Principles of Software Construction:
Objects, Design, and Concurrency

(Towards) Building Web-Apps

Claire Le Goues Vincent Hellendoorn

Carnegie Mellon University
School of Computer Science

institute for
I S SOFTWARE
RESEARCH

17-214/514 1 [s

RRRRRRRR

Administrative

e No quiz today, since HW4 is due tomorrow
o (HW4 is due tomorrow!)
e WebGen Diff script: we pushed an update for Windows
o Please note that having no diff isn’t mandatory; we won'’t grade by
running this command.
o The goal is to not change the functionality, for which having the same
output is a good proxy. If the diffing really doesn’t work, you can also

eye-ball it.

17-214/514

Today

e Deeper into decoupling the front-end/GUI and back-end/logic
o Architectural Pattern: Model-View-Controller
o How to Web-App
o Templates, React.js

e C(Concurrency: Into the abyss

o A gentle introduction to asynchrony
o Communication via callbacks
o Threading in JS

17-214/514 3 Sf 2?;“5*}{1{%

Recall: Separating application core and GUI

e Reduce coupling: do not allow core to depend on Ul

e Create and test the core without a GUI

GUI Tests

CoreTests

17-214/514 a4 |

RRRRRRRR

Recall: Separating application core and GUI

e Reduce coupling: do not allow core to depend on Ul

e Create and test the core without a

GUI Tests

CoreTests

17-214/514 5 7 s

RRRRRRRR

Recall: Single-Page yet Decoupled
TicTacToe

e Letthe Game tell all interested components about updates
o Use the Observer pattern to facilitate communication while preserving
decoupling

. Publisher A
Game GUI PointsPanel - «interface»
; I I - subscribers: Subscriber([] O—> Subscriber
I register | | foreach (s in subscribers) = ANt + update(context)
N | | s.update(this) + subscribe(s: Subscriber) A
!/ register | + unsubscribe(s: Subscriber) :
i\ I l mainState = newState + notifySubscribers() Concrete
i notifySubscribers i i i
K hit : : fy 0 + mainBusinessLogic() Sibiaibare
| notify | I /1\ ______ >
I | s = new ConcreteSubscriber() |~
| b update | publisher.subscribe(s) +l update(context)
l notify | [.-
| ! J Client
| | l> update

https://refactoring.guru/design-patterns/observer

17-214/514 6 el

RESEARCH

Recall: Client/Server

Database

Application @

Server-side Client-side
) Static resources: < — —ie P_GE_T = e
Files « CSS ' Web Server equest Browser
« Javascript
Images HTTP Response
« other files @ : I
I
r Request data: @ @
* URL encoding HTML
* GET/POST data CSS
HTML | » Cookies JavaScript
Templates Y
Web HTML

17-214/514

https://developer.mozilla.org/en-US/docs/Learn/Server-side/First_steps/Client-Server_overview#anatomy_of a_dynamic_request

7 [

institute for
SOFTWARE
RESEARCH

Recall: Client/Server TicTacToe

e TicTacToe with TS-Express

o Two folders: ‘src’ and ‘views’
o ‘views’ contains a template file
o ‘src’ contains a server —

and a game.

e The game knows nothing about
the Ul

o Nor does the Ul talk to the game
o The server decouples them

17-214/514

75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100

function renderPage(res:
res.render("main",

Response<any, Record<string, any>, number>) {

genPage());

app.get("/newgame”, (req, res) => {
startNewGameClicked()

renderPage(res)

bs

app.get("/play”, (req, res) => {
if (req.query.x &% req.query.y)
clickCell(parseInt(req.query.x as string), parselnt(req.query.y as string))
renderPage(res)

s

app.get("/", (req, res) => {
renderPage(res)

bs

// start the Express server
app.listen(port, () => {
console.log(server

s

started at http://localhost:${port}");

o
institute for
8 | S r SOFTWARE
RESEARCH

Notice how we've begun to more explicitly
separate out the HTML from the logic.

17-214/514 9 [s

RRRRRRRR

An architectural pattern:
Model-View-Controller (MVC)

Manage inputs from user:

= m e —————— Controller \\mouse, keyt)Oard, menu, etc. }
\'%

:
]
]
V
View r -
Manage display of
Linformation on the screen

Manage data related to the
application domain

17-214/514 10 [s

RRRRRRRR

MVC is ubiquitous

Separates:

e Model: data organization
o Interface to the database

e \iew: data representation (typically HTML)

o Often called templates in web-dev; “view” is a bit overloaded

e Controller: intermediary between client and model/view
o Typically asks model for data, view for HTML

17-214/514 11 [e

Model-View-Controller (MVC)

H :Controll Model Vi
Passive model s : -
handleEvent s s '
R G e S i Controller : :
v : service 1 :
Model : :
'
A X . g
------------ View T
|i| = getData
L ;
Active model rant o
e E i T S s e S L] Controller T T
1 : handleEvent < :
v v : = Nozify .
. | <<interface>> 1 - 1 s
Model - Observer ! update -
+update() ' >
? A Q getData
1 leececcecce= View Data

http:ﬁ/_}?iirhygirzsoft.com/en-us/Iibrary/ff649643.aspx

Model-View-Controller in TicTacToe?

Let’s return to the ts-express version
+ talk about how the view gets updated

17-214/514

Model

View

N

2

Controller

13

Updating the View (or: How to Web App?)

e Let's avoid generating HTML from scratch on every call
Map requests to handler code

O

O

17-214/514

Fetch data, process

Generate and return HTML

m Often processed using a template library
58 <div id="board">
59 {{#each cells}}
60 {{#if link}}
61 <div class="cell {{class}}">{{text}}</div>
62 {{else}}
63 <div class="cell {{class}}">{{text}}</div>
64 {{/1if}}
65 {{/each}}
66 </div>

tttttttttttt

Web Apps are Applications Served via the Web

e Obvious, | know

e The key challenge: can’t run everything on the client. Instead:
o Multiple “tiers™. presentation (front-end), logic/application (server), data
(e.g., DB) layers.

m MVC is a popular choice for how to connect these
m Other ways to distribute these layers exist — we’ll talk about a few soon
m More tiers are possible too; out of scope for this class

o Front-end/back-end separation via a communication layer
m Which creates fun communication problems — more later.

17-2 14/5 14 15 Sf gé;{"ui{%

How to Web App?

e Let's avoid generating HTML from scratch on every call

o Map requests to handler code
m Fetch data, process

o Generate and return HTML

e Historically: PHP

17-

o Modifies HTML pages server-side on request; strong ties to SQL

<?php
// The global $ POST variable allows you to access the data sent with the POST method by name
// To access the data sent with the GET method, you can use $ GET
$say = htmlspecialchars($_POST['say']);
$to = htmlspecialchars($ _POST['to']);

echo $say, ' ', $to;
?>

institute for
SOFTWARE
RESEARCH

How to Web App?

e Let's avoid generating HTML from scratch on every call

o Map requests to handler code
m Fetch data, process

o Generate and return HTML

e Or use a framework

Python: Flask, Django

NodedS: Express

Spring for Java

Many others, differences in weight, features
React.js

O O O O O

17-214/514 17 [s

https://developer.mozilla.org/en-US/docs/Learn/Server-side/First_steps/Web_frameworks

Model View Controller in Santorini?

Model

View

Controller

17-214/514

https://overiq.com/django-1-10/mvc-pattern-and-django/

o
1 IIIIIIIIIII
| S [sorrvare
RESEARCH

Model View Controller in Santorini

Board,
Tower,
Player 3
2
HTML e 4 %a;;e
Template 5 >
Engine . Cards)

https://overiq.com/django-1-10/mvc-pattern-and-django/

17-2 14/5 14 19 Sf gg’t{{"?’i%

Client-Server Programming forces
Frontend-Backend Separation

Backend Frontend
(Java/Node): http calls | (Browser, HTML,
Data, logic, nformation JavaScript):
rendering Text, buttons

Browser can call web server, but not the other way around
Browser needs to pull for updates
Browser can request entire page, or just additional content (ajax,

REST api calls, ...)

17-214/514 20 |Ij o

Client-Server Programming forces
Frontend-Backend Separation

Backend Frontend

(Java/Node): (Browser, HTML,

Data, logic, http calls | JavaScript):

rendering Text, buttons
keep open

connection

Trick to let backend push information to frontend: Keep http
request open, append to page (compare to stream)

Alternative: regular pulling
17-214/514

llllllllllll
SSSSSSSS
RRRRRRRR

TicTacToe

NanoHTTPd

/newgame

17-214/514

http calls

= institute for
22 SorTasE

I0Exception {

.game = ¢ Game ()

start(NanoHTTPD.SOCKET_READ_TIMEOUT
System.out.println()

@0verride
Response serve(IHTTPSession session) A{
String uri = session.getUri()
ridpsoLi'ing, SLring-s pardis = >nssion.getParms()‘
if (uri.equals()) A
.game = Game();
(uri.equals()) o
.game = ,.game.play(Integer.parseInt(params.get()), Integer.parselnt(params.get()))

GameState gameplay = GameState.forGame(.game)
newFixedLengthResponse(gameplay.toString())

17‘2 14/5 14 |Sf g?;?iv:%\té

CH

TicTacToe

NanoHTTPd

/newgame
http cal

17-214/514 24 2?:’:‘{’2%

Some alternatives

Is this needlessly complicated?

17-214/514 25 Sf s

Core & Gui in same environment

JavaScript frontend and backend together in browser
(e.g. using browserify) -- single threaded!

Java Swing GUI running in same VM as core logic -- multi threaded

Core logic could directly modify GUI

Backend (Java):
Data, logic,
rendering

call method, update state | Frontend (Swing):
Text, buttons

update text,
deactivate buttons

llllllllllll

17-214/514 26 [Hj SOFTWARE

Avoid Core to Gui coupling

Never call the GUI from the Core

Update GUI after action (pull) or use observer pattern instead to
inform GUI of updates (push)

Backend (Java):
Data, logic,
rendering

17-214/514

call method, update state

update text,
deactivate buttons

Frontend (Swing):
Text, buttons

GUI Code in the Backend

Backend
(Java/Node):
Data, logic,
rendering

Typically there is some GUI code in Backend (rendering/view)

http calls

Frontend
(Browser, HTML,
JavaScript):
Text, buttons

Could also send entire program state to frontend (e.g, json) and
render there with JavaScript

17-214/514

Where to put GUI Logic?

Example: Deactivate undo button in first round of TicTacToe,
deactivate game buttons after game won

Backend Frontend
(Java/Node): (Browser, HTML,
Data, logic, JavaScript):
rendering Text, buttons

Option 1: All rendering in backend, update/refresh entire page after every action—simpler
Option 2: Some logic in frontend, use backend for checking—fewer calls, more responsive

17-2 14/5 14 29 Sf gé}?i{%

Core Logic in Frontend?

Could move core logic largely to client, minimize backend interaction

Downside?
Frontend
Backend (Browser, HTML,
(Java/Node): JavaScript):
shared state only data, logic,
rendering

(React and other frameworks make it easy to introduce logic in the frontend; avoid tangling all core logic
with GUI)

17-214/514 IS 1R

Core Logic in Frontend?

Could move core logic largely to client, minimize backend interaction

Can frontend be trusted? Need to replicate core in front and backend?

Frontend
Backend (Browser, HTML,
(Java/Node): JavaScript):
shared state only data, logic,

rendering

(React and other frameworks make it easy to introduce logic in the frontend; avoid tangling all core logic
with GUI)

17-214/514 31 Sf g

TicTacToe

NanoHTTPd

/newgame
http cal

17-214/514 32 2?:’:‘{’2%

TicTacToe

NanoHTTPd ReactJS (+ HandleBars)

/newgame

17-214/514 33 sl

ReactdS

17-214/514 34 [s

ReactdS

Popular frontend library by Facebook

Template library and state management

(Not a reactive programming library, though it adopts some similar
ideas — we'll get back to reactive programming)

17-214/514 35 Sf 2?&{%

function formatName(user) {
return user.firstName + ' '

Temp|ateS W|th user.lastName;
ReactJS :

o , _ const user = {
(Similar ideas to Handlebars in e A e

f{VV4) lastName: 'Perez’
}s

+

Describe rendering of HTML,
iInputs given as objects

const element = (
Hello, {formatName(user)}!

JSX language extension to)5

embed HTML in JS ReactDOM. render(
Try it: element,
https://reactjs.ora/redirect-to-codepen/introducing-jsx document.getElementById(' 'root')

17-214/514);

https://reactjs.org/redirect-to-codepen/introducing-jsx

Composing
Templates

(Corresponds to Fragments in
Handlebars)

Nest templates

Pass arguments (properties)
between templates

Try it:
https://reactjs.org/redirect-to-codep
en/components-and-props/composi

ng-components
17-14514

function Welcome(props) {

return Hello, {props.name}

}
function App() { return (

name="Sara"

name="Edite"

)5}
ReactDOM. render (

3

document.getElementById(' root"')
);

https://reactjs.org/redirect-to-codepen/components-and-props/composing-components
https://reactjs.org/redirect-to-codepen/components-and-props/composing-components
https://reactjs.org/redirect-to-codepen/components-and-props/composing-components

Templates with
State

Class notation instead of
function

If state changes, page is
re-rendered

Try it:
https://codepen.io/gaearon/pen/xE
mzGqg?editors=0010

17-214/514

class Toggle extends React.Component {
constructor(props) {
super(props);
this.state = {isToggleOn: true};
this.handleClick = this.handleClick.bind(this);
}
handleClick() {
this.setState(prevState => ({
1sToggleOn: !prevState.isToggleOn
1)
}

render() { return (
onClick={this.handleClick}
{this.state.isToggleOn ? 'ON' : 'OFF'}

ReactDOM. render (

3

document.getElementById('root')
);

https://codepen.io/gaearon/pen/xEmzGg?editors=0010
https://codepen.io/gaearon/pen/xEmzGg?editors=0010

ReactdS Templates

Can use arbitrary JavaScript code (Handlebars can only access
object properties)

Properties are read-only

State is mutable and observed for re-rendering (state updates are
asynchronous)

Re-rendering is optimized and asynchronous, will rerender inner
components too if their properties change

17-214/514 39 Lo

ReactJS and Core Logic

React makes it easy to add functionality in GUI

This really tangles GUI and logic (violating separation argued for previously)

Suggestion: Use React state primarily for Ul-related logic (e.g.,
selecting workers) and keep the core logic in the backend or as a
separate library -- be very explicit about what information is shared

SSSSSSSS

17'2 14/5 14 40 Sf institute for

RRRRRRRR

Connecting React
to Some Core

Use observer pattern to let
react component observe
changes

Encapsulate in useEffect()
hook

Further discussion:

https://reactjs.org/docs/hooks-custo
m.html

17-214/514

function App() {
const [data, setData] =
React.useState(null);
React.useEffect(() => {
function handleStatChange(e) {
setData(e.updatedData);
}
CoreAPI.subscribe(handleStatChange);
return () => {
CoreAPI.unsubscribe(handleStatChange);
}
1)
return (

<div>

https://reactjs.org/docs/hooks-custom.html
https://reactjs.org/docs/hooks-custom.html

Connecting React
to backend

Return json from server
backend and store as

component state

Full example:

https://www.freecodecamp.org/new

s/how-to-create-a-react-app-with-a-

node-backend-the-complete-quide/
17-214/514

function App() {
const [data, setData] =
React.useState(null);
React.useEffect(() => {
fetch("/api")
.then((res) => res.json())
.then((data) =>

setData(data.message));

o [

return (
<div>

);

https://www.freecodecamp.org/news/how-to-create-a-react-app-with-a-node-backend-the-complete-guide/
https://www.freecodecamp.org/news/how-to-create-a-react-app-with-a-node-backend-the-complete-guide/
https://www.freecodecamp.org/news/how-to-create-a-react-app-with-a-node-backend-the-complete-guide/

For Homework 5

e You don't have to use a web app framework
o The important thing is to decouple the GUI from the backend
o There are many ways to do this

e \We show you how to use React in Rec07
o Many other template engines and frontend frameworks exists (e.g., Vue,

Angular, ...)
o React adds complexity but also easy updates reacting to state changes

o \We show React.js because it is common today

17-214/514

Recapping: Where Are We?

e Decoupling improves design

o MVC-like approaches are commonplace

e \We've talked about:

o Back-end: extensively
o Front-end: last few classes
o Controllers, servers

e \What are we missing?

17-214/514

Model

View

2

Controller

Principles of Software Construction:
Objects, Design, and Concurrency

What have we not yet talked about? A

Claire Le Goues Vincent Hellendoorn

Carnegie Mellon University
School of Computer Science

institute for
I S SOFTWARE
RESEARCH

17-214/514 a5 |Iq s

RRRRRRRR

How Do We Talk?

These arrows hide a complicated truth:

The client is a separate computer

o (The server is often many computers too!)

Model

And talking to another computer
View

2

IS hard

17-214/514

Controller

How Do We Talk?

Talking to another computer is hard

e Why? We already covered
HTTP (GET/POST), right?

Model

View

Controller

17-214/514

Suppose Everything was Synchronous

That is, when we call something, we wait for the return, doing
nothing until that happens. So HTTP is just like any other method
call.

Let’s try that out!

17-214/514 a8 [| s

Suppose Everything was Synchronous

Two demonstrations:

1. Active waiting — what happens to the webpage if a request

takes a long time?
a. Not great! Let’s talk about threading next

Note: I’'m not showing the code here because it is contrived

17-214/514 49 | sk

Suppose Everything was Synchronous

Two demonstrations:

1. Active waiting — what happens to the webpage if a request

takes a long time?
a. Not great! Let’s talk about threading next

2. The alternative: allowing other execution to happen
a. New and exciting problems :) Need to handle concurrency

Note: I’'m not showing the code here because it is contrived

17-214/514

Asynchrony

e The general concept of things happening outside the main

flow
o Recall the start of this class: we don’t always control when things
happen.
o Nor do we want to wait for them

e \We use an asynchronous method call:
O Normally, when we need to do work away from the current application;

O And we don't want to block our application while awaiting the response

17-214/514

Asynchrony in User Interfaces
What happens here:

document.addEventListener('click', () => console.log('Clicked!"))

17-214/514

Asynchrony in User Interfaces

Callback functions

e Perhaps the building blocks of the internet’s Ul.

e Specifies work that should be done once something happens

o Called asynchronously from the literal flow of the code
o Not concurrent: JS is single-threaded

document.addEventListener('click', () => {
console.log('Clicked!"'); console.log('Clicked again!'); })

17-214/514 53 |

The JavaScript Engine (e.g., V8)

Two main components:

JS e Memory Heap — this is where the
memory allocation happens

Memory Heap Call Stack

e Call Stack — this is where your
stack frames are as your code
executes

17-214/514 54 |[j

The JavaScript Runtime

Web APIs Engine plus:
DOM (document)
JS ﬁ AJAX (XMLHttpRequest) o Web APIS - prOVIded by

T e browsers, like the DOM,
AJAX, setTimeout and more.

Memory Heap Call Stack

e Eventloop

e Callback queue

Event Loop Callback Queue

< ’ ¢ onClick onLoad onDone

17'2 14/5 14 55 Sf ms:tutecFor

SSSSSSSS

The Call Stack

Is a data structure that records where in the program

we are. Each entry is called a Stack Frame.
Step 1 Step 2 Step 3 Step 4
multiply(x, x) console.log(s)
printSquare(5) printSquare(5) printSquare(5) printSquare(5)

17-214/51

function multiply(x, y) {
return x * y;

}

function printSquare(x) {

var s = multiply(x, x);
console.log(s);

}
printSquare(5);

Step 5

o
5 6 institute for
SOFTWARE
RESEARCH

function foo() {

Aside: The Call Stack can overflow E

foo();

foo();

Overflowing

Step 1 Step 2 Step 3

foo()
foo() foo()

foo() foo() foo()
17-214/51.

foo()
foo()
foo()
foo()
foo()
foo()
foo()
foo()

foo()

57 i

institute for
SOFTWARE
RESEARCH

What happens when things are slow?

JavaScript is single threaded
(single Call Stack).

& & The following page(s) have become
Problem: while the Call Stack has becomareporcive ok o
functions to execute, the browser Untitled
can’t actually do anything else —
it's getting blocked.

Kill pages ‘M

17-214/514 58 Lo

What happens when things are slow?

JavaScript is single threaded
(single Call Stack).

function task(message) {

let n = 10000000000;

Problem: while the Call Stack has while (n > 0){
functions to execute, the browser n--;

can’t actually do anything else — }

it's getting blocked. console.log(message);

}

Start script...
Download a file.

task('Download a file.');
console.log('Done!"');

Done!

17-214/514

console.log('Start script...');

Solution: Callbacks

By far the most common way to
express and manage asynchronicity
in JavaScript programs.

Start script...
Done!

Download a file.

17-214/514

function task(message) {

let n = 10000000000;
while (n > 0){

n--;
}

console.log(message);

}

console.log('Start script...');

setTimeout(() => {
task('Download a file.');

}, 1000);

console.log('Done!"');

RRRRRRRR

Event Loop Callback Queue

The Event Loop :
4 onClick onLoad onDone

The Event Loop monitors the Call Stack and the Callback Queue.

If the Call Stack is empty, the Event Loop will take the first event from
the queue and will push it to the Call Stack, which effectively runs it.

17-2 14/5 14 61 Sf gégi{%

console.log('Hi');
setTimeout(function cb1() {

The Event Loop console. log('cb1');

}, 5000);
1/16 console.log('Bye');
Call Stack Web APIs
Browser console i
The state is clear.
Event Loop Callback Queue

‘ ’ - Empty

1/-214/514 62 et

RESEARCH

console.log('Hi');
setTimeout(function cb1() {

The Event Loop console. log('cb1');

}, 5000);
2/16 console.log('Bye');

Call Stack Web APIs

Browser console

is added to the
Call Stack.

console.log(‘Hi")

Event Loop Callback Queue

‘ ’ - Empty

1/-214/514 63 e o

RESEARCH

console.log('Hi');
setTimeout(function cb1() {

The Event Loop console. log('cb1');

}, 5000);
3/16 console.log('Bye');

Call Stack Web APIs

Browser console

IS executed.

console.log(‘Hi")

Event Loop Callback Queue

‘ ’ - Empty

1/-214/514 64 et

RESEARCH

console.log('Hi');
setTimeout(function cb1() {

The Event Loop console. log('cb1');

}, 5000);
4/16 console.log('Bye');
Call Stack Web APIs
Browser console]
is removed from
the Call Stack.
Event Loop Callback Queue

‘ ’ - Empty

1/-214/514 65 e o

RESEARCH

console.log('Hi');
setTimeout(function cb1() {

The Event Loop console. log('cb1');

}, 5000);
5/16 console.log('Bye');

Call Stack Web APIs

Browser console

is added to the Call Stack.

setTimeout cbl

Event Loop Callback Queue

‘ ’ - Empty

1/-214/514 66 el

RESEARCH

The Event Loop

6/16

Call Stack Web APIs

Browser console

timer [FEBAT

setTimeout cbl

Event Loop Callback Queue

‘ ’ - Empty

1/-214/514

console.log('Hi');
setTimeout(function cb1() {
console.log('cb1l');

}, 5000);
console.log('Bye');

is executed.
The browser creates a timer as part of

the Web APIs. It will handle the
countdown for you.

o
67 institute for
I S r SOFTWARE
RESEARCH

console.log('Hi');
setTimeout(function cb1() {

The Event Loop console. log('cb1');

}, 5000);
7/16 console.log('Bye');
Call Stack Web APIs
Browser console timer -
itself is complete and is removed from
the Call Stack
Event Loop Callback Queue

‘ ’ - Empty

1/-214/514 68 v fo

RESEARCH

The Event Loop

8/16

Call Stack

Browser console

console.log('Bye')

Event Loop
Q-

1/-214/514

Web APIs

timer [FEBAT

Callback Queue

Empty

console.log('Hi');

setTimeout(function cb1() {
console.log('cb1l');

}, 5000);
console.log('Bye');

Call Stack.

is added to the

69 [Hi

institute for
SOFTWARE
RESEARCH

The Event Loop

9/16

Call Stack

Browser console

console.log('Bye')

Event Loop
Q-

1/-214/514

console.log('Hi');
setTimeout(function cb1() {
console.log('cb1l');

}, 5000);
console.log('Bye');

Web APIs

timer [Nebl .
is executed.

Callback Queue

Empty

o
7 0 institute for
I S SOFTWARE
RESEARCH

console.log('Hi');
setTimeout(function cb1() {

The Event Loop console. log('cb1');

}, 5000);
10/ 16 console.log('Bye');
Call Stack Web APIs
Browser console fimer - .
is removed from
the Call Stack.
Event Loop Callback Queue

‘ ’ - Empty

17-214/514 71 v fo

RESEARCH

console.log('Hi');
setTimeout(function cb1() {

The Event Loop console. log('cb1');

}, 5000);
11/ 16 console.log('Bye');
Call Stack Web APIs
Browser console
After at least 5000 ms, the timer
completes and it pushes the cb1
callback to the Callback Queue.
Event Loop Callback Queue

< ’ — chl

1/-214/514 72 o

RESEARCH

console.log('Hi');

setTimeout(function cb1() {

The Event Loop console. log('cb1');

}, 5000);
12716 console.log('Bye');
Call Stack Web APIs
Browser console
The Event Loop takes cb1 from the
Callback Queue and pushes it to the
Call Stack.
cbl
Event Loop Callback Queue

‘ ’ - Empty

1/-214/514 73 e

RESEARCH

console.log('Hi');
setTimeout(function cb1() {

The Event Loop console. log('cb1');

}, 5000);
13/ 16 console.log('Bye');

Call Stack Web APIs

Browser console

cb1 is executed and adds
to the Call
Stack.

console.log(‘cbl’)

cbl

Event Loop Callback Queue

‘ ’ - Empty

1/-214/514 74 v fo

RESEARCH

console.log('Hi');
setTimeout(function cb1() {

The Event Loop console. log('cb1');

}, 5000);
14/ 16 console.log('Bye');

Call Stack Web APIs

Browser console

is executed

console.log(‘cbl’)

cbl

Event Loop Callback Queue

‘ ’ - Empty

1/-214/514 75 il

RESEARCH

console.log('Hi');
setTimeout(function cb1() {

The Event Loop console. log('cb1');

}, 5000);
15/ 16 console.log('Bye');
Call Stack Web APIs
Browser console]
is removed from
the Call Stack.
chl
Event Loop Callback Queue

‘ ’ - Empty

1/-214/514 76 il

RESEARCH

console.log('Hi');
setTimeout(function cb1() {

The Event Loop console. log('cb1');

}, 5000);
16/ 16 console.log('Bye');
Call Stack Web APIs
Browser console]
cb1 is removed from the Call Stack.
Event Loop Callback Queue

‘ ’ - Empty

17-214/514 77 v fo

RESEARCH

“Callback Hell"?

e |ssue caused by coding
with complex nested
callbacks.

e Every callback takes an
argument that is a result of
the previous callbacks.

17-214/514

Let's imagine we’re trying to make a burger:

Get ingredients

Cook the beef

Get burger buns

Put the cooked beef between the buns
Serve the burger

o wODd -~

“Callback Hell"?

e |ssue caused by coding
with complex nested
callbacks.

e Every callback takes an
argument that is a result of
the previous callbacks.

17-214/514

If synchronous:

const makeBurger = () => {
const beef = getBeef();
const patty = cookBeef(beef);
const buns = getBuns();
const burger = putBeefBetweenBuns(buns, beef);

return burger;

)

const burger = makeBurger();
serve(burger);

o
7 9 institute for
SOFTWARE
RESEARCH

“Callback Hell"?

If asynchronous:

® |ssue caused by Coding const makeBurger = nextStep => {
. getBeef(function (beef) {
with Complex nested cookBeef (beef, function (cookedBeef) {
getBuns(function (buns) {
Ca”baCkS. putBeefBetweenBuns(buns, beef, function(burger) {
e Every callback takes an })nextsmp(burger)
argument that is a result of 1
the previous callbacks. })})

}

makeBurger(function (burger) => {
serve(burger)

9

17-214/514 80 [|j s

Modern Alternatives (to be revisited)

e Promises
o a way to write async code that still appears as though it is executing
in a top-down way.
o handles more types of errors due to encouraged use of try/catch
style error handling.
e Generators
o let you 'pause’ individual functions without pausing the state of the
whole program.
e Async functions
o since ES7
o further wrap generators and promises in a higher level syntax

17'214/514 81 Sf gé;{"u;"?é%

Useful References

e hitps://blog.sessionstack.com/how-does-javascript-actually-work-part-1-bObacc07 3cf

e https://blog.sessionstack.com/how-javascript-works-event-loop-and-the-rise-of-async-programming-
5-ways-to-better-coding-with-2f077c4438b5

e htips://www.javascripttutorial.net/javascript-event-loop/
https://www.freecodecamp.org/news/how-to-deal-with-nested-callbacks-and-avoid-callback-hell-1bc
8dc4a2012/

17-214/514 82 sl

RESEARCH

https://blog.sessionstack.com/how-does-javascript-actually-work-part-1-b0bacc073cf
https://blog.sessionstack.com/how-javascript-works-event-loop-and-the-rise-of-async-programming-5-ways-to-better-coding-with-2f077c4438b5
https://blog.sessionstack.com/how-javascript-works-event-loop-and-the-rise-of-async-programming-5-ways-to-better-coding-with-2f077c4438b5
https://www.javascripttutorial.net/javascript-event-loop/
https://www.freecodecamp.org/news/how-to-deal-with-nested-callbacks-and-avoid-callback-hell-1bc8dc4a2012/
https://www.freecodecamp.org/news/how-to-deal-with-nested-callbacks-and-avoid-callback-hell-1bc8dc4a2012/

Forming Design Patterns

e \\Ne've seen:

o Function-based dispatch (callbacks)
o Using queues to manage asynchronous events

e Some of the most common building blocks of concurrent,
distributed systems

17'214/514 83 Sf gé;{"u;"?é%

Summary

e We're not in Kansas anymore
o Real-world programs aren’t only back-end, like in HW3, nor only

front-end, like TicTacToe with browserify, nor some entangled mix, like
FlashCards.

e To balance a front-end and back-end, we need:
o (Good design, based on decoupling the Ul and back-end
m We talked about MVC, Client-server

o Structures to implement and handle concurrency
m We talked about callbacks

o Way more concurrency in upcoming lectures

17-214/514 84 Sf 2?}3}&{%

