
117-214/514

Principles of Software Construction:
Objects, Design, and Concurrency

Object-oriented Analysis

Claire Le Goues Vincent Hellendoorn

217-214/514

Quiz time
“Lecture 6 Quiz” on canvas. Password: “coverage”
This is a shortened version of a typical midterm question. It is still a bit
involved for a quiz, so make sure you take your time to read it carefully.
Here is the (buggy) code snippet with formatting for easier readability:

function ratio(from: number, to: number): number {
 if (from != 0) {
 from = 1;
 }
 return to / from;
}

317-214/514

Administrivia
● Homework 2 due next Monday

○ Homework 3 starts early next week – being right away
○ Santorini Demo (hopefully!)

417-214/514

Some Testing Hints
Code may be used in many
contexts, don’t make
assumptions based on one
client

arr = new IntArray(len);

while (...) {

 for (i=0; i<len; i++) {

 arr.add(i, 1);

 }

}

Code always
increments every
value in arr.

Is this true for all
users of IntArray?

517-214/514

Some Testing Hints
Testing code with dependencies

@Test ...

Comparator x = myComplexImpl();

List l = loadFromFile();

l.sort(x);

If testing sort, avoid unnecessary
dependencies. Simple implementations
of other objects sufficient.

617-214/514

Learning Goals
● High-level understanding of requirements challenges

● Understand functional requirements

● Use basic UML notation to communicate designs

● Identify the key abstractions in a domain, model them as a domain
model

● Identify the key interactions within a system, model them as system
sequence diagram

● Discuss benefits and limitations of the ‘low representational gap’
design principle

717-214/514

User needs
(Requirements) CodeMiracle?

817-214/514

REQUIREMENTS

917-214/514

1017-214/514

Requirements
● What does the customer want?

● What is required, desired, not necessary? Legal, policy constraints?

● Customers often do not know what they really want; vague, biased by
what they see; change their mind; get new ideas…

● Difficult to define requirements precisely

● (Are we building the right thing? Not: Are we building the thing right?)

Human and social issues

beyond our scope (see 17-313)

1117-214/514

Requirements
● What does the customer want?

● What is required, desired, not necessary? Legal, policy constraints?

● Customers often do not know what they really want; vague, biased by
what they see; change their mind; get new ideas…

● Difficult to define requirements precisely

● (Are we building the right thing? Not: Are we building the thing right?)

Human and social issues

beyond our scope (see 17-313)

Assumption in this course:
Somebody has gathered most
requirements (mostly text).

Challenges:
How do we start implementing them?

How do we cope with changes?

1217-214/514

Input to the analysis process:
Requirements and use cases

1317-214/514

Input to the analysis process:
Requirements and use cases

Time to start
coding?

1417-214/514

Problem
Space
(Domain
Model)

Solution
Space

(Object Model)

● Real-world things

● Requirements, concepts

● Relationships among concepts

● Solving a problem

● Building a vocabulary

● System implementation

● Classes, objects

● References among objects and
inheritance hierarchies

● Computing a result

● Finding a solution

1517-214/514

An object-oriented design process
Model / diagram the problem, define concepts

● Domain model (a.k.a. conceptual model), glossary

Define system behaviors

● System sequence diagram
● System behavioral contracts

Assign object responsibilities, define interactions

● Object interaction diagrams

Model / diagram a potential solution

● Object model

OO Analysis:
Understanding
the problem

OO Design:
Defining a
solution

1617-214/514

DOMAIN MODELS

Chapter 9

1717-214/514

Object-Oriented Analysis
● Find the concepts in the problem domain

○ Real-world abstractions, not necessarily software objects

● Understand the problem
○ Establish a common vocabulary
○ Common documentation, big picture
○ Main purpose is communication!

● Often using UML class diagrams as (informal) notation
● Starting point for finding classes later (low representational gap)

1817-214/514

Modeling a problem domain
Identify key concepts of the domain description
● Identify nouns, verbs, and relationships between concepts
● Avoid non-specific vocabulary, e.g. "system"
● Distinguish operations and concepts
● Brainstorm with a domain expert

1917-214/514

Concepts in our library system?
A public library typically stores a collection of books, movies, or other
library items available to be borrowed by people living in a community.
Each library member typically has a library account and a library card with
the account’s ID number, which she can use to identify herself to the
library.
A member’s library account records which items the member has borrowed
and the due date for each borrowed item. Each type of item has a default
rental period, which determines the item’s due date when the item is
borrowed. If a member returns an item after the item’s due date, the
member owes a late fee specific for that item, an amount of money
recorded in the member’s library account.

2017-214/514

A public library typically stores a collection of books, movies, or other
library items available to be borrowed by people living in a community.
Each library member typically has a library account and a library card with
the account’s ID number, which she can use to identify herself to the
library.
A member’s library account records which items the member has borrowed
and the due date for each borrowed item. Each type of item has a default
rental period, which determines the item’s due date when the item is
borrowed. If a member returns an item after the item’s due date, the
member owes a late fee specific for that item, an amount of money
recorded in the member’s library account.

Read description carefully, look for nouns and verbs

2117-214/514

Glossary
Identify and define key concepts

Ensure shared understanding between developers and customers

Library item: Any item that is indexed and can be
borrowed from the library
Library member: Person who can borrow from a
library, identified by a card with an ID number
Book

Define
potentially
ambiguous
concepts

No need to
expand on
obvious
concepts

2217-214/514

Visual notation: UML

Library Account

accountID
lateFees

Name of
real-world
concept
(not software class)

Properties
of concept

2317-214/514

Visual notation: UML

Library Account

accountID
lateFees

Name of
real-world
concept
(not software class)

Properties
of concept

Book

title
author

2417-214/514

Visual notation: UML

Library Account

accountID
lateFees

Name of
real-world
concept
(not software class)

Properties
of concept

Book

title
author

borrow

1 *

Associations
between
concepts

Multiplicities/cardinalities
indicate “how many”

2517-214/514

Reading associations

Library Account

accountID
lateFees

Book

title
author

borrow

1 *

One library account can borrow many books

One book can be borrowed by one library account

2617-214/514

Reading associations

Book

title
author

Library Account

accountID
lateFees

borrowed-by

* 1

2717-214/514

Specialization

Book

title
author

Video

title
director

Library Item

id
More specialized
version of general
concept.
Every video is a
library item

2817-214/514

Concepts vs. Attributes

● "If we do not think of some conceptual class X as text or a number
in the real world, it's probably a concept, not an attribute"

● Avoid type annotations

Library Account

accountID
lateFees
borrowedBooks

Library Account

accountID
lateFees

Book

title
author

borrow

1 *vs.

2917-214/514

Library Account

accountID
lateFees
member

Book

title: string
author: string

borrow

1

Library Member

name

account(): Account

has

*

3017-214/514

Composition & Aggregation
Often, associations form a “has a” relationship
● Compositions: the parts are irrelevant* without the whole
● Aggregation: the parts meaningfully exist on their own

○ E.g., a library still exists without members
● In this class: no need to be very zealous about this

Figure source: https://www.visual-paradigm.com/guide/uml-unified-modeling-language/uml-aggregation-vs-composition/
* From the domain model’s perspective; naturally, in some domains, organs are relevant on their own.

https://www.visual-paradigm.com/guide/uml-unified-modeling-language/uml-aggregation-vs-composition/

3117-214/514

One possible domain
model for the library
system

3217-214/514

Notes on the library domain model
● Level of abstraction:

○ All concepts are accessible to a non-programmer
○ UML notation somewhat informal; relationships often described with words
○ Real-world "is-a" relationships are appropriate for a domain model
○ Real-word abstractions are appropriate for a domain model

● Design choices:
○ Aggregate types are usually modeled as separate concepts
○ Basic attributes (numbers, strings) are usually modeled as attributes

● Iteration is important: This example is a first draft
○ Some terms (e.g. Item vs. LibraryItem, Account vs. LibraryAccount) would

likely be revised in a real design.

3317-214/514

Why domain modeling?
● Understand the domain

○ Details matter! Are books different from videos for the system?
● Ensure completeness

○ Late fees considered?
● Agree on a common set of terms

○ Library item vs collection entry vs book
● Prepare to design

○ Domain concepts are good candidates for OO classes (-> low
representational gap)

3417-214/514

Hints for Object-Oriented Analysis
● Use the domain model to agree on a vocabulary

○ For communication among developers, testers, clients, domain experts, …

● Focus on concepts, not software classes, not data
○ Ideas, things, objects

○ Give it a name, define it and give examples (symbol, intension, extension)

○ Add glossary

○ Some might be implemented as classes, other might not

● There are many choices, the model will never be perfectly correct
○ Start with a partial model, model what's needed, extend with additional information later

○ Communicate changes clearly

○ Otherwise danger of "analysis paralysis"

3517-214/514

User needs
(Requirements) CodeMiracle?

Miracle (work in progress):
1. Domain model
2. ???
3. Code!

3617-214/514

META NOTE
These slides were re-arranged since teaching this
class in September 2022. If you are watching the
recording, jump to slide 48 now and once you get to
56, return here.

3717-214/514

Back to: requirements and use cases

What about this
second part?

3817-214/514

System Sequence Diagram

Chapter 10

3917-214/514

A system sequence diagram is a model that shows, for one
scenario of use, the sequence of events that occur on the
system’s boundary.

Design goal: Identify and define the interface of the system
● System-level components only: e.g., A user and the overall system

Understanding system behavior

4017-214/514

One example for the library system
Use case scenario: A library member
should be able to use her library card
to log in at a library system kiosk and
borrow a book. After confirming that
the member has no unpaid late fees,
the library system should determine
the book’s due date by adding its
rental period to the current day, and
record the book and its due date as a
borrowed item in the member’s
library account.

4117-214/514

One example for the library system
Use case scenario: A library member
should be able to use her library card
to log in at a library system kiosk and
borrow a book. After confirming that
the member has no unpaid late fees,
the library system should determine
the book’s due date by adding its
rental period to the current day, and
record the book and its due date as a
borrowed item in the member’s
library account.

4217-214/514

UML Sequence Diagram Notation
User System Actors in this

use case
(systems and
real-world
objects/people)

Messages and
responses for
interactions,
text describes what
happens conceptually

Time proceeds
from top to
bottom

login(card)

borrow(book)

success?, due date

4317-214/514

Outlook: System Sequence Diagrams to Tests

s = new System();

a = s.makeNewSale();

t = a.enterItem(…);

assert(50.30, t);

tt = a.endSale();

assert(52.32, tt);

…

: Cashier : System
makeNewSale

enterItem(itemID, quantity)

description, total

endSale

total with taxes

makePayment(amount)

change due, receipt

4417-214/514

Behavioral Contracts

Chapter 11

4517-214/514

Formalize system at boundary

A system behavioral contract describes
the pre-conditions and post-conditions
for some operation identified in the
system sequence diagrams

○ System-level textual specifications, like
software specifications

4617-214/514

System behavioral contract example
Operation: borrow(item)

Pre-conditions: Library member has already logged in to the system.
Item is not currently borrowed by another member.

Post-conditions: Logged-in member's account records the
newly-borrowed item, or the member is warned she has an
outstanding late fee.
The newly-borrowed item contains a future due date,
computed as the item's rental period plus the current date.

4717-214/514

Recommended Reading:
Applying UML and Patterns

Detailed coverage of modeling steps

Explains UML notation

Many examples

Chapter 9

4817-214/514

User needs
(Requirements) CodeMiracle?

Miracle (work in progress):
1. Domain model
2. System behavior
3. ???
4. Code!

Outlook: from concepts to objects

4917-214/514

Problem
Space
(Domain
Model)

Solution
Space

(Object Model)

● Real-world things

● Requirements, concepts

● Relationships among concepts

● Solving a problem

● Building a vocabulary

● System implementation

● Classes, objects

● References among objects and
inheritance hierarchies

● Computing a result

● Finding a solution

5017-214/514

Representational gap
● Real-world concepts:

● Software concepts:

?
…

…

?
…

…
…

5117-214/514

Low Representational Gap
Identified concepts provide inspiration for classes in the implementation

Classes mirroring domain concepts often
intuitive to understand:
Low representational gap principle

Library Account

accountID
lateFees

Book

title
author

borrow

1 *

class Account {

id: int;

lateFees: int;

borrowed: List<Book>;

 boolean borrow(Book) { … }

 void save();

}

class Book { … }

5217-214/514

Representational gap
● Real-world concepts:

● Software concepts:

PineTree
age
height

harvest()

Forest
-trees

…

Ranger

surveyForest(…)

…

5317-214/514

Benefits of low representational gap

● Facilitates understanding of design and implementation
● Facilitates traceability from problem to solution
● Facilitates evolution

5417-214/514

Design Goals, Principles, and Patterns
Get familiar with design terminology – we’ll see a lot of these
● Design Goals

○ Design for understanding, change
● Design Principles

○ Low representational gap
● Design Heuristics

○ Match concepts to classes

54

Goals

Heuristics Patterns

Principles

5517-214/514

Distinguishing domain vs. implementation concepts

● Domain-level concepts:
○ Almost anything with a real-world analogue

● Implementation-level concepts:
○ Implementation-like method names
○ Programming types
○ Visibility modifiers
○ Helper methods or classes
○ Artifacts of design patterns

5617-214/514

Towards Implementation
● Next week: how to move from domain model to object model

○ Some domain concepts become objects
○ Think about interface (methods), fields

LibraryAccount

id: int
lateFees: int

borrow(Book): bool
returnItem(Book)
payFees(int)

Library Account

accountID
lateFees

Book

title
author

borrow

1 *

5717-214/514

Outlook:
Build a
domain
model for
HW 3

5817-214/514

Take-Home Messages
● To design a solution, problem needs to be understood
● Know your tools to build domain-level representations

○ Domain models – understand domain and vocabulary
○ System sequence diagrams + behavioral contracts – understand interactions

with environment
● Be fast and (sometimes) loose

○ Elide obvious(?) details, iterate, iterate, iterate, …
● Domain classes often turn into Java classes

○ Low representational gap principle, design for understanding and change
○ Some domain classes don’t need to be modeled in code; other concepts only

live at the code level
● Get feedback from domain experts

○ Use only domain-level concepts

