Principles of Software Construction:
Objects, Design, and Concurrency

Introduction, Overview, and Syllabus

Claire Le Goues Vincent Hellendoorn

Carnegie Mellon University
School of Computer Science

institute for
I S SOFTWARE
RESEARCH

17-214/514 1 [s

RRRRRRRR

|Principles of Software Construction:]
Objects, Design, and Concurrency

Introduction, Overview, and Syllabus

Claire Le Goues Vincent Hellendoorn

Carnegie Mellon University
School of Computer Science

institute for
I S SOFTWARE
RESEARCH

17-214/514 2 [s

How Modern Software Gets Built

ROadS ﬁBuilding software is like \
= constructing a building. A
and Bfldg@5: construction company

e DBtk wouldn’'t build its hammers
and Jdrills from scratch, or
source and chop all of the

lumber themselves.” /

17-214/514 3 Sf 2?}3}{1{%

© | Instagram

ABOUT
Company
Press
Jobs

LEGAL
Terms
Privacy
Platform

Libraries

17-214/514

Login

Libraries We Use

The following sets forth attribution notices for third party software that may be contained in
portions of the Instagram product. We thank the open source community for all of their
contributions.

AFNetworking

The following software may be included in this product: AFNetworking. This
software contains the following license and notice below:

Copyright (c) 2011 Gowalla (http://gowalla.com/)

Permission is hereby granted, free of charge, to any person obtaining a copy of
this software and associated documentation files (the "Software'), to deal in the
Software without restriction, including without limitation the rights to use,
copy, modify, merge, publish, distribute, sublicense, and/or sell copies of the
Software, *and to permit persons to whom the Software is furnished to do so,
subject to the following conditions:

The above copyright notice and this permission notice shall be included in all
copies or substantial portions of the Software.

THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS
FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR
COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN
AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION
WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.

Copyright (c) 2013 AFNetworking (http://afnetworking.com)

Permission is hereby granted, free of charge, to any person obtaining a copy of
this software and associated documentation files (the "Software"), to deal in the
Software without restriction, including without limitation the rights to use,
copy, modify, merge, publish, distribute, sublicense, and/or sell copies of the
Software_ . and tno opergit oercanc ta whom $the Snftrwarpe is. furnished, tn dp,<o.

o
institute for
4 | S SOFTWARE
RESEARCH

Uber + Slack + Weekend

A story of open APls
Uber Developers

What do you get when you combine a group of entrepreneurial hackers, a
single weekend, and two open APIs? A brand new slack command to request
an Uber without pulling out your phone — built by some talented young
minds in just 48 hours.

17'214/514 5 institute for

A Few Questions

How many lines of code behind twitter.com?

= readme.md

> A few million, maybe more Node Twitter

H oW man y L O C to b u | | d an o kay TW | tte rre p | | ca ’) Node tittr is an effrt o rewite some of Tuiter' unctinalty using modern javascrpt base toolchain. It vas

mostly an effort to learn Node.js and trying to reverse engineer some of twitter's feature.

It has support for tweeting, commenting and following with analytics

> A feW 1 O K You can support the development here by becoming a backer: https://opencollective.com/nodetwitter/
(T
<o ea

[—— o % EEEE

How many LOC to run a Twitter replica?

nnnnnnn

> A few

https://github./vinitku mar/node-twitter
17-214/514 6 [i o

Welcome to the era of “big code”

Software Size (million Lines of Code)

Modern Higvend cor

Facebook

Windows Vista

Large Hadron Collider
Boeing 787

Android

Google Chrome
Linux Kernel 2.6.0
Mars Curiosity Rover
Hubble Space Telescope
F-22 Raptor

Space Shuttle

17-214/514

10

20

30

40

50

60

70

80

90

100

(informal reports)

7 [

institute for
SOFTWARE
RESEARCH

Modern Software Engineering

e Nobody wants to write a million lines of code.
o You don’t want to write Twitter.

17-214/514 8 s

Modern Software Engineering

e Nobody wants to write a million lines of code.

o You don’t want to write Twitter.
o (Aside) Sometimes you have to:

Twitter's Shift from Ruby to Java Helps it Survive
US Election

Nov 09, 2012 2 min read

Twitter's infamous Fail Whale was absent on US presidential election day, even as Twitter's servers
were handling a serge of 327,452 tweets per minute, according to Mazen Rawashdeh, Twitter's VP of
Infrastructure Operations Engineering. In total, there were 31 million election-related tweets during the
course of the day, and the traffic continued to periodically spike - at one point reaching 15,107 tweets
per second. To put this figure in context, on the 2008 election night Twitter peaked at 229 tweets per
second.

Rawashdeh notes that Twitter has been seeing a change in usage pattern over the last year from brief
spikes (for example related to the clock striking midnight on New Year's Eve or a celebrity pregnancy
announcement) to more sustained peaks of traffic lasting several hours. This occurred, for example,
during the Olympics closing ceremony, the NBA finals, and now with the election.

17-214/514 9 el

RESEARCH

Modern Software Engineering

e Nobody wants to write a million lines of code.
o You don’t want to write Twitter.

e Instead, you use libraries
o E.g., import Android => +12M LOC
o You don’t write most of the code you use
m And why would you want to?
e And your libraries use libraries

o Et cetera
o https://npm.anvaka.com/#/view/2d/qgifsicle

17-214/514 10 ik

RESEARCH

https://npm.anvaka.com/#/view/2d/gifsicle

But “a few lines of code” does not mean easy!

e An engineer understands the pieces and how to put them together.
e But:

o There are many (and always new) pieces.

o They involve different and continuously changing programming languages and
technologies.

o There are many ways to compose applications, with different tradeoffs.
The implications can be very subtle.

17-214/514 11 sl

RESEARCH

NPM & left-pad: Have We Forgotten How To Program? - David Haney

NPM & left-pad: Have We Forgotten

How To Program?
David Haney

Intro

Okay developers, time to have a serious talk. As you are probably already
aware, this week React, Babel, and a bunch of other high-profile packages
on NPM broke. The reason they broke is rather astounding:

A simple NPM package called left-pad that was a dependency of their code.

left-pad, at the time of writing this, has 11 stars on GitHub. The entire
package is 11 simple lines that implement a basic left-pad string function. In
case those links ever die, here is the entire code of the left-pad package:

module.exports = leftpad;
function leftpad (str, len, ch) {

str = String(str);

var i = -1;

if (!ch && ch !==0) ch ="' ';

len = len - str.length;

while (++i < len) {

str = ch + str;
}

return str;

What concerns me here is that so many packages and projects took on a
dependency for a simple left padding string function, rather than their

https:f

117/22, 5:07 PM

What is Logdj? A cybersecurity expert explains the latest internet vulnerability, how bad it is and what's at stake

117)22, 5:12 PM

What is Log4j? A cybersecurity expert explains
the latest internet vulnerability, how bad it is and

what's at stake
Santiago Torres-Arias December 22, 2021 8.12am EST

Log4Shell, an internet vulnerability that affects millions of computers, involves an obscure but nearly
ubiquitous piece of software, Log4j. The software is used to record all manner of activities that go on
under the hood in a wide range of computer systems.

Jen Easterly, director of the U.S. Cybersecurity & Infrastructure Security Agency, called Log4Shell the
most serious vulnerability she's seen in her career. There have already been hundreds of thousands,

perhaps millions, of attempts to exploit the vulnerability.

So what is this humble piece of internet infrastructure, how can hackers exploit it and what kind of
mayhem could ensue?

is-log: ty-expert-expl ability-how-bad-it-is-and -whats-at-stake-172896 Page 10f 7

Page1of &

1 2 institute for
I S SOFTWARE
RESEARCH

But “a few lines of code” does not mean easy!

e An engineer understands the pieces and how to put them together.
e But:

o There are many (and always new) pieces.

o They involve different and continuously changing programming languages and
technologies.

o There are many ways to compose applications, with different tradeoffs.

o The implications can be very subtle.

e You need to become fluent in using and composing new systems.
And you’ll need to do it over and over again throughout your
careers.

17-214/514 13 sl

RESEARCH

This class teaches principles of
software construction

17-214/514 14 [s

RRRRRRRR

17-214/514. From Programs to Applications & Systems

Writing algorithms, data
structures from scratch

Reuse of libraries,
frameworks

Functions with inputs
and outputs

Asynchronous and
reactive designs

Parallel and distributed
computation

Sequential and local
computation

Full functional
specifications

Partial, composable,
targeted models

R

Our goal: understanding both the building blocks and also the
17014 design principles for construction of software systems at scale

Equipment of a Modern Programmer

Less emphasis on: More emphasis on:

/ /
(though not unimportant!) Using APls, libraries (hw1)

Quality assurance (hw2)
Design for reuse, extension (hw3+)
Flexibility in ecosystems (all)

e Clever algorithmics

e Low-level code (kernels, drivers)

e \Writing common components
(command-line parsers, HTML)

17-214/514 16 Lo

Flexibility & Ecosystems

Flexibility is perhaps the key skill, besides good design.
In this course:

e Learn to choose & use libraries

e Adopting new tools, troubleshooting

e Also, Java vs. JavaScript/TypeScript

17-214/514 17 [s

Top languages over the years 2021 GitHub State of the Octoverse report

2014 2015 2016 2017 2018 2019 2020 2021

Java

i

TypeScript

Q
(]

74 ﬁ C++

8 E She”
9 C

10

2014 2015 2016 2017 2018 2019 2020 2021

17-214/514 18 sl

RESEARCH

—N

- 5OFTV\§AKE ENG{lNEER”\]ﬁ https://softwareengineering.stackexchange.com/questions/370135

Why are multiple programming languages used in the
development of one product or piece of software?

Asked 3 years, 8 monthsago Active 1year, 10 months ago Viewed 42k times

| am a recent grad student aiming to start my Master's in Computer Science. | have come
across multiple open source projects that really intrigue me and encourage me to

120 contribute to them (CloudStack, OpenStack, moby, and Kubernetes to name a few). One
thing I've found that the majority of them have in common is the use of multiple
programming languages (like Java + Python + Go or Python + C++ + Ruby). | have already
looked at this other question, which deals with how multiple programming languages are
made to communicate with each other: How to have two different programmings with two
different languages interact?

| want to understand the requirement that prompts enterprises to use multiple programming
languages. What requirement or type of requirement makes the software architect or
project lead say, "I'm proposing we use language X for task 1 and language Y for task 2"? |
can't seem to understand the reason why multiple programming languages are used in the
same product or software.

programming-practices programming-languages methodology

17-214/514 19 [i

RESEARCH

2 SOFTWARE ENGINEERING
e,

. P =

Why are mu
developmer

Asked 3 years, 8 mont

120

I am a receni
across multij
contribute tc
thing I've fou
programming
looked at thi
made to conr
different lang

| want to unc
languages. V
project lead !
can't seem ti
same produc

programming-

17-214/514

162

https://softwareengineering.stackexchange.com/questions/370135

| can't seem to understand the reason as to why multiple programming languages are used in
the same product or software?

It is quite simple: there is no single programming language suitable for all needs and goals.

Some programming languages favor expressiveness and declarativity (a lot of scripting languages, but
also high-level programming languages like Agda, Prolog, Lisp, Haskell, Ocam, ...). When the cost of
development is important (human time and cost of developers), it is suitable to use them (even if the
runtime performance is not optimal).

Other programming languages favor run-time performance (many low-level languages, with usually
compiled implementations, like C++, Rust, Go, C, assembler, also specialized languages like OpenCL

...); often their specification allows some undefined behavior. When the performance of the code
matters, it is preferable to use these languages.

Some external libraries are written in and for a particular language and ABI and calling_ conventions in

mind. You may need to use that other language, and follow foreign function interface conventions,
perhaps by writing some glue code.

In practice, it is unlikely to have a programming language which is highly expressive (so improves the
productivity of the developer, assuming a skilled enough developer team) and very performant at
runtime. In practice, there is a trade-off between expressivity and performance.

2 institute for
I S SOFTWARE
RESEARCH

=SOFT TV\/AKE ENGINEERING

(_—‘—ﬁQ

Why are mu
developmer

Asked 3 years, 8 mont

I am a receni
across multij
120 contribute tc
thing I've fou
programming
looked at thit
made to conr
different lang

| want to unc
languages. V
project lead !
can't seem ti
same produc

programming-

17-214/514

162

https://softwareengineering.stackexchange.com/questions/370135

| can't seem to understand the reason as to why multiple programming languages are used in

the same proc’

It is quite simple: tl
Read Michael L. Sc

Some programmin
also high-level pro
development is im|
runtime performan

Other programmin
compiled impleme
...); often their spe«
matters, it is prefer

Some external libr:
mind. You may nee
perhaps by writing

In practice, it is unl
productivity of the
runtime. In practice

20

This answer has superb coverage and links on why different languages can provide distinct benefits to
a project. However, there is quite a bit more than just language suitability involved in why projects end
up using multiple languages.

Projects end up using multiple languages for six main reasons:

—

Cost benefits of reusing code written in other languages;
The need to include and accommodate legacy code;
Availability of coders for specific languages;

The need for special languages for specialty needs;

Legacy language biases; and

o o M w N

Poor project management (unplanned multi-language use).

Reasons 1-4 are positive reasons in the sense that addressing them directly can help a project
conclude faster, more efficiently, with a higher-quality product, and with easier long-term support.
Reasons 5 and 6 are negative, symptoms of resistance to needed change, poor planning, ineffective
management, or some combination of all of these factors. These negative factors unfortunately are
common causes of "accidental" multi-language use.

institute for
21 SOrTARE
RESEARCH

inat is a Polyglot Programemer — And Why You Should Become One | by Paul Azorin | Medium 722,123 PM
How to Become a Polyglet Programmer | by Pen Magnet | Level Up Coding Y17)22, 1:24 PM

What is a Polyglot Programmer — And Why You
Should Become One How to Become a Polyglot

e Programmer

Pen Magnet

Photo by Juan Gomez on Unsplash

Wikictionary defines Polyglot as: (notice #4?)

Whenever a person takes an interest in programming, they set out to choose where to start in a landscape
that's vast and widely dynamic. Usually, their journey begins with choosing one of the many, many
programming languages out there. Then, they learn everything they can about that language and, hopefully, 2: A publication containing several versions of the same text, or the same

continue their journey coding software using what they've learned. § 5 3 . 5
o 9 subject matter in several languages; especially, the Bible in several

1: One who has mastered, notably speaks, several languages.

That's what the path of most developers looks like: they learn the ins and outs of a particular language, extend
their reach through frameworks, and they start to gain experience out in the fields. That's a great way to get z
into the programming world but, if you stop there, you aren't doing yourself any favor. 3: A mixture of /anguages or nomenclatures.

4: (programming) A program written in multiple programming languages.

languages.

Though you might think it's best to stick with a particular programming language and become an expert in it

(like many software engineers before you), limiting your toolkit to just one language can be, well, limiting your
httpsfflevelup.gitconnected.com/how-ta-become-a-polyglot-programmer-£{{48562e¢ 708 Page 1 of 15

hitps:fimedm. 9286 4)what-iz-a and-why-you-shoud . Pageof3

2 2 institute for
. SOFTWARE
RESEARCH

17-.

2020 International Conference on Software Engineering

Here We Go Again: Why Is It Difficult for Developers to Learn
Another Programming Language?

Nischal Shrestha Colton Botta
NC State University NC State University
Raleigh, North Carolina Raleigh, North Carolina
nshrest@ncsu.edu cgbotta@ncsu.edu

ABSTRACT

Once a programmer knows one language, they can leverage con-
cepts and knowledge already learned, and easily pick up another
programming language. But is that always the case? To understand
if programmers have difficulty learning additional programming
languages, we conducted an empirical study of Stack Overflow ques-
tions across 18 different programming languages. We hypothesized
that previous knowledge could potentially interfere with learning
a new programming language. From our inspection of 450 Stack
Overflow questions, we found 276 instances of interference that
occurred due to faulty assumptions originating from knowledge
about a different language. To understand why these difficulties
occurred, we conducted semi-structured interviews with 16 profes-
sional programmers. The interviews revealed that programmers
make failed attempts to relate a new programming language with
what they already know. Our findings inform design implications
for technical authors, toolsmiths, and language designers, such as
designing documentation and automated tools that reduce interfer-
ence, anticipating uncommon language transitions during language
design, and welcoming programmers not just into a language, but
its entire ecosystem.

Titus Barik Chris Parnin
Microsoft NC State University
Redmond, Washington Raleigh, North Carolina
titus.barik@microsoft.com cjparnin@ncsu.edu
PRELUDE

Peter Norvig wrote a guide, “Python for Lisp Programmers” [48],
to teach Python from the perspective of Lisp. We interviewed Peter
regarding this transition and he described a few challenging aspects
of switching to Python, such as how lists are not treated as a linked
list and solutions where he previously used macros required re-
thinking. When asked about the general problem of switching
programming languages, he said:

Most research is on beginners learning languages. For experts,
it’s quite different and we don’t know that process. We just sort
of assume if you're an expert you don’t need any help. But I
think that’s not true! I've only had a couple times when I had to
deal with C++ and I always felt like I was lost. It’s got all these
weird conventions going on. There’s no easy way to be an expert
at it and I've never found a good answer to that and never felt
confident in my C++.

Peter believes that learning new languages is difficult—even for
experts—despite their previous experience working with languages.
Is Peter right?

institute for
I S SOFTWARE
RESEARCH

Outcomes, hopefully

You'll learn to be;

e An architect, approaching programming as design

o This is the only way to scale up to larger systems

o You'll learn a rich vocabulary, of both components and their combinations
e A polyglot, able to pick up new languages and libraries

o Because you know the underlying concepts

o And you've had plenty of practice reading documentation, debugging setups
e An engineer, safeguarding the quality of your programs

o You'll get dextrous at testing, be explicit about specification

o You'll know the tools that improve your work

17-214/514 24 sl

RESEARCH

Principles of Software Construction:
Objects) Design, and Concurrency

Introduction, Overview, and Syllabus

Claire Le Goues Vincent Hellendoorn

Carnegie Mellon University
School of Computer Science

institute for
I S SOFTWARE
RESEARCH

17-214/514 25 [

Objects in the real world

17-214/514 26 sl

Object-oriented programming

Programming based on structures that
contain both data and methods

public class Bicycle {
private int speed;
private final Wheel frontWheel, rearWheel;
private final Seat seat;

public Bicycle(..) { .. }

public void accelerate() {
speed++;

}

public int speed() { return speed; }

Principles of Software Construction:
Objects,(Design) and Concurrency

Introduction, Overview, and Syllabus

Claire Le Goues Vincent Hellendoorn

Carnegie Mellon University
School of Computer Science

institute for
I S SOFTWARE
RESEARCH

17-214/514 28 [

-

\

User needs

~

(Requirements)

Miracle?

/

17-214/514

Code

-

o

User needs

~

(Requirements)

Miracle?

/

17-214/514

o

Code

Maintainable?

Testable?
Extensible?
Scalable?
Robust? ...

A typical Intro CS design process

o kA w e

17-214/514

Discuss software that needs to be written
Write some code

Test the code to identify the defects
Debug to find causes of defects

Fix the defects

If not done, return to step 1

Better software design

® Think before coding: broadly consider quality attributes

O Maintainability, extensibility, performance, ...

® Propose, consider design alternatives

O Make explicit design decisions

17-214/514 32 Lo

Sorting with a configurable order, version A

static void sort(int[] list, boolean ascending) { b
boolean mustSwap;
if (ascending) {
mustSwap = list[i1] > list[j];
} else {
mustSwap = list[i] < list[j];
}
}
S Y,
17-214/514

Sorting with a configurable order, version B

/interface Order {
boolean lessThan(int i1, int j);

}

~

class AscendingOrder implements Order {
public boolean lessThan(int i, int j) { return i1 < j; }

}

class DescendingOrder implements Order {
public boolean lessThan(int i, int j) { return 1 > j; }

}

static void sort(int[] list, Order order) {

boolean mustSwap =
order.lessThan(list[j], list[i]);

1&\ ttttttttt for
.. ¥l SOFTWARE
RRRRRRR H

Sorting with a configurable order, version B'

const ASC = function(i: number, j: number): boolean {
return 1 < j;

}

const DESC = function(i: number, j: number): boolean {
return 1 > j;

}

function sort(
list: number[],
order: (number, number) => boolean) {

boolean mustSwap = order(list[j], list[i]);

}
> sort(list, ASC);

Which version is better?

Version A:

static void sort(int[] list, boolean ascending) {

boolean mustSwap; interface Order {
if (ascending) { boolean lessThan(int i1, int j);
mustSwap = list[i] > 119}
} else { class AscendingOrder implements Order {
mustSwap = list[i] < lid public boolean lessThan(int i, int j) { return i1 < j; .
} }
. class DescendingOrder implements Order {
} public boolean lessThan(int i, int j) { return 1 > j;
}

static void sort(int[] list, Order order) {

Version B': boolean mustSwap =
order.lessThan(list[j], list[i]);

17-214/514

It depends

17-214/514 37 o

RESEARCH

It depends

Depends on what?
What are scenarios?
What are tradeoffs?

17-214/514 38 [[j i

RRRRRRRR

It depends

Depends on what? In this specific case, what
What are scenarios? would you recommend?
What are tradeoffs? (Engineering judgement)

17‘2 14/5 14 39 Sr institute for

SSSSSSSS
RRRRRRRR

"Software engineering is the branch of computer science that creates practical,
cost-effective solutions to computing and information processing problems,
preferentially by applying scientific knowledge, developing software systems in the
service of mankind.

17-214/514 40 |Ij s

RRRRRRRR

"Software engineering is the branch of computer science that creates practical,
cost-effective solutions to computing and information processing problems,
preferentially by applying scientific knowledge, developing software systems in the

service of mankind.
Software engineering entails making decisions under constraints of limited time,

knowledge, and resources. [...]

Engineering quality resides in engineering judgment. [...]

Quality of the software product depends on the engineer's faithfulness to the
engineered artifact. [...]

Engineering requires reconciling conflicting constraints. [...]

Engineering skills improve as a result of careful systematic reflection on
experience. [...]

Costs and time constraints matter, not just capability. [...]

Software Engineering for the 21st Century: A basis for rethinking the curriculum
Manifesto, CMU-ISRI-05-108

17-214/514 a1 | s

RRRRRRRR

Goal of software design

e Think before coding

e For each desired program behavior there are infinitely many programs
O What are the differences between the variants?
O Which variant should we choose?
O How can we synthesize a variant with desired properties?

e Consider qualities: Maintainability, extensibility, performance, ...

e Make explicit design decisions

17-214/514 42 sl

RESEARCH

Tradeoffs?

static void sort(int[] list, boolean ascending) {

boolean mustSwap; interface Order {
i1f (ascending) { boolean lessThan(int i1, int j);
mustSwap = list[i] > 119}
} else { class AscendingOrder implements Order {
mustSwap = list[i] < lid public boolean lessThan(int i, int j) { return i1 < j; .
} }
. class DescendingOrder implements Order {
} public boolean lessThan(int i, int j) { return 1 > j;
}

static void sort(int[] list, Order order) {

boolean mustSwap =
order.lessThan(list[j], list[i]);

17-214/514

Some qualities of interest, i.e., design goals

Functional
correctness

Adherence of implementation to the specifications

Robustness
Flexibility
Reusability
Efficiency
Scalability

Security

17-214/514

Ability to handle anomalous events

Ability to accommodate changes in specifications

Ability to be reused in another application

Satisfaction of speed and storage requirements

Ability to serve as the basis of a larger version of the application

Level of consideration of application security

Source: Braude, Bernstein,
Software Engineering. Wiley
2011

o
institute for
44 | S SOFTWARE
RESEARCH

Using a design process

® A design process organizes your work
® A design process structures your understanding

® A design process facilitates communication

17'214/514 45 Sf géﬁi{%

Semester overview

e Introduction to Object-Oriented
Programming
e Introduction to design
o Design goals, principles, patterns
e Designing objects/classes
o Design for change
o Design for reuse
e Designing (sub)systems
o Design for robustness
o Design for change (cont.)

e Design for large-scale reuse

17-214/514

Crosscutting topics:

Building on libraries and frameworks
Building libraries and frameworks
Modern development tools: IDEs,
version control, refactoring, build
and test automation, static analysis
Testing, testing, testing
Concurrency basics

Preview: Design goals, principles, and patterns

e Design goals enable evaluation of designs
O e.g. maintainability, reusability, scalability
e Design principles are heuristics that describe best practices
O e.g. high correspondence to real-world concepts
e Design patterns codify repeated experiences, common solutions

O e.g. template method pattern

17'214/514 47 Sf gé;{"u;"?é%

Software Engineering at CMU

® 17-214: “Code-level” design

O extensibility, reuse, concurrency, functional correctness, medium-size to large programs

® 17-313: “Human aspects” of software development

O requirements, team work, balancing qualities, scheduling, costs, risks, business models
17-413 Practicum, Seminar, Internship
SE electives: SE4Startups, Program Analysis, Machine Learning in Production

Various master-level courses on requirements, architecture, software analysis, deep learning for SE, etc

SE Minor/Concentration: http://isri.cmmu.edu/education/undergrad/

17-214/514 48 sl

RESEARCH

http://isri.cmu.edu/education/undergrad/

This Is not a
Java/JavaScript course

This Is not a
Java/JavaScript course

but you will write a
lot of
Java/JavaScript code

17-214/514 50 [[j

RRRRRRRR

int a = 010 + 3;
System.out.println("A" + a)

3

17-214/514

int = 010 + 3;

const a = 010 + 3;
console.log("A" + a);

17-214/514 52 [j

17-214/514

const a = 010 + 3;
console.log("A" + a);

TRAPS, PITFALLS
AND CORNER CASES

o
5 3 institute for
SOFTWARE
RESEARCH

Java + JavaScript / TypeScript

Focus on design concepts and cross-cutting skills, not programming language
Language proficiency through practice and homeworks

Lectures show examples in pseudo code, Java, JavaScript, TypeScript, and
other languages

Both Java and TypeScript for homeworks (sometimes your choice)

int a = 010 + 3;
System.out.println("A" RS- RERONONE SCH

console.log("A" + a);

17'2 14/5 14 54 Sf :;:::iim

SSSSSSSS
H

Java AND TypeScript/JavaScript

e HW 1&2: Both
O Flashcard learning app (command line)

e HW 3: Java + HW 5: TypeScript/JavaScript

O Board game with web interface (could also be a mobile app)
e Your choice:
O HW4: Static website generator / CMS (command line application)

O HW®6: Data analysis and visualization tool (desktop/web application)

Recitations will provide tools/examples in both languages.

17-214/514

COURSE ORGANIZATION

SSSSSSSS
RRRRRRRR

SENIOR CENTER
SENIOR LENTER

WEAR A MASK
WASH YOUR HANDS
SOCIAL DISTANCE

STAY SAFE

Trying to get back to normal with ...
gestures widely™ everything

Talk to us about concerns and
accommodations

Disclaimer: |
General structure from 21-22, with a
few changes.

Some things will go wrong.

Have patience with us.

.| Give us feedback.

P

LY o’ CC BY-NC-ND 2.0 Suzanne Hamilton

Course materials

Course website (syllabus, slides, calendar): https://cmu-17-214.qithub.io/f2022/

Discussions, questions, announcements: Piazza
Assignments, readings, and grades: Canvas (and Gradescope)

Homework submission: GitHub (signup instructions in assignment) and other tools

17-214/514 59 Lo

https://cmu-17-214.github.io/s2022/

GitHub ID/start of class survey.

Please fill out: https://forms.qle/UKRC9rwxGBvSkrnU6

e Will also put on piazza

If you don’t have a github account, signing up is fast. Do that right now and
fill out the survey.

Are you finished? Have you set up pushing via ssh key-pair or PAT?

e https://docs.github.com/en/github/authenticating-to-qithub/connecting-t

0-github-with-ssh
e https://docs.qgithub.com/en/qithub/authenticating-to-github/keeping-you

r-account-and-data-secure/creating-a-personal-access-token

It's OK if you don't finish setting up push right now, but you'll need to do it to
do the homework. We discuss this in recitation, or can help via Piazza or
Office Hours.

17-214/514

60 [Hi

institute for
SOFTWARE
RESEARCH

https://forms.gle/UkRC9rwxGBvSkrnU6
https://docs.github.com/en/github/authenticating-to-github/connecting-to-github-with-ssh
https://docs.github.com/en/github/authenticating-to-github/connecting-to-github-with-ssh
https://docs.github.com/en/github/authenticating-to-github/keeping-your-account-and-data-secure/creating-a-personal-access-token
https://docs.github.com/en/github/authenticating-to-github/keeping-your-account-and-data-secure/creating-a-personal-access-token

Course preconditions, enrollment

e 15-122 or equivalent: Basic programming skills in any language, algorithms
and data structures (lists, graphs, sorting, binary search)

e 21-127 or equivalent: Basic discrete math concepts, logic

e If you are on the waitlist, or want to change sections, email this person:
cooperj@andrew.cmu.edu < Jenni Cooper

17-2 14/5 14 61 Sf g\é}}:i{%

mailto:cooperj@andrew.cmu.edu

Course staff

Claire Le Goues
clegoues@cs.cmu.edu, TCS 363

Vincent Hellendoorn
vhellendoorn@cmu.edu, TCS 320

Teaching assistants:

Jake, Julia, Jessica, Zishen, Cassie, Manisha, CJ, Ankit, Yuan, Emaan,
Eshita

17-214/514 62 Sf e

Course meetings

e Lectures: Tuesday and Thursday 3:05 — 4:25pm

e \We will record and post recordings of lectures to Canvas, but we won't live

stream.
e Recitations: Wednesdays 9:05 - ... - 3:20pm Recitation
attendance
O Preparing for homeworks, hands-on practice, supplementary material is required

O Starting tomorrow! (setting up environments -- relevant for HW1)

O Recitations are not recorded, but handouts will be on Piazza.

e Office hours: see course web page

17-214/514 63 Lo

Homework & Exams

6 homeworks, 4 smaller + 2 large (with milestones), 1000 points total

(1) intro, (2) testing, (3) first design, (4) fixing design,
(5) extensibility + GUI, (6) framework and API design

Homeworks and milestones usually due Mondays, see course calendar

Homework 1 due September 12

Two midterms + final

5b

5c

17-214/514

M
2

6a

6b

6c

Late day policy

e See syllabus on course web page for details

e 2 possible late days per deadline (some exceptions may be announced)
O 5 total free late days for semester (+ separate 2 late days for assignments done in pairs)
O 10% penalty per day after free late days are used
O but we won’t accept work 3 days late

e Extreme circumstances — talk to us

17-214/514 65 sl

RESEARCH

Textbooks

e Craig Larman. Applying UML and Patterns: An Introduction to
Object-Oriented Analysis and Design and Iterative Development.
3rd Edition. Prentice Hall. 2004. ISBN 0-13-148906-2

e Joshua Bloch. Effective Java, Third Edition. Addison-Wesley, ISBN
978-0-13-468599-1.

e Selective other readings throughout the semester
e Webpage also has pointers for references for Java and Typescript!
e Occasional in-class reading quizzes after reading assignment due

e Electronic versions are all available for free through CMU library

17-214/514

]oshua Bloch ~

Effective Java

Third Edition

APPLYING UML
AND PATTERNS

An Introduction to Object-Oriented Analysis and Design
and Iterative Development

Ever since {came acrows R, Applhing UML eod Fotierns has been ey ureserved dhoce”
~Marin Fowker, author of UM Ditied a6 Reloctring

('.R’.\I(; LARMAN

I\

o
institute for
| S SOFTWARE
RESEARCH

Approximate grading policy

® 50% assignments
® 20% midterms (2 x 10% each)
® 20% final exam

® 10% quizzes and participation.

O Quizzes will be given in Lecture. You can miss 4 quizzes without penalty. Please reach out if your
circumstances are. extenuating.

We reserve the right to be flexible with mappings between percentage and letter grades, but it
will be no stricter than A=90-100%, B=80-90%, etc, and we don’t have a hard curve.

17-214/514 67 Lo

Collaboration policy

e See course web page for details!
e \We expect your work to be your own
e Do not release your solutions (not even after end of semester)
e Ask if you have any questions
e If you are feeling desperate, please reach out to us
O Always turn in any work you've completed before the deadline

e \We run cheating detection tools. Trust us, academic integrity meetings are
painful for everybody

17-214/514 68 Lo

10% quizzes and participation / attendance

® Recitation participation counts toward your participation grade

® | ecture has in-class quizzes

The key to your success in this course is your
regular, engagement with course activities, staff,
and other students

17-214/514 69 [s

RRRRRRRR

Summary

® Software engineering requires decisions, judgment
® Good design follows a process

® You will get lots of practice in 17-214!

17-214/514 70 Sf 2?:‘2’&1{‘2%

