214/514

Anatomy of an HTML Page
Nested elements

● Sizing
● Attributes
● Text

9417-214/514

The composite pattern
● Problem: Collection of objects has behavior similar to the

individual objects
● Solution: Have collection of objects and individual objects

implement the same interface
● Consequences:

○ Client code can treat collection as if it were an individual object
○ Easier to add new object types
○ Design might become too general, interface insufficiently useful

9517-214/514

A few Tags
● <html>

○ The root of the visible page
● <head>

○ Stores metadata, imports
● <p>

○ A paragraph
● <button>

○ Attributes include `name`, `type`, `value`
● <div>

○ Generic section -- very useful
● <table>

○ The obvious
● Many more; dig into a real page!

https://www.w3schools.com/tags/tag_button.asp

9617-214/514

Style: CSS
● Cascading Style Sheets

○ Reuse: styling rules for tags, classes, types
○ Reuse: not just at the leafs!

Hello again!

vs.

<style type="text/css">
 span {
 font-family: arial
 }

</style>

9717-214/514

Strategy or Observer?
Either could apply

● Both involve callback
● Strategy:

○ Typically single
○ Often involves a return

● Observer:
○ Arbitrarily many
○ Involves external updates

9817-214/514

Static Web Pages
● Delivered as-is, final

○ Consistent, often fast
○ Cheap, only storage needed

● “Static” a tad murky with JavaScript
○ We can still have buttons, interaction
○ But it won’t “go” anywhere -- the server is mum

https://developer.mozilla.org/en-US/docs/Learn/Server-side/First_steps/Client-Server_overview#anatomy_of_a_dynamic_request

9917-214/514

Web Servers
Dynamic sites can do more work

https://developer.mozilla.org/en-US/docs/Learn/Server-side/First_steps/Client-Server_overview#anatomy_of_a_dynamic_request

10017-214/514

Principles of Software Construction:
Objects, Design, and Concurrency

Concurrency: Safety & Immutability

Christian Kästner Vincent Hellendoorn

10117-214/514

Where we are

Subtype
Polymorphism ✓

Information Hiding,
Contracts ✓

Immutability ✓

Types ✓
Static Analysis ✓

Unit Testing ✓

Domain Analysis ✓

Inheritance & Del. ✓

Responsibility
Assignment,

Design Patterns,
Antipattern ✓

Promises/
Reactive P. ✓

Integration Testing ✓

GUI vs Core ✓

Frameworks and
Libraries ✓, APIs ✓

Module systems,
microservices ✓

Testing for
Robustness ✓

CI ✓, DevOps ✓,
Teams

Design for

understanding

change/ext.

reuse

robustness

...

Small scale:
One/few objects

Mid scale:
Many objects

Large scale:
Subsystems

10217-214/514

Components of a Swing application

JButton

JPanel

JTextField

…

JFrame

10317-214/514

Event Loop in JS

https://blog.sessionstack.com/how-javascript-works-event-loop-and-the-rise-of-async-programming-5-w
ays-to-better-coding-with-2f077c4438b5

10417-214/514

What will Happen:
Where does this fail?

What if single threaded?

Could we make it work
with 2 threads?

10517-214/514

Ensuring Immutability
● Don’t provide any mutators
● Ensure that no methods may be overridden
● Make all fields final
● Make all fields private
● Ensure security of any mutable components

10617-214/514

Making a Class Immutable
public final class Complex {
 private final double re, im;

 public Complex(double re, double im) {
 this.re = re;
 this.im = im;
 }

 // Getters without corresponding setters
 public double getRealPart() { return re; }
 public double getImaginaryPart() { return im; }

 // subtract, multiply, divide similar to add
 public Complex add(Complex c) {
 return new Complex(re + c.re, im + c.im);
 }

10717-214/514

Shared State
● Volatile fields always return the most recently written

value
○ Does not guarantee atomicity
○ Useful if only one thread writes

● Are atomicity + coordinated communication sufficient
for thread safety?

10817-214/514

Principles of Software Construction:
Objects, Design, and Concurrency

Concurrency: Patterns & Promises

Christian Kästner Vincent Hellendoorn

10917-214/514

Where we are

Subtype
Polymorphism ✓

Information Hiding,
Contracts ✓

Immutability ✓

Types ✓
Static Analysis ✓

Unit Testing ✓

Domain Analysis ✓

Inheritance & Del. ✓

Responsibility
Assignment,

Design Patterns,
Antipattern ✓

Promises/
Reactive P. ✓

Integration Testing ✓

GUI vs Core ✓

Frameworks and
Libraries ✓, APIs ✓

Module systems,
microservices ✓

Testing for
Robustness ✓

CI ✓, DevOps ✓,
Teams

Design for

understanding

change/ext.

reuse

robustness

...

Small scale:
One/few objects

Mid scale:
Many objects

Large scale:
Subsystems

11017-214/514

Design Goals
● What are we looking for in design?

○ Reuse
○ Readability
○ Robustness
○ Extensibility
○ Performance
○ ...

11117-214/514

A simple function
...in sync world

How to make this asynchronous?
● What needs to “happen first”?
● What is the control-flow in callback world?

11217-214/514

Next Step: Async/Await
● Async functions return a promise

○ May wrap concrete values
○ May return rejected promises on exceptions

● Allowed to ‘await’ synchronously

11317-214/514

The Promise Pattern
● Problem: one or more values we will need will arrive later

○ At some point we must wait
● Solution: an abstraction for expected values
● Consequences:

○ Declarative behavior for when results become available (conf.
callbacks)

○ Need to provide paths for normal and abnormal execution
■ E.g., then() and catch()

○ May want to allow combinators
○ Debugging requires some rethinking

11417-214/514

Generator Pattern
● Problem: process a collection of indeterminate size
● Solution: provide data points on request when available
● Consequences:

○ Each call to ‘next’ is like awaiting a promise
○ A generator can be infinite, and can announce if it is complete.
○ Generators can be lazy, only producing values on demand

■ Or producing promises

● Where might this be useful?

11517-214/514

Traversing a collection
● Since Java 1.0:

 Vector arguments = …;

 for (int i = 0; i < arguments.size(); ++i) {

 System.out.println(arguments.get(i));

 }

● Java 1.5: enhanced for loop
List<String> arguments = …;

for (String s : arguments) {

 System.out.println(s);

}

● Works for every implementation of Iterable
public interface Iterable<E> {

 public Iterator<E> iterator();

}

public interface Iterator<E> {

 boolean hasNext();

 E next();

 void remove();

}

● In JavaScript (ES6)
let arguments = …

for (const s of arguments) {

 console.log(s)

}

● Works for every implementation with a “magic”
function [Symbol.iterator] providing an iterator
interface Iterator<T> {

 next(value?: any): IteratorResult<T>;

 return?(value?: any): IteratorResult<T>;

 throw?(e?: any): IteratorResult<T>;

}

interface IteratorReturnResult<TReturn> {

 done: true;

 value: TReturn;

}

11617-214/514

List<String>results = stream.map(Object::toString)
.filter(s -> pattern.matcher(s).matches())

 .collect(Collectors.toList());

int sum = numbers.parallelStream().reduce(0, Integer::sum);

Stream(people).filter({age: 23}).flatMap("children").map("firstName")
 .distinct().filter(/a.*/i).join(", ");

for (let [odd, even] in numbers.split(n => n % 2, n => !(n % 2)).zip()) {
 console.log(`odd = ${odd}, even = ${even}`); // [1, 2], [3, 4], ...
}

11717-214/514

HW5: Santorini with God Cards and GUI

11817-214/514

Principles of Software Construction:
Objects, Design, and Concurrency

Events Everywhere

Christian Kästner Vincent Hellendoorn

11917-214/514

Where we are

Subtype
Polymorphism ✓

Information Hiding,
Contracts ✓

Immutability ✓

Types ✓
Static Analysis ✓

Unit Testing ✓

Domain Analysis ✓

Inheritance & Del. ✓

Responsibility
Assignment,

Design Patterns,
Antipattern ✓

Promises/
Reactive P. ✓

Integration Testing ✓

GUI vs Core ✓

Frameworks and
Libraries ✓, APIs ✓

Module systems,
microservices ✓

Testing for
Robustness ✓

CI ✓, DevOps ✓,
Teams

Design for

understanding

change/ext.

reuse

robustness

...

Small scale:
One/few objects

Mid scale:
Many objects

Large scale:
Subsystems

12017-214/514

12117-214/514

Immutable?
class Stack {
 readonly #inner: any[]
 constructor (inner: any[]) {
 this.#inner=inner
 }
 push(o: any): Stack {
 const newInner = this.#inner.slice()
 newInner.push(o)
 return new Stack(newInner)
 }
 peek(): any {
 return this.#inner[this.#inner.length-1]
 }
 getInner(): any[] {
 return this.#inner
 }
}

12217-214/514

Useful analogy: Spreadsheets
Cells contain data or
formulas

Formula cells are
computed automatically
whenever input data
changes

12317-214/514

Beyond Spreadsheet Cells

https://rxjs.dev/guide/observable

12417-214/514

The Adapter Design Pattern

https://refactoring.guru/design-patterns/adapter

12517-214/514

Recall: Separating application core and GUI
● Reduce coupling: do not allow core to depend on UI

● Create and test the core without a GUI
○ Use the Observer pattern to communicate information from the core

(Model) to the GUI (View)

Core

GUI

Core Tests

GUI Tests

12617-214/514

Client-Server Programming forces
Frontend-Backend Separation

Backend
(Java/Node):
Data, logic,
rendering

Frontend
(Browser, HTML,
JavaScript):
Text, buttons

http calls

Trick to let backend push information to frontend: Keep http
request open, append to page (compare to stream)
Alternative: regular pulling

keep open
connection

12717-214/514

Principles of Software Construction:
Objects, Design, and Concurrency

Libraries and Frameworks
(Design for large-scale reuse)

Christian Kästner Vincent Hellendoorn
Michael Hilton

12817-214/514

Where we are

Subtype
Polymorphism ✓

Information Hiding,
Contracts ✓

Immutability ✓

Types ✓
Static Analysis ✓

Unit Testing ✓

Domain Analysis ✓

Inheritance & Del. ✓

Responsibility
Assignment,

Design Patterns,
Antipattern ✓

Promises/
Reactive P. ✓

Integration Testing ✓

GUI vs Core ✓

Frameworks and
Libraries ✓, APIs ✓

Module systems,
microservices ✓

Testing for
Robustness ✓

CI ✓, DevOps ✓,
Teams

Design for

understanding

change/ext.

reuse

robustness

...

Small scale:
One/few objects

Mid scale:
Many objects

Large scale:
Subsystems

12917-214/514

Reuse and variation:
Flavors of Linux

13017-214/514

Terminology: Libraries
● Library: A set of classes and methods that provide reusable

functionality

Library

I/O
Collections SwingMath GraphsStreams

CLI Parsing

13117-214/514

Terminology: Frameworks
● Framework: Reusable skeleton code that can be

customized into an application
● Framework calls back into client code

○ The Hollywood principle: “Don’t call us. We’ll call you.”

Framework

SwingIntelliJ

SpringNanoHttpd

Firefox

public MyWidget extends JContainer {

ublic MyWidget(int param) {/ setup
internals, without rendering
}

/ render component on first view and
resizing
protected void
paintComponent(Graphics g) {
// draw a red box on his
componentDimension d = getSize();
g.setColor(Color.red);
g.drawRect(0, 0, d.getWidth(),
d.getHeight());}
}

your code

Express

13217-214/514

public class Application extends JFrame implements InputProvider {
 private JTextField textField;
 private Plugin plugin;
 public Application() { }
 protected void init(Plugin p) {
 p.setApplication(this);
 this.plugin = p;
 JPanel contentPane = new JPanel(new BorderLayout());
 contentPane.setBorder(new BevelBorder(BevelBorder.LOWERED));
 JButton button = new JButton();
 button.setText(plugin != null ? plugin.getButtonText() : "ok");
 contentPane.add(button, BorderLayout.EAST);
 textField = new JTextField("");
 if (plugin != null) textField.setText(plugin.getInititalText());
 textField.setPreferredSize(new Dimension(200, 20));
 contentPane.add(textField, BorderLayout.WEST);
 if (plugin != null)
 button.addActionListener((e) -> { plugin.buttonClicked(); });
 this.setContentPane(contentPane);
 ...
 }
 public String getInput() { return textField.getText(); }
}

An aside: Plugins could be reusable too…

public interface Plugin {
 String getApplicationTitle();
 String getButtonText();
 String getInititalText();
 void buttonClicked() ;
 void setApplication(InputProvider app);
}public class CalcPlugin implements Plugin {

 private InputProvider app;
 public void setApplication(InputProvider app) { this.app = app; }
 public String getButtonText() { return "calculate"; }
 public String getInititalText() { return "10 / 2 + 6"; }
 public void buttonClicked() {
 JOptionPane.showMessageDialog(null, "The result of "
 + application.getInput() + " is "
 + calculate(application.getInput()));
 }
 public String getApplicationTitle() { return "My Great Calculator"; }
}

public interface InputProvider {
 String getInput();
}

13317-214/514

The use vs. reuse dilemma
● Large rich components are very useful, but rarely fit

a specific need
● Small or extremely generic components often fit a

specific need, but provide little benefit

“maximizing reuse minimizes use”
C. Szyperski

13417-214/514

Principles of Software Construction

API Design

Christian Kästner Vincent Hellendoorn
(Many slides originally from Josh Bloch)

13517-214/514

Where we are

Subtype
Polymorphism ✓

Information Hiding,
Contracts ✓

Immutability ✓

Types ✓
Static Analysis ✓

Unit Testing ✓

Domain Analysis ✓

Inheritance & Del. ✓

Responsibility
Assignment,

Design Patterns,
Antipattern ✓

Promises/
Reactive P. ✓

Integration Testing ✓

GUI vs Core ✓

Frameworks and
Libraries ✓, APIs ✓

Module systems,
microservices ✓

Testing for
Robustness ✓

CI ✓, DevOps ✓,
Teams

Design for

understanding

change/ext.

reuse

robustness

...

Small scale:
One/few objects

Mid scale:
Many objects

Large scale:
Subsystems

13617-214/514

Composing
Templates
(Corresponds to
Fragments in Handlebars)

Nest templates

Pass arguments
(properties) between
templates

function Welcome(props) {

 return <h1>Hello, {props.name}</h1>;

}

function App() { return (

 <div>

 <Welcome name="Sara" />

 <Welcome name="Edite" />

 </div>

);}

ReactDOM.render(

 <App />,

 document.getElementById('root')

);

Try it:
https://reactjs.org/redirect-to-codep
en/components-and-props/composi
ng-components

https://reactjs.org/redirect-to-codepen/components-and-props/composing-components
https://reactjs.org/redirect-to-codepen/components-and-props/composing-components
https://reactjs.org/redirect-to-codepen/components-and-props/composing-components

13717-214/514

Public APIs are forever

Eclipse
(IBM)

JDT Plugin (IBM)

CDT Plugin (IBM)

UML Plugin (third
party)Somebody on the

webSomebody on the
webSomebody on the

webSomebody on the
webSomebody on the

webSomebody on the
webthird party plugin

13817-214/514

Hyrum’s Law
“With a sufficient number of users of
an API, it does not matter what you
promise in the contract: all
observable behaviors of your
system will be depended on by
somebody.”

https://xkcd.com/1172/

https://www.hyrumslaw.com/

https://xkcd.com/1172/
https://www.hyrumslaw.com/

13917-214/514

The process of API design – 1-slide version
Not sequential; if you discover shortcomings, iterate!

1. Gather requirements skeptically, including use cases
2. Choose an abstraction (model) that appears to address use

cases
3. Compose a short API sketch for abstraction
4. Apply API sketch to use cases to see if it works

○ If not, go back to step 3, 2, or even 1
5. Show API to anyone who will look at it
6. Write prototype implementation of API
7. Flesh out the documentation & harden implementation
8. Keep refining it as long as you can

14017-214/514

public class Rectangle {

public Rectangle(Point e, Point f) …

}

// …

Point p1 = PointFactory.Construct(…);

// new PolarPoint(…); inside

Point p2 = PointFactory.Construct(…);

// new PolarPoint(…); inside

Rectangle r = new Rectangle(p1, p2);

Applying Information hiding: Factories

14117-214/514

Aside: The Factory Method Design Pattern

From: https://refactoring.guru/design-patterns/factory-method

https://refactoring.guru/design-patterns/factory-method

14217-214/514

Boilerplate Code
 import org.w3c.dom.*;
 import java.io.*;
 import javax.xml.transform.*;
 import javax.xml.transform.dom.*;
 import javax.xml.transform.stream.*;

 /** DOM code to write an XML document to a specified output stream. */
 static final void writeDoc(Document doc, OutputStream out) throws IOException{
 try {
 Transformer t = TransformerFactory.newInstance().newTransformer();
 t.setOutputProperty(OutputKeys.DOCTYPE_SYSTEM, doc.getDoctype().getSystemId());
 t.transform(new DOMSource(doc), new StreamResult(out)); // Does actual writing
 } catch(TransformerException e) {
 throw new AssertionError(e); // Can’t happen!
 }
 }

• Generally done via cut-and-paste
• Ugly, annoying, and error-prone

14317-214/514

Principles of Software Construction

API Design (Part 2)

Christian Kästner Vincent Hellendoorn
(With slides from Josh Bloch)

14417-214/514

Where we are

Subtype
Polymorphism ✓

Information Hiding,
Contracts ✓

Immutability ✓

Types ✓
Static Analysis ✓

Unit Testing ✓

Domain Analysis ✓

Inheritance & Del. ✓

Responsibility
Assignment,

Design Patterns,
Antipattern ✓

Promises/
Reactive P. ✓

Integration Testing ✓

GUI vs Core ✓

Frameworks and
Libraries ✓, APIs ✓

Module systems,
microservices ✓

Testing for
Robustness ✓

CI ✓, DevOps ✓,
Teams

Design for

understanding

change/ext.

reuse

robustness

...

Small scale:
One/few objects

Mid scale:
Many objects

Large scale:
Subsystems

14517-214/514

Teamwork
Teamwork essential in software projects

Teamwork needed to scale available work and available
skills

Teamwork is a key motivation for
design for understandability, documentation, etc

14617-214/514

Good names drive good design
● Be consistent

○ computeX() vs. generateX()?
○ deleteX() vs. removeX()?

● Avoid cryptic abbreviations
○ Good: Font, Set, PrivateKey, Lock, ThreadFactory,

TimeUnit, Future<T>

○ Bad: DynAnyFactoryOperations, _BindingIteratorImplBase,
ENCODING_CDR_ENCAPS, OMGVMCID

14717-214/514

Principle: Favor composition over inheritance
// A Properties instance maps Strings to Strings

public class Properties extends HashTable {

 public Object put(Object key, Object value);

 …

}

public class Properties {

 private final HashTable data = new HashTable();

 public String put(String key, String value) {

 data.put(key, value);

 }

 …

14817-214/514

Principle: Fail fast

● Report errors as soon as they are detectable

○ Check preconditions at the beginning of each method

○ Avoid dynamic type casts, run-time type-checking
// A Properties instance maps Strings to Strings

public class Properties extends HashTable {

 public Object put(Object key, Object value);

 // Throws ClassCastException if this instance

 // contains any keys or values that are not Strings

 public void save(OutputStream out, String comments);

}

14917-214/514

CRUD Operations
const express = require('express');
const bodyParser = require('body-parser');
const app = express();
app.use(bodyParser.json()); // JSON input
app.get('/articles', (req, res) => {
 const articles = [];
 // code to retrieve an article...
 res.json(articles);
});
app.post('/articles', (req, res) => {
 // code to add a new article...
 res.json(req.body);
});
app.put('/articles/:id', (req, res) => {
 const { id } = req.params;
 // code to update an article...
 res.json(req.body);
});
app.delete('/articles/:id', (req, res) => {
 const { id } = req.params;
 // code to delete an article...
 res.json({ deleted: id });
});
app.listen(3000, () => console.log('server started'));

Path correspond to nouns, not
verbs, nesting common:

○ /articles, /state, /game
/articles/:id/comments

GET (receive), POST (submit new),
PUT (update), and DELETE
requests sent to those paths

Parameters for filtering, searching,
sorting, e.g., /articles?sort=date

15017-214/514

Upstream
Downstream

Announcements
Documentation
Migration guide

15117-214/514

Upstream

Easy and fast to
publish and use
for developers

Breaking changes easy
More common to remove technical
debt, fix APIs
Signaling intention with SemVer
No central release planning
Parallel releases more common

151

15217-214/514

HW6: Data Analytics Framework

15317-214/514

Principles of Software Construction:
Objects, Design, and Concurrency

Design for Robustness:
Distributed Systems

Christian Kästner Vincent Hellendoorn

15417-214/514

Where we are

Subtype
Polymorphism ✓

Information Hiding,
Contracts ✓

Immutability ✓

Types ✓
Static Analysis ✓

Unit Testing ✓

Domain Analysis ✓

Inheritance & Del. ✓

Responsibility
Assignment,

Design Patterns,
Antipattern ✓

Promises/
Reactive P. ✓

Integration Testing ✓

GUI vs Core ✓

Frameworks and
Libraries ✓, APIs ✓

Module systems,
microservices ✓

Testing for
Robustness ✓

CI ✓, DevOps ✓,
Teams

Design for

understanding

change/ext.

reuse

robustness

...

Small scale:
One/few objects

Mid scale:
Many objects

Large scale:
Subsystems

15517-214/514

Retry!
● Still need an exit-strategy

○ Learn HTTP response codes
■ Don’t bother retrying on a 403 (go find out why)

○ Use the API response, if any
■ Errors are often documented -- e.g., GitHub will send a “rate limit exceeded” message

const delay = retryCount => new Promise(resolve =>
setTimeout(resolve, 10 ** retryCount));

const getResource = async (retryCount = 0, lastError = null) => {
 if (retryCount > 5) throw new Error(lastError);
 try {
 return apiCall();
 } catch (e) {
 await delay(retryCount);
 return getResource(retryCount + 1, e);
 }
};

https://www.bayanbennett.com/posts/retrying-and-exponential-backoff-with-promises/

https://developer.mozilla.org/en-US/docs/Web/HTTP/Status

15617-214/514

Proxy Design Pattern
● Local representative for remote object

○ Create expensive obj on-demand
○ Control access to an object

● Hides extra “work” from client
○ Add extra error handling, caching
○ Uses indirection

https://refactoring.guru/design-patterns/proxy

15717-214/514

Ever looked at NPM Install’s output?

15817-214/514

Eliminating Android dependency
Code FacebookTest

driver
@Test void testGetFriends() {
 assert getFriends() == ...;
}
List<Friend> getFriends() {
 Connection c = http.getConnection();
 FacebookAPI api = new FacebookAPI(c);
 List<Node> persons = api.getFriends("john");
 for (Node person1 : persons) {
 ...
 }
 return result;
}

How about this one?

15917-214/514

Test Doubles
● Stand in for a real object under test
● Elements on which the unit testing depends (i.e.

collaborators), but need to be approximated because
they are
○ Unavailable
○ Expensive
○ Opaque
○ Non-deterministic

● Not just for distributed systems!

http://www.kickvick.com/celebrities-stunt-doubles

http://www.kickvick.com/celebrities-stunt-doubles

16017-214/514

Principle: Modular Protection
● Errors should be contained and isolated

○ A failing printer should not corrupt a document
○ Handle exceptions locally as much as possible, return

useful feedback
○ Don’t do this:

16117-214/514

Ensuring Idempotence

● How about writing/sending new data?
○ Could fail anywhere

■ Including in displaying success message after payment!
○ POST is not idempotent
○ Use Unique Identifiers
○ Server keeps track of

requests already handled

https://stripe.com/blog/idempotency

https://stripe.com/blog/idempotency

16217-214/514

Principles of Software Construction:
Objects, Design, and Concurrency

Organizing Systems at Scale:
Modules, Services, Architectures

Christian Kästner Vincent Hellendoorn

16317-214/514

Where we are

Subtype
Polymorphism ✓

Information Hiding,
Contracts ✓

Immutability ✓

Types

Unit Testing ✓

Domain Analysis ✓

Inheritance & Del. ✓

Responsibility
Assignment,

Design Patterns,
Antipattern ✓

Promises/
Reactive P. ✓

Integration Testing ✓

GUI vs Core ✓

Frameworks and
Libraries ✓, APIs ✓

Module systems,
microservices

Testing for
Robustness ✓

CI ✓, DevOps,
Teams

Design for

understanding

change/ext.

reuse

robustness

...

Small scale:
One/few objects

Mid scale:
Many objects

Large scale:
Subsystems

16417-214/514

16517-214/514

Packages enough?
edu.cmu.cs214.santorini

edu.cmu.cs214.santorini.gui

edu.cmu.cs214.santorini.godcards

edu.cmu.cs214.santorini.godcards.impl

edu.cmu.cs214.santorini.logic

edu.cmu.cs214.santorini.utils

16617-214/514

ES2015 Modules
Syntax extension for modules (instead of module
pattern)

Explicit imports /
exports

Static import names
(like Java), supports
better reasoning by tools

import { Location } from './location'

import { Game } from './game'

import { Board } from './board'

// module code

export { Worker, newWorker }

16717-214/514

The Diamond Problem

What now?

D
A

B

C

v1.4.1

v0.1.2v2.7.3

v2.7.5

16817-214/514

Recommended reading:
https://republicans-oversight.house.gov/wp-content/uploads/2018/12/Equifax-Report.pdf

https://republicans-oversight.house.gov/wp-content/uploads/2018/12/Equifax-Report.pdf

16917-214/514

Database Server

Credit card server

Android Phone

17017-214/514

17117-214/514

Handle Errors Locally

http://christophermeiklejohn.com/filibuster/2021/10/14/filibuster-4.html

http://christophermeiklejohn.com/filibuster/2021/10/14/filibuster-4.html

17217-214/514

Apache Kafka

https://www.novatec-gmbh.de/en/blog/kafka-101-series-part-2-stream-processing-and-kafka-streams-api/

https://www.novatec-gmbh.de/en/blog/kafka-101-series-part-2-stream-processing-and-kafka-streams-api/

17317-214/514

Principles of Software Construction:
Objects, Design, and Concurrency

A Quick Tour of all
23 GoF Design Patterns

Christian Kästner Vincent Hellendoorn

17417-214/514

Where we are

Subtype
Polymorphism ✓

Information Hiding,
Contracts ✓

Immutability ✓

Types

Unit Testing ✓

Domain Analysis ✓

Inheritance & Del. ✓

Responsibility
Assignment,

Design Patterns,
Antipattern ✓

Promises/
Reactive P. ✓

Integration Testing ✓

GUI vs Core ✓

Frameworks and
Libraries ✓, APIs ✓

Module systems,
microservices ✓

Testing for
Robustness ✓

CI ✓, DevOps,
Teams

Design for

understanding

change/ext.

reuse

robustness

...

Small scale:
One/few objects

Mid scale:
Many objects

Large scale:
Subsystems

17517-214/514

I. Creational Patterns

1. Abstract factory

2. Builder

3. Factory method

4. Prototype

5. Singleton

17617-214/514

Singleton Illustration
public class Elvis {
 private static final Elvis ELVIS = new Elvis();
 public static Elvis getInstance() { return ELVIS; }
 private Elvis() { }
 ...
}

const elvis = { … }
function getElvis() {

export { getElvis }

17717-214/514

II. Structural Patterns
1. Adapter

2. Bridge

3. Composite

4. Decorator

5. Façade

6. Flyweight

7. Proxy

17817-214/514

Decorator vs Strategy?
interface GameLogic {

isValidMove(w, x, y)

move(w, x, y)

}

class BasicGameLogic

implements GameLogic { … }

class AbstractGodCardDecorator

implements GameLogic { … }

class PanDecorator

extends AbstractGodCardDecorator

implements GameLogic { … }

interface GameLogic {

isValidMove(w, x, y)

move(w, x, y)

}

class BasicGameLogic

implements GameLogic {

constructor(board) { … }

isValidMove(w, x, y) { … }

move(w, x, y) { … }

}

class PanDecorator

extends BasicGameLogic {

move(w, x, y} { /* super.move(w,

x, y) + checkWinner */ }

}

17917-214/514

III. Behavioral Patterns
1. Chain of Responsibility
2. Command
3. Interpreter
4. Iterator
5. Mediator
6. Memento
7. Observer
8. State
9. Strategy

10. Template method
11. Visitor

18017-214/514

Strategy vs Template Method

18117-214/514

Principles of Software Construction: Objects,
Design, and Concurrency

{Static & Dynamic} x {Typing & Analysis}

Christian Kästner Vincent Hellendoorn

18217-214/514

Where we are

Subtype
Polymorphism ✓

Information Hiding,
Contracts ✓

Immutability ✓

Types ✓
Static Analysis ✓

Unit Testing ✓

Domain Analysis ✓

Inheritance & Del. ✓

Responsibility
Assignment,

Design Patterns,
Antipattern ✓

Promises/
Reactive P. ✓

Integration Testing ✓

GUI vs Core ✓

Frameworks and
Libraries ✓, APIs ✓

Module systems,
microservices ✓

Testing for
Robustness ✓

CI ✓, DevOps ✓,
Teams

Design for

understanding

change/ext.

reuse

robustness

...

Small scale:
One/few objects

Mid scale:
Many objects

Large scale:
Subsystems

18317-214/514

How Do You Find Bugs?
● Run it?

18417-214/514

Static vs. Dynamic Typing
● The more knowledge we inject in the code, the more

bugs we can catch at compile time
○ Types, nullity annotations, invariants

● Is it worth it?
○ Dynamic typing can severely limit inference
○ But… static types are a lot of work

18517-214/514

Static Analysis
● How?

○ Program analysis +
Vocabulary of patterns

https://deepsource.io/blog/introduction-static-code-analysis/

18617-214/514

Static Analysis
● Step 3: register analyzers

○ At the core: walk the tree
○ Sometimes more complex

https://deepsource.io/blog/introduction-static-code-analysis/

18717-214/514

Static Analysis at Google
● Centered around FindBugs (succeeded by SpotBugs)

○ Essentially, a huge collection of risky patterns on Java
bytecode

○ Annotated with five levels of concern

18817-214/514

TriCoder

18917-214/514

Principles of Software Construction:
Objects, Design, and Concurrency

DevOps

Christian Kästner Vincent Hellendoorn

19017-214/514

Where we are

Subtype
Polymorphism ✓

Information Hiding,
Contracts ✓

Immutability ✓

Types ✓
Static Analysis ✓

Unit Testing ✓

Domain Analysis ✓

Inheritance & Del. ✓

Responsibility
Assignment,

Design Patterns,
Antipattern ✓

Promises/
Reactive P. ✓

Integration Testing ✓

GUI vs Core ✓

Frameworks and
Libraries ✓, APIs ✓

Module systems,
microservices ✓

Testing for
Robustness ✓

CI ✓, DevOps,
Teams

Design for

understanding

change/ext.

reuse

robustness

...

Small scale:
One/few objects

Mid scale:
Many objects

Large scale:
Subsystems

19117-214/514

Release management
with branches

191

19217-214/514

19317-214/514

19417-214/514

Heavy Tooling and Automation

19517-214/514

A/B Testing

19617-214/514

Looking Forward:
Beyond Code-Level Concerns

19717-214/514

Where we are

Subtype
Polymorphism ✓

Information Hiding,
Contracts ✓

Immutability ✓

Types ✓
Static Analysis ✓

Unit Testing ✓

Domain Analysis ✓

Inheritance & Del. ✓

Responsibility
Assignment,

Design Patterns,
Antipattern ✓

Promises/
Reactive P. ✓

Integration Testing ✓

GUI vs Core ✓

Frameworks and
Libraries ✓, APIs ✓

Module systems,
microservices ✓

Testing for
Robustness ✓

CI ✓, DevOps ✓,
Teams

Design for

understanding

change/ext.

reuse

robustness

...

Small scale:
One/few objects

Mid scale:
Many objects

Large scale:
Subsystems

19817-214/514

This Course
We focused on code-level concerns

Writing maintainable, extensible, robust, and correct
code

Design from classes to subsystems

Testing, concurrency, basic user interfaces

19917-214/514

From Programming to Software Engineering

20017-214/514

“Software Engineering”
was a provocative term

20117-214/514

Compare to other forms of engineering
● e.g., Producing a car or bridge

○ Estimable costs and risks

○ Well-defined expected results

○ High quality

● Separation between plan and production

● Simulation before construction

● Quality assurance through measurement

● Potential for automation

20217-214/514

Software engineering in the real world
● e.g., HealthCare.gov

○ Estimable costs and risks

○ Well-defined expected results

○ High quality

● Separation between plan and production
● Simulation before construction
● Quality assurance through measurement
● Potential for automation

20317-214/514

Software is written by humans
Sociotechnical system: interlinked system of people,
technology, and their environment
Key challenges in how to
● identify what to build (requirements)
● coordinate people building it (process)
● assure quality (speed, safety, fairness)
● contain risk, time and budget (management)
● sustain a community (open source, economics)

20417-214/514

Process

20517-214/514

Example: Process
Requirements
Engineering

Architectural
design

Detailed design

Coding

Unit testing

Integration testing

Operation and
Maintenance

Win Royce and Barry Boehm, 1970

20617-214/514

20717-214/514

Agile in a nutshell
● A project management approach that seeks to

respond to change and unpredictability, primarily using
incremental, iterative work sequences (often called
“sprints”).

● Also: a collection of practices to facility that approach.
● All predicated on the principles outlined in “The

Manifesto for Agile Software Development.”

20817-214/514

The Manifesto for Agile Software
Development (2001)

208

Value

Individuals and
interactions

over Processes and tools

Working software over
Comprehensive
documentation

Customer collaboration over Contract negotiation

Responding to change over Following a plan

20917-214/514

Pair Programming

Driver

Navigator

21017-214/514

Scrum Process

210

21117-214/514

QA and Process

21217-214/514

Beyond testing
Many QA approaches

Code review, static analysis, formal verification, …

Which to use when, how much?

21317-214/514

21417-214/514

21517-214/514

How to get students to write tests?

21617-214/514

“We had initially scheduled time to write tests for both
front and back end systems, although this never

happened.”

21717-214/514

“Due to the lack of time, we could only conduct
individual pages’ unit testing. Limited testing was done
using use cases. Our team felt that this testing process

was rushed and more time and effort should be
allocated.”

21817-214/514

Time estimates (in hours):

Activity Estimated Actual

testing plans 3 0

unit testing 3 1

validation testing 4 2

test data 1 1

21917-214/514
219

22017-214/514

How to get students to write tests?

How to get them to take testing seriously,
not just as an afterthought?

22117-214/514

How to get developers to write tests?

22217-214/514

Test Driven Development
● Tests first!

● Popular agile technique

● Write tests as specifications before code

● Never write code without a failing test

● Claims:

• Design approach toward testable design

• Think about interfaces first

• Avoid writing unneeded code

• Higher product quality (e.g. better code, less defects)

• Higher test suite quality

• Higher overall productivity
(CC BY-SA 3.0)
Excirial

http://en.wikipedia.org/wiki/User:Excirial

22317-214/514

How to get developers to run tests?

22417-214/514

22517-214/514

How to get developers to use static analysis?

22617-214/514

15-313 Software Engineering226

https://help.github.com/articles/using-pull-requests/

22717-214/514

22817-214/514

How to get developers to use static analysis?

22917-214/514

Are code reviews worth it?

23017-214/514

Requirements

23117-214/514

Requirements
● What does the customer want?

● What is required, desired, not necessary? Legal, policy constraints?

● Customers often do not know what they really want; vague, biased
by what they see; change their mind; get new ideas…

● Difficult to define requirements precisely

● (Are we building the right thing? Not: Are we building the thing
right?)

231

23217-214/514

Lufthansa Flight 2904
● The Airbus A320-200

airplane has a
software-based braking
system

● Engaging reverse thrusters
while in the air is very
dangerous: Only allow
breaking when on the
ground

232

23317-214/514

Lufthansa Flight 2904
Two conditions needed to “be on the ground”:

1. Both shock absorber bear a load of 6300 kgs
2. Both wheels turn at 72 knots (83 mph) or faster

233

23417-214/514
234

23517-214/514

23617-214/514

Interviews

23717-214/514

23817-214/514

Advertisement: SE @ CMU
Many courses

Spring: SE for Startups, ML in Production, Program Analysis, WebApps
Fall: Foundations of SE, API Design

Master level: Formal methods, Requirements, Architecture, Agile, QA, DevOps,
Software Project Mgmt, Scalable Systems, Embedded Sys., …

Technical foundations: ML, Distributed Systems

Many research opportunities -- contact us for pointers

https://www.cmu.edu/scs/isr/reuse/
https://se-phd.isri.cmu.edu/

Software Engineering Concentration / Minor

https://www.cmu.edu/scs/isr/reuse/
https://se-phd.isri.cmu.edu/

23917-214/514

One Last Survey

https://bit.ly/214last

https://bit.ly/214last

24017-214/514

Summary
Looking back at one semester of code-level design,
testing, and concurrency

Looking forward to human aspects of software
engineering, including process and requirements

