
117-214/514

Principles of Software Construction

API Design

Claire Le Goues Vincent Hellendoorn
(Many slides originally from Josh Bloch, some from Christian Kaestner)

217-214/514

Midterm 2 next Thursday
● Same as last time: in class period.
● All topics nominally in scope, but focus is on topics since Midterm 1.
● Sample questions have been released on piazza.
● 4-pages, front and back, allowed.

Final: scheduled for Thursday, Dec 15, 1 pm.
● Will be in person, proper 3-hour exam.
● You’ll be able to bring notes.

Final homework (#6) will be released next week (possibly after midterm).
● Milestones: (1) Design framework, (2) implement framework, (3) implement plugins.

○ Note on the deadlines.
● Work in groups of 2–3. You can set your own groups, and there will be a pinned post on Piazza to

help if you need it. Reach out if you’re stuck.

Upcoming

317-214/514

Homework 6
Data Analytics Framework

Framework
Defines UI,

abstractions,
some data processing,

lifecycle

Visualization Plugin

Visualization Plugin

Visualization Plugin

Data Plugin

Data Plugin

Data Plugin

417-214/514

HW6: Map-Based
Data Visualizations?

State, county, or country
data

Data from many sources

Visualization as map
image, table, google
maps

Animations for time
series data

517-214/514

617-214/514

717-214/514

817-214/514

HW6: Consider plotting libraries
(for web frontends)

to brainstorm ideas

917-214/514

Where we are

Subtype
Polymorphism ✓

Information Hiding,
Contracts ✓

Immutability ✓

Types

Unit Testing ✓

Domain Analysis ✓

Inheritance & Del. ✓

Responsibility
Assignment,

Design Patterns,
Antipattern ✓

Promises/
Reactive P. ✓

Integration Testing ✓

GUI vs Core ✓

Frameworks and
Libraries ✓, APIs

Module systems,
microservices

Testing for
Robustness

CI ✓, DevOps,
Teams

Design for

understanding

change/ext.

reuse

robustness

...

Small scale:
One/few objects

Mid scale:
Many objects

Large scale:
Subsystems

1017-214/514

An aside on annotations
public class SampleTest {
 private List<String> emptyList;

 @Before
 public void setUp() {
 emptyList = new ArrayList<String>();
 }

 @After
 public void tearDown() {
 emptyList = null;
 }

 @Test
 public void testEmptyList() {
 assertEquals("Empty list should have 0 elements",
 0, emptyList.size());
 }
}

Here the important plugin
mechanism is Java
annotations

1117-214/514

API Design
Definitions, a design process

Design principles:

● Information Hiding
● Minimize conceptual weight
● Naming

Other design considerations (tying together other concepts from this semester)

REST APIs

Breaking changes in ecosystems

1217-214/514

What’s an API?
● Short for Application Programming Interface

○ = Contract for a Subsystem/Library, specification for a protocol

● Component specification in terms of operations, inputs, & outputs
○ Defines a set of functionalities independent of implementation

● Allows implementation to vary without compromising clients
● Defines component boundaries in a programmatic system
● A public API is one designed for use by others

○ Related to Java’s public modifier, but not identical
○ protected members are part of the public api

1317-214/514

API: Application Programming Interface
An API defines the boundary between
components/modules in a programmatic system

1417-214/514

API: Application Programming Interface
An API defines the boundary between
components/modules in a programmatic system

1517-214/514

API: Application Programming Interface
An API defines the boundary between
components/modules in a programmatic system

1617-214/514

API: Application Programming Interface
An API defines the boundary between
components/modules in a programmatic system

1717-214/514

Libraries and frameworks (and protocols!)
define APIs

Library

Framework

public MyWidget extends JContainer {

ublic MyWidget(int param) {/ setup
internals, without rendering
}

/ render component on first view and
resizing
protected void
paintComponent(Graphics g) {
// draw a red box on his
componentDimension d = getSize();
g.setColor(Color.red);
g.drawRect(0, 0, d.getWidth(),
d.getHeight());}
}

public MyWidget extends JContainer {

ublic MyWidget(int param) {/ setup
internals, without rendering
}

/ render component on first view and
resizing
protected void
paintComponent(Graphics g) {
// draw a red box on his
componentDimension d = getSize();
g.setColor(Color.red);
g.drawRect(0, 0, d.getWidth(),
d.getHeight());}
}

your code

your code

API

API

1817-214/514

A good API is a joy to use
● Users invest heavily: learning, using
● Cost to stop using an API can be prohibitive, so successful public APIs capture users

APIs can also be among your greatest liabilities
● Bad API can cause unending stream of support requests, inhibit forward movement
● Public APIs are forever – one chance to get it right

If you program, you are an API designer! Good code is modular – each object/class/module has an API
● Useful modules tend to get reused
● Once a module has users, you can’t change its API at will

Thinking in terms of APIs in general improves code quality.

API design is important

1917-214/514

Public APIs are forever

Eclipse
(IBM)

JDT Plugin (IBM)

CDT Plugin (IBM)

UML Plugin (third
party)Somebody on the

webSomebody on the
webSomebody on the

webSomebody on the
webSomebody on the

webSomebody on the
webthird party plugin

2017-214/514

Public APIs are forever: “One chance to get it right”
Can only add features to library
Cannot:
● remove method from library
● change contract in library
● change plugin interface of framework
Deprecation of APIs is a weak workaround

awt.Component,
deprecated since Java 1.1
still included in 7.0

2117-214/514

Discuss: What makes a good API?
Positive, negative experiences?

2217-214/514

Characteristics of a good API
● Easy to learn
● Easy to use, even without documentation
● Hard to misuse
● Easy to read and maintain code that uses it
● Sufficiently powerful to satisfy requirements
● Easy to evolve
● Appropriate to audience

Design for ...

2317-214/514

An API design process: plan with use cases
● Similar to our framework discussion!
● Define the scope of the API

○ Collect use-case stories, define requirements

○ Be skeptical: Distinguish true requirements from so-called solutions, "When in doubt,
leave it out."

○ Be explicit about non-goals

● Draft a specification, gather feedback, revise, and repeat. Keep it simple,
short!

● Code early, code often: Write client code before you implement the API

2417-214/514

Sample Early API Draft
// A collection of elements (root of the collection hierarchy)
public interface Collection<E> {

 // Ensures that collection contains o
 boolean add(E o);

 // Removes an instance of o from collection, if present
 boolean remove(Object o);

 // Returns true iff collection contains o
 boolean contains(Object o);

 // Returns number of elements in collection
 int size();

 // Returns true if collection is empty
 boolean isEmpty();

 ... // Remainder omitted
}

2517-214/514

Write to the API, early and often
● Start before you’ve implemented the API, to avoid doing implementation you’ll throw

away.
● Start before you’ve even specified it properly, to avoid writing specs you’ll throw away.
● Continue writing to API as you flesh it out

○ Prevents nasty surprises right before you ship
○ If you haven’t written code to it, it probably doesn’t work

● Code lives on as examples, unit tests!
● Respect the rule of 3, via Will Tracz, Confessions of a Used Program Salesman:

“Write 3 implementations of each abstract class or interface before release”
○ "If you write one, it probably won't support another."
○ "If you write two, it will support more with difficulty."
○ "If you write three, it will work fine."

2617-214/514

Information hiding

2717-214/514

Hyrum’s Law
“With a sufficient number of users of
an API, it does not matter what you
promise in the contract: all
observable behaviors of your
system will be depended on by
somebody.”

https://xkcd.com/1172/

https://www.hyrumslaw.com/

https://xkcd.com/1172/
https://www.hyrumslaw.com/

2817-214/514

● Implementation details in APIs are harmful: Confuses
users and inhibits freedom to change implementation

● Make classes, members as private as possible
● Public classes should have no public fields, except for

constants
● Minimize coupling, so modules can be, understood,

used, built, tested, debugged, and optimized
independently

Information hiding is also important for APIs

2917-214/514

● Subtle leaks of implementation details through
○ Documentation: e.g., do not specify hashCode() return

○ Implementation-specific return types / exceptions: e.g., Phone
number API that throws SQL exceptions

○ Output formats: e.g., implements Serializable

● Lack of documentation → Implementation/Stack Overflow
becomes specification → no hiding

Be Aware: Unintentionally Leaking
Implementation Details

3017-214/514

public class Rectangle {

public Rectangle(Point e, Point f) …

}

// …

Point p1 = PointFactory.Construct(…);

// new PolarPoint(…); inside

Point p2 = PointFactory.Construct(…);

// new PolarPoint(…); inside

Rectangle r = new Rectangle(p1, p2);

Applying Information hiding: Factories

3117-214/514

Aside: The Factory Method Design Pattern

From: https://refactoring.guru/design-patterns/factory-method

https://refactoring.guru/design-patterns/factory-method

3217-214/514

Aside: The Factory Method Design Pattern

From: https://refactoring.guru/design-patterns/factory-method

+ Object creation separated from object
+ Able to hide constructor from clients,

control object creation
+ Able to entirely hide implementation

objects, only expose interfaces + factory
+ Can swap out concrete class later
+ Can add caching (e.g. Integer.from())
+ Descriptive method name possible

- Extra complexity
- Harder to learn API and write code

https://refactoring.guru/design-patterns/factory-method

3317-214/514

Don't let your output become your de facto API
● Document the fact that output formats may evolve in the future

● Provide programmatic access to all data available in string form

public class Throwable {

 public void printStackTrace(PrintStream s);

}

3417-214/514

Minimizing Conceptual Weight

3517-214/514

Conceptual weight: How many concepts must a programmer
learn to use your API?
● Conceptual weight more important than “physical size”
● def. The number & difficulty of new concepts in API

○ i.e., the amount of space the API takes up in your brain

● Examples where growth adds little conceptual weight:
○ Adding overload that behaves consistently with existing methods
○ Adding arccos when you already have sin, cos, and arcsin
○ Adding new implementation of an existing interface

● Goal: a high power-to-weight ratio: an API that lets you do a lot
with a little

3617-214/514

Example: generalizing an API can make it smaller

● Not very powerful
○ Supports only search operation, and only over certain ranges

● Hard to use without documentation
○ What are the semantics of index? I don’t remember, and it isn’t obvious.

Subrange operations on Vector – legacy List implementation

public class Vector {

 public int indexOf(Object elem, int index);

 public int lastIndexOf(Object elem, int index);

 ...

}

3717-214/514

Example: generalizing an API can make it smaller

● Supports all List operations on all subranges
● Easy to use even without documentation

Subrange operations on List
public interface List<T> {

 List<T> subList(int fromIndex, int toIndex);

 ...

}

3817-214/514

Tradeoff: Boilerplate Code
 import org.w3c.dom.*;
 import java.io.*;
 import javax.xml.transform.*;
 import javax.xml.transform.dom.*;
 import javax.xml.transform.stream.*;

 /** DOM code to write an XML document to a specified output stream. */
 static final void writeDoc(Document doc, OutputStream out) throws IOException{
 try {
 Transformer t = TransformerFactory.newInstance().newTransformer();
 t.setOutputProperty(OutputKeys.DOCTYPE_SYSTEM, doc.getDoctype().getSystemId());
 t.transform(new DOMSource(doc), new StreamResult(out)); // Does actual writing
 } catch(TransformerException e) {
 throw new AssertionError(e); // Can’t happen!
 }
 }

• Generally done via cut-and-paste
• Ugly, annoying, and error-prone
• Sign of API not supporting common

use cases

Principle: Make it easy to do what’s common,
make it possible to do what’s less so

3917-214/514

Naming

4017-214/514

Names Matter – API is a little language

● Primary goals
○ Client code should read like prose (“easy to read”)
○ Client code should mean what it says (“hard to misread”)
○ Client code should flow naturally (“easy to write”)

● To that end, names should:
○ be largely self-explanatory
○ leverage existing knowledge
○ interact harmoniously with language and each other

● Don’t violate the principle of least astonishment

Naming is perhaps the single most important factor in API usability

4117-214/514

Discuss these names
○ get_x() vs getX()

○ Timer vs timer

○ isEnabled() vs. enabled()

○ computeX() vs. generateX()

○ deleteX() vs. removeX()

4217-214/514

● Be consistent: Never use the same word for multiple meanings, or
multiple words for the same meaning.
○ computeX() vs. generateX(); deleteX() vs. removeX()?

● Avoid cryptic abbreviations
○ Good: Set, PrivateKey, Lock, ThreadFactory, Future<T>
○ Bad: DynAnyFactoryOperations, ENCODING_CDR_ENCAPS, OMGVMCID

● Good names related to good abstractions.
● Literal names often have associations (e.g.,: mail, matrix), or

analogies, make sure they make sense!

Good names drive good design, make code
easier to read and write.

4317-214/514

4417-214/514

Grammar is a part of naming too
● Nouns for classes: BigInteger, PriorityQueue

● Nouns or adjectives for interfaces: Collection, Comparable

● Nouns, linking verbs or prepositions for non-mutative methods:
size, isEmpty, plus

● Action verbs for mutative methods: put, add, clear

● Aim for regularity: If API has 2 verbs and 2 nouns, programmers
will expect all 4 combinations

addRow removeRow

addColumn removeColumn

4517-214/514

Use consistent parameter ordering
● An egregious example from C:

○ char* strncpy(char* dest, char* src, size_t n);
○ void bcopy(void* src, void* dest, size_t n);

● Some good examples:
○ java.util.Collections – first parameter always collection to be

modified or queried
○ java.util.concurrent – time always specified as long delay,

TimeUnit unit

4617-214/514

What’s wrong here?

public class Thread implements Runnable {
 // Tests whether current thread has been interrupted.
 // Clears the interrupted status of current thread.
 public static boolean interrupted();
}

4717-214/514

FIXME: What’s wrong here?

var timeoutID = setTimeout(function[, delay, arg1, arg2, ...]);
var timeoutID = setTimeout(function[, delay]);
var timeoutID = setTimeout(code[, delay]);

setTimeout(function () {
 // something to execute in 2 seconds
}, 2000)

query.str = “); fs.rm(‘/’, ‘-rf’”
setTimeout(`writeResults(${query.str})`, 100)

4817-214/514

Good naming takes time, but it’s worth it
● Don’t be afraid to spend hours on it; API designers do.

○ And still get the names wrong sometimes

● Don’t just list names and choose
○ Write out realistic client code and compare

● Discuss names with colleagues; it really helps.

4917-214/514

Other API Design Suggestions

5017-214/514

Principle: Favor composition over inheritance
// A Properties instance maps Strings to Strings

public class Properties extends HashTable {

 public Object put(Object key, Object value);

 …

}

public class Properties {

 private final HashTable data = new HashTable();

 public String put(String key, String value) {

 data.put(key, value);

 }

 …

5117-214/514

Principle: Minimize mutability
● Classes should be immutable unless there’s a good

reason to do otherwise
○ Advantages: simple, thread-safe, reusable
○ Disadvantage: separate object for each value

Bad: Date, Calendar

Good: LocalDate, Instant, TimerTask

5217-214/514

Antipattern: Long lists of parameters
● Especially with repeated parameters of the same type
 HWND CreateWindow(LPCTSTR lpClassName, LPCTSTR lpWindowName,
 DWORD dwStyle, int x, int y, int nWidth, int nHeight,
 HWND hWndParent, HMENU hMenu, HINSTANCE hInstance,
 LPVOID lpParam);

● Long lists of identically typed params harmful
○ Programmers transpose parameters by mistake; programs still compile

and run, but misbehave

● Three or fewer parameters is ideal

● Techniques for shortening parameter lists: Break up method,
parameter objects, Builder Design Pattern

5317-214/514

Principle: Fail fast, early, and not silently.
// A Properties instance maps Strings to Strings

public class Properties extends HashTable {

 public Object put(Object key, Object value);

 // Throws ClassCastException if this instance

 // contains any keys or values that are not Strings

 public void save(OutputStream out, String comments);

}

…What’s wrong here?

5417-214/514

Java: Avoid checked exceptions if possible
Overuse of checked exceptions causes boilerplate

try {

Foo f = (Foo) g.clone();

} catch (CloneNotSupportedException e) {

 // Do nothing. This exception can't happen.

}

5517-214/514

Antipattern: returns require exception handling
Return zero-length array or empty collection, not null

Do not return a String if a better type exists

 package java.awt.image;

 public interface BufferedImageOp {

 // Returns the rendering hints for this operation,

 // or null if no hints have been set.

 public RenderingHints getRenderingHints();

 }

5617-214/514

Documentation matters
“Reuse is something that is far easier to say than to do. Doing it
requires both good design and very good documentation. Even
when we see good design, which is still infrequently, we won't
see the components reused without good documentation.”

– D. L. Parnas, Software Aging. Proceedings
of the 16th International Conference on
Software Engineering, 1994

5717-214/514

Contracts and Documentation
● APIs should be self-documenting

○ Good names drive good design
● Document religiously anyway

○ All public classes
○ All public methods
○ All public fields
○ All method parameters
○ Explicitly write behavioral specifications

● Documentation is integral to the design and development
process

5817-214/514

Lecture summary
● APIs took off in the past thirty years, and gave us super-powers
● Good APIs are a blessing; bad ones, a curse
● API Design is hard
● Following an API design process greatly improves API quality
● Most good principles for good design apply to APIs

○ Don't adhere to them unconditionally, but…
○ Don't violate them without good reason

