
117-214/514

Principles of Software Construction:
Objects, Design, and Concurrency

Test case design

Claire Le Goues Vincent Hellendoorn

217-214/514

Administrative

● Canvas submissions
○ “Submit a link to your checkpoint commit here on Canvas in the form

https://github.com/CMU-17-214/<reponame>/commit/<commitid>.”
● Homework 2 is due next week: testing

○ Lots of useful stuff in recitation on Wednesday

317-214/514

Last Week

● Contracts
● Exceptions
● Unit testing: small, simple, per-method tests

417-214/514

Today

● Specifications
● Specification vs. Structural testing
● Testing Strategies

○ Structural Testing: Statement, branch, path coverage; limitations
○ Specification Testing: Boundary value analysis, combinatorial testing, decision tables

● Writing testable code & good tests

517-214/514

Q: What exactly do you test when given a method?

● What it claims to do: specification testing – the contract (last week)
● What it does: structural testing – coverage

Specifications and testing are closely related

617-214/514

Structural Testing: a closer look

Takes into account the internal mechanism of a system (IEEE, 1990).
● Approaches include tracing data and control flow through a program

717-214/514

Case Study

Assume various Wallets

public interface Wallet {

 boolean pay(int cost);

 int getValue();

}

817-214/514

DebitWallet.pay()

What should we test in this code?

public boolean pay(int cost) {
 if (cost <= this.money) {
 this.money -= cost;
 return true;
 }
 return false;
}

917-214/514

DebitWallet.pay()

public boolean pay(int cost) {
 if (cost <= this.money) {
 this.money -= cost;
 return true;
 }
 return false;
}

new DebitWallet(100).pay(10);

1017-214/514

DebitWallet.pay()

public boolean pay(int cost) {
 if (cost <= this.money) {
 this.money -= cost;
 return true;
 }
 return false;
}

new DebitWallet(0).pay(10);

1117-214/514

CreditWallet.pay()

How about now?

public boolean pay(int cost, boolean useCredit) {
 if (useCredit) {
 if (this.credit + cost <= this.maxCredit) {
 this.credit += cost;
 return true;
 }
 }
 if (cost <= this.cash) {
 this.cash -= cost;
 return true;
 }
 return false;
}

1217-214/514

CreditWallet.pay()

Exercise: think about as many test scenarios as you can

public boolean pay(int cost, boolean useCredit) {
 if (useCredit) {
 if (enoughCredit) {
 return true;
 }
 }
 if (enoughCash) {
 return true;
 }
 return false;
}

1317-214/514

CreditWallet.pay()
public boolean pay(int cost, boolean useCredit) {
 if (useCredit) {
 if (enoughCredit) {
 return true;
 }
 }
 if (enoughCash) {
 return true;
 }
 return false;
}

Test
case

useCredit
enough
Credit

enough
Cash

Result Coverage

1 T T - Pass --

1417-214/514

CreditWallet.pay()
public boolean pay(int cost, boolean useCredit) {
 if (useCredit) {
 if (enoughCredit) {
 return true;
 }
 }
 if (enoughCash) {
 return true;
 }
 return false;
}

Test
case

useCredit
enough
Credit

enough
Cash

Result Coverage

1 T T - Pass --

2 F - T Pass --

3 F - F Fails Statement

1517-214/514

Coverage

We have tested every statement; are we done?
Depends on desired coverage:

● Provide at least one test for distinct types of behavior
● Typically on control flow paths through the program
● Statement, branch, basis paths, MC/DC

1617-214/514

Structures in Code

1717-214/514

Control-Flow of CreditCard.pay()
public boolean pay(int cost, boolean useCredit) {
 if (useCredit) {
 if (enoughCredit) {
 return true;
 }
 }
 if (enoughCash) {
 return true;
 }
 return false;
}

useCredit

enough
Credit

pay
w/credit

true

true

enough
Cash

pay
w/cash

fail

false

false

false

true

1817-214/514

Control-Flow of CreditCard.pay()

useCredit

enough
Credit

pay
w/credit

true

true

enough
Cash

pay
w/cash

fail

false

false

false

true

Test
case

useCredit
enough
Credit

enough
Cash

Result Coverage

1 T T - Pass --

2 F - T Pass --

3 F - F Fails Statement

1917-214/514

Control-Flow of CreditCard.pay()

useCredit

enough
Credit

pay
w/credit

true

true

enough
Cash

pay
w/cash

fail

false

false

false

true

Test
case

useCredit
enough
Credit

enough
Cash

Result Coverage

1 T T - Pass --

2 F - T Pass --

3 F - F Fails Statement

2017-214/514

Control-Flow of CreditCard.pay()

useCredit

enough
Credit

pay
w/credit

true

true

enough
Cash

pay
w/cash

fail

false

false

false

true

Test
case

useCredit
enough
Credit

enough
Cash

Result Coverage

1 T T - Pass --

2 F - T Pass --

3 F - F Fails Statement

2117-214/514

CreditWallet.pay()
public boolean pay(int cost, boolean useCredit) {
 if (useCredit) {
 if (enoughCredit) {
 return true;
 }
 }
 if (enoughCash) {
 return true;
 }
 return false;
}

Test
case

useCredit
enough
Credit

enough
Cash

Result Coverage

1 T T - Pass --

2 F - T Pass --

3 F - F Fails Statement

4 T F T Pass Branch

2217-214/514

Path Coverage

We have seen every condition … what else is missing?

2317-214/514

Path Coverage

We have seen every condition … but not every path.

● 3 conditions, each with two values = 8 permutations
● Some permutations are impossible
● Still one path left

2417-214/514

Control-Flow of CreditCard.pay()

useCredit

enough
Credit

pay
w/credit

true

true

enough
Cash

pay
w/cash

fail

false

false

false

true

Paths:

● {true, true}: pay w/credit
● {false, true}: pay w/cash
● {false, false}: fail

2517-214/514

Paths:

● {true, true}: pay w/credit
● {false, true}: pay w/cash
● {false, false}: fail
● {true, false, true}: pay w/cash

after failing credit

Control-Flow of CreditCard.pay()

useCredit

enough
Credit

pay
w/credit

true

true

enough
Cash

pay
w/cash

fail

false

false

false

true

2617-214/514

Control-Flow of CreditCard.pay()

useCredit

enough
Credit

pay
w/credit

true

true

enough
Cash

pay
w/cash

fail

false

false

false

true

Paths:

● {true, true}: pay w/credit
● {false, true}: pay w/cash
● {false, false}: fail
● {true, false, true}: pay w/cash

after failing credit
● {true, false, false}: try credit, but

fail, and no cash

2717-214/514

CreditWallet.pay()
public boolean pay(int cost, boolean useCredit) {
 if (useCredit) {
 if (enoughCredit) {
 return true;
 }
 }
 if (enoughCash) {
 return true;
 }
 return false;
}

Test
case

useCredit
enough
Credit

enough
Cash

Result Coverage

1 T T - Pass --

2 F - T Pass --

3 F - F Fails Statement

4 T F T Pass Branch

5 T F F Fails (Basis) paths

2817-214/514

BitCoinWallet.pay()

public boolean pay(int cost) {
 int currValue;
 while ((currValue = getValue()) < cost) {
 // Just wait.
 }
 this.btc -= cost / currValue;
 return true;
}

public int getValue() {
 return (int)
 (this.btc * Math.pow(2, 20*Math.random()));
}

2917-214/514

Control-flow of BitCoinWallet.pay()

What are all the paths?
BTC value
enough?

pay
w/btc

true

false

3017-214/514

Control-flow of BitCoinWallet.pay()

What are all the paths?

● {true}
● {false, true}
● {false, false, true}
● {false, false, false, true}
● ...

BTC value
enough?

pay
w/btc

true

false

3117-214/514

Control-flow of BitCoinWallet.pay()

Perfect “general” path coverage is elusive

But “adequate” coverage criteria exist:

● Basis paths: each path must cover one new edge
○ {true} and {false, true} are sufficient
○ As is just {false, true}

● Loop adequacy: iterate each loop zero, one, and 2+ times

BTC value
enough?

pay
w/btc

true

false

3217-214/514

More Coverage

Many more criteria exist:

● For branches with multiple conditions
○ Modified Condition/Decision Coverage is quite popular

● For loops
○ Boundary Interior Testing

● Branch coverage is by far the most common

3317-214/514

if a ≤ 1

x = a - 1

y = z / x

else

x = 5 Question 1: Is there a defect?

then

Coverage and Quality

3417-214/514

if a ≤ 1

x = a - 1

y = z / x

else

x = 5 Question 2: Can we achieve 100%
statement coverage and miss the
defect?

then

Coverage and Quality

3517-214/514

if a ≤ 1

x = a - 1

y = z / x

then

else

x = 5 Question 3: Can we achieve 100%
branch coverage and miss the defect?

Coverage and Quality

3617-214/514

Outline

● Structural Testing Strategies
● Writing testable code & good tests
● Specification Testing Strategies

3717-214/514

Writing Testable Code

What is the problem with this?

public boolean hasHeader(String path) throws IOException {
 List<String> lines = Files.readAllLines(Path.of(path));
 return !lines.get(0).isEmpty()
}

// complete control-flow coverage!
hasHeader(“cards.csv”) // true

3817-214/514

Writing Testable Code

What is the problem with this?

public boolean hasHeader(String path) throws IOException {
 List<String> lines = Files.readAllLines(Path.of(path));
 return !lines.get(0).isEmpty()
}

// to achieve a ‘false’ output without having a test input file:
try {
 Path tempFile = Files.createTempFile(null, null);
 Files.write(tempFile,"\n".getBytes(StandardCharsets.UTF_8));
 hasHeader(tempFile.toFile().getAbsolutePath()); // false
} catch (IOException e) {
 e.printStackTrace();
}

3917-214/514

Writing Testable Code

Exercise: rewrite to make this easier

● And: what would you test?
public boolean hasHeader(String path) throws IOException {
 List<String> lines = Files.readAllLines(Path.of(path));
 return !lines.get(0).isEmpty()
}

4017-214/514

Writing Testable Code

Aim to write easily testable code

● Which is almost by definition more modular

public List<String> getLines(String path) throws IOException {
 return Files.readAllLines(Path.of(path));
}

public boolean hasHeader(List<String> lines) {
 return !lines.get(0).isEmpty()
}

// Test:
// - hasHeader with empty, non-empty first line
// - getLines (if you must) with null, real path

4117-214/514

What is the problem with this?

Writing Testable Code

public String[] getHeaderParts(List<String> lines) {
 if (!lines.isEmpty()) {
 String header = lines.get(0);
 if (header.contains(",")) {
 return header.split(",");
 } else {
 return new String[0];
 }
 } else {
 return null;
 }
}

4217-214/514

Split functionality into easily testable units

Writing Testable Code

public String getFirstLine(List<String> lines) {
 if (!lines.isEmpty()) {
 return lines.get(0);
 } else {
 return null;
 }
}

public String[] getHeaderParts(String header) {
 if (header.contains(",")) {
 return header.split(",");
 } else {
 return new String[0];
 }
}

4317-214/514

What is the problem with this?

Clean Testing

public String[] getHeaderParts(String header) {
 if (header.contains(",")) {
 return header.split(",");
 } else {
 return null;
 }
}

@Test
public void testGetHeaderParts() {
 for (String header : List.of("line", "", "one,two")) {
 String[] parts = getHeaderParts(line);
 if (header.contains(",")) assertNull(parts);
 else assertEqual(header.split(","), parts.length);
 }
}

4417-214/514

Keep tests simple, small

Clean Testing

public String[] getHeaderParts(String header) {
 if (header.contains(",")) {
 return header.split(",");
 } else {
 return null;
 }
}

@Test
public void testGetHeaderPartsNoComma() {
 String[] parts = getHeaderParts("line");
 assertNull(parts);
}

@Test
...

4517-214/514

Testing Best Practices

Coverage is useful, but no substitute for your insight

● Cannot capture all paths
○ Especially beyond “unit”
○ Write testable code

● You may be testing buggy code
○ (add regression tests)

● Aim for at least branch coverage
○ And think through scenarios that demand more

4617-214/514

Bonus: Coding like the tour the france
public boolean foo() {
 try {
 synchronized () {
 if () {
 } else {
 }
 for () {
 if () {
 if () {
 if () {
 if ()
 {
 if () {
 for () {
 }
 }
 }
 } else {
 if () {
 for () {
 if () {
 } else {
 }
 if () {
 } else {
 if () {
 }
 }
 if () {
 if () {
 if () {
 for () {
 }
 }
 }
 } else {
 }
 }
 } else {
 }
 }
 }
 }
 }

 if () {
 }

https://thedailywtf.com/articles/coding-like-the-tour-de-france

https://thedailywtf.com/articles/coding-like-the-tour-de-france

4717-214/514

Outline

● Structural Testing Strategies
● Writing testable code & good tests
● Specification Testing Strategies

4817-214/514

Back to Specification Testing

What would you test differently in this situation?

● Previously identified five paths through the code.
○ Are there still five given only specification?

● Should we test anything new?
/** Pays with credit if useCredit is set and enough
 * credit is available; otherwise, pays with cash if
 * enough cash is available; otherwise, returns false.
 */
public boolean pay(int cost, boolean useCredit);

4917-214/514

Back to Specification Testing

What would you test differently in this situation?

● “if useCredit is set and enough credit is available”:
○ Test both true, either/both false

● “pays with cash if enough cash is available; otherwise”:
○ Test true, false

● Could to this with as few as three test cases

/** Pays with credit if useCredit is set and enough
 * credit is available; otherwise, pays with cash if
 * enough cash is available; otherwise, returns false.
 */
public boolean pay(int cost, boolean useCredit);

5017-214/514

Specification Testing

We need a strategy to identify plausible mistakes

5117-214/514

Specification Testing

We need a strategy to identify plausible mistakes

● Random: avoids bias, but inefficient
○ Yet potentially very valuable, because automatable
○ Not for today

5217-214/514

Boundary Value Testing

We need a strategy to identify plausible mistakes

● Boundary Value Testing: errors often occur at boundary conditions
○ E.g.:

/** Returns true and subtracts cost if enough
 * money is available, false otherwise.
 */
public boolean pay(int cost) {
 if (cost < this.money) {
 this.money -= cost;
 return true;
 }
 return false;
}

5317-214/514

Boundary Value Testing

We need a strategy to identify plausible mistakes

● Boundary Value Testing: errors often occur at boundary conditions
○ Identify equivalence partitions: regions where behavior should be the same

■ cost <= money: true, cost > money: false
■ Boundary value: cost == money

/** Returns true and subtracts cost if enough
 * money is available, false otherwise.
 */
public boolean pay(int cost) {
 if (cost < this.money) {
 this.money -= cost;
 return true;
 }
 return false;
}

5417-214/514

We need a strategy to identify plausible mistakes

● Boundary Value Testing: errors often occur at boundary conditions
○ Select: a nominal/normal case, a boundary value, and an abnormal case
○ Useful for few categories of behavior (e.g., null/not-null) per value

● Test: cost < credit, cost == credit, cost > credit,
 cost < cash, cost == cash, cost > cash

/** Pays with credit if useCredit is set and enough
 * credit is available; otherwise, pays with cash if
 * enough cash is available; otherwise, returns false.
 */
public boolean pay(int cost, boolean useCredit);

Boundary Value Testing

5517-214/514

Combinatorial Testing

We need a strategy to identify plausible mistakes

● Combinatorial Testing: focus on tuples of boundary values
○ Captures bugs in interactions between risky inputs
○ Rarely need to test pairs of “invalid” values (cost too high for credit & cash)

/** Pays with credit if useCredit is set and enough
 * credit is available; otherwise, pays with cash if
 * enough cash is available; otherwise, returns false.
 */
public boolean pay(int cost, boolean useCredit);

5617-214/514

Combinatorial Testing

We need a strategy to identify plausible mistakes

● Combinatorial Testing: focus on tuples of boundary values
○ Captures bugs in interactions between risky inputs
○ Rarely need to test pairs of “invalid” values (cost too high for credit & cash)

● Include: {cost > credit && cost == cash}
● Maybe: {cost < credit && cost == cash}

/** Pays with credit if useCredit is set and enough
 * credit is available; otherwise, pays with cash if
 * enough cash is available; otherwise, returns false.
 */
public boolean pay(int cost, boolean useCredit);

5717-214/514

Decision Tables

We need a strategy to identify plausible mistakes

● Decision Tables
○ You’ve seen one already
○ Enumerate condition options

■ Leave out impossibles
■ Identify “don’t-matter” values

○ Useful for redundant input domains

Test
case

useCredit
enough
Credit

enough
Cash

Result

1 T T - Pass

2 F - T Pass

3 F - F Fails

4 T F T Pass

5 T F F Fails

5817-214/514

Specification Tests

So what is the right granularity?

● It depends
● We are still aiming for coverage

○ Just of specifications, and their innumerable implementations
○ BVA (& its cousins), decision tables tend to provide good coverage

5917-214/514

Structural Testing vs. Specification Testing

You will typically have both code & (prose) specification

● Test specification, but know that it can be underspecified
● Test implementation, but not to the point that it cannot change
● Use testing strategies that leverage both

○ There is a fair bit of overlap; e.g., BVA yields useful branch coverage

6017-214/514

Further Testing Strategies

Many more aspects, some later in this course:

● Stubbing/Mocking, to avoid testing dependencies
○ We’ll loop back to this

● Integration testing: scenarios that span units
○ With unit testing one should not test for an expected usage scenario

■ e.g., in HW2: that everything gets called from Main
○ This lets one make some simplifying assumptions

■ e.g., that every card is seen equally often
● Beyond correctness: performance, security

6117-214/514

Summary

Testing comprehensively is hard

● Tailor to your task: specification vs. structural testing
○ Do not assume unstated specifications for HW 2; spend your energy wisely

● Pick a strategy, or a few
○ Be systematic; defend your decisions

● Tomorrow’s recitation covers:
○ Unit test best practices
○ Test organization
○ Running tests, coverage

