Principles of Software Construction:
Objects, Design, and Concurrency

Git Workflows in Practice

Claire Le GouesVincent Hellendoorn

Carnegie Mellon University
School of Computer Science

institute for
I S SOFTWARE
RESEARCH

17-214/514 1 [s

GIT BASICS

Graphics by https://learngitbranching.js.org

17-214/514 2 [|g s

RRRRRRRR

git commit

O

CﬁQZD

17-214/514 3 :n?&:i{%

git branch newlImage

@

Cﬁ;ZD

@

Le=

17-214/514 4 ﬁ?:“ék”ti‘c[%

git commit

@

17-214/514 5 [y v

RRRRRRRR

git checkout newImage; git commit

newImage*

17-214/514 6 :2}:7:'2%

Three ways to move work around between branches
1) git merge bugFix (intomaster)

@ @

@

@
()

Sa’e 0

17-214/514 7 :2}:7:'2%

git checkout bugfix; git merge master (into bugFix)

@ O
®

o
()
-’

17-214/514 8 ﬁ?:“ék”ti‘c[%

®

=il

Move work from bugFix directly onto master
2) git rebase master

17-214/514 9 2?:“:72%

But master hasn't been updated, so:
git checkout master; git rebase bugFix

® @
® ®

O,:;J

= L=

17-214/514 10 2?:’:‘{’2%

Copy a series of commits below current location

3) git cherry-pick C2 C4
O

@
) ®
O

e

S

17-214/514 11 i?i'k"ti{%

Ways to undo work (1) HEAD is the symbolic

git reset HEAD~1 name for the currently
checked out commit

® @

o s

Up

17-214/514 12 i?i'k"ti{%

Ways to undo work (2) git reset does not work
git revert HEAD for remote branches

®

@

@:@

17-214/514 13 2?:’:‘{’2%

Highly Recommended

e Courtesy of Prof. Bogdan Vasilescu
(teaches this course last & next Spring)

® (second) most useful life skill you will
have learned in 214/514

Pro

Git

Scott Chacon and Ben Straub

Apress

17-2 14/5 14 14 E ::::ic;cfov

SSSSSSSS

TYPES OF VERSION CONTROL

Centralized version control

e Single server that contains Comuter A Central VCS Server
a” the VerS|Oned flleS n Version Database
e Clients check out/in files e e
from that central place m’.on :
e E.g,CVS, SVN SR ST |
. L — | Version 1
(Subversion), and Perforce | e

https://git-scm.com/book/en/v2/Getting-Started-About-Version-Control
17-214/514 16 Lo

Distributed version control

e Clients fully mirror the
repository

o Every clone is a full backup of
all the data

e E.g., Git, Mercurial, Bazaar

17-214/514

Computer A

——

Version Database

Version 3
Version 2

Version 1

Server Computer

Version Database

Version 3

Version 2

Version 1

.

Computer B

t

Version Database

Version 3
|

Version 2
|
Version 1

SVN (left) vs.

Checkins Over Time

File A Al . A2
File B » Al

FileiC . Al . A2

* SVN stores changes to a base

version of each file

* Version numbers (1, 2, 3, ...)

are increased by one after
each commit

A2

A3

Git (right)

Checkins Over Time

File A Al Al A2 A2
File B B B Bl B2

File C C1 C2 C2 C3

Git stores each version as a snapshot

If files have not changed, only a link
to the previous file is stored

Each version is referred by the SHA-1
hash of the contents

https://git-scm.com/book/en/v2/Getting-Started-About-Version-Control

17-214/514

nstitute
SSSSSSSS
RRRRRRRR

Aside: Git process

Untracked Unmodified

Remove the file

© Scott Chacon “Pro Git”

17-214/514

Edit the file
Stage the file

. omit

o
1 9 institute for
| S SOFTWARE
RESEARCH

Git Internals

co -

© Scott Chacon “Pro Git”
17-214/514

(g |

master

C2

c4

3

SOF’ E
RRRRRRRR

Git Internals

3c4e9c

tree

new.txt test.txt bak
e)
fa49b0 1f7a7a d8329f
"new file" "version 2" tree
test.txt
\
83baae

"version 1"

© Scott Chacon “Pro Git” .
17-214/514 21 | s

RESEARCH

Aside: Git object graph

1la410e 3cd4e9c

third commit new.txt

test.txt

\ 1f7a7a
"version 2"
>
v G155at test.txt
second commit tree
new.txt fa49b0
"new file"
fdfafc d8329f 83baae
first commit tree test.txt » wyersion 1"

© Scott Chacon “Pro Git”

-

17-214/514

22 [Hi

institute for
SOFTWARE
RESEARCH

Aside: Which files to manage

e All code and noncode files
o Java code
o Build scripts
o Documentation

e Exclude generated files (.class, ...)

e Most version control systems have a mechanism to exclude files
(e.g., .gitignore)

17'2 14/5 14 23 - institute F:

SYNCING LOCAL «~ REMOTE

G . Every computer is a server and version
|t control happens locally.

17-214/514 25 Sf :?}E}{z{%

. How do you share code with collaborators if
G |t commits are local?

N
git commit i i

17-214/514 26 Lo

. You push your commits into their repositories /
G |t They pull your commits into their repositories

git push

... But requires host names / IP addresses

17-214/514 27 iy

GitHub typical workflow GitHUb

Public repository where you make your changes public

17-214/514 28 Lo

GitHub typical workflow GitHUb

N
git commit i i

17-2 14/5 14 29 Sf g\é}}:i{%

GitHub typical workflow GitHUb

[HH
git commit i i

17-2 14/5 14 30 Sf g\é}}:i{%

GitHub typical workflow GitHUb

git push

push your local changes into a remote repository.

17-2 14/5 14 31 |Sf gégi{%

GitHub typical workflow GitHUb

i git push i i

Collaborators can push too if they have access rights.

17-2 14/5 14 32 |Sf gé;{"ui{%

git push <remote> <branch>: upload local repository
content to a remote repository

Origin / Master

O

Master

https://www.atlassian.com/git/tutorials/syncing/git-push

Origin / Master
N2
() ()
Oo—0O0—C0CO—-—~0
T
Master
17-214/514

GitHub typical workflow GitHUb

A Y
A Y
A Y
N
A Y
N
N
A ~
\\ \\\
~
\\ 0 S
~ git pull ™
A Y ~
\ i

Without access rights, “don’t call us, we’ll call you” (pull from

trusted sources) ... But again requires host names / IP addresses.

17-214/514 34

institute for
SSSSSSSS
RRRRRRRR

git pull <remote>: Fetch the specified remote’s copy of the
current branch and immediately merge it into the local copy

Origin / Master

oo

Equivalent to:
git fetch origin HEAD + git merge HEAD

Also possible: git pull --rebase origin
17-214/514 35 [[j s

RRRRRRRR

GitHub typical workflow GitHUb

\\Mainll

“Forks”

o5

i git pusrlﬁ i i

Instead, people maintain public remote “forks” of "main”

repository on GitHub and push local changes.
17-214/514 36

GitHub typical workflow Gihub

“Forks”

“Main” /i
ﬁ Request i i

Availability of new changes is signaled via "Pull Request”.
17-214/514 37 [s

GitHub typical workflow GitHUb

\\ 144
Main” |[..-----

-
—_—
-
e
_—

Changes are pulled into main if PR accepted.
17-214/514 38 ;?}Eﬁ’.;{":

BRANCH WORKFLOWS

https://www.atlassian.com/qit/tutorials/comparing-workflows

17-214/514 39 [j o

RRRRRRRR

https://www.atlassian.com/git/tutorials/comparing-workflows

1. Centralized workflow

e Central repository to serve as the
single point-of-entry for all changes
to the project

e Default development branch is

called main

o all changes are committed into main
o doesn’t require any other branches

17-214/514

Example

John works on his feature

17-214/514 a1 s

Example

Mary works on her feature

17-214/514 42 iy

Example

John publishes his feature

:
& & 8

17-214/514 43 Sf g

Example

John publishes his feature

git push origin main

17'214/514 44 Sf gésgﬁ%

Example

Mary tries to publish her feature

git push origin main

17-214/514 a5 [| s

RRRRRRRR

error: failed to push some refs to '/path/to/repo.git’
hint: Updates were rejected because the tip of your current branch is behind its

remote counterpart. Merge the remote changes (e.g. 'git pull') before pushing again.
See the 'Note about fast-forwards' in 'git push --help' for details.

Mary tries to publish her feature

git push origin main %

& & &

17-214/514 S s for

Example

Mary rebases on top of John's commit(s)

git pull --rebase
origin master

& & &

17'214/514 47 Sf gé}?i%{%

Mary’s Repository

O—0O-0

17-214/514

¢
o0

™

Master

/I\

Master

48 [Hi

institute for
SOFTWARE
RESEARCH

Example

Mary resolves a merge conflict

17-214/514 49 | sk

Example

Mary’s Repository

Pause here for

W ‘ merge reSOIUtion

1\

Master

git rebase --continue

17-2 14/5 14 50 Sf gégi{%

Example

Mary successfully publishes her feature

=
5

& & &

17-214/514 51 Sf ;g}éﬁ";}g

2. Git Feature Branch Workflow

o All feature development should take place in a dedicated
branch instead of the main branch

e Multiple developers can work on a particular feature without
disturbing the main codebase

o main branch will never contain broken code (enables CI)
o Enables pull requests (code review)

17-214/514

Example

Mary begins a new feature

0—0—010

git checkout -b marys-feature master
git status
git add <some-file>

git commit
17-214/514 53 [[j 5

Example

Mary goes to lunch

®

& & &

git push -u origin marys-feature

17-214/514 54 [[j i

RRRRRRRR

Example

Mary finishes her feature

=

©
S & &
git push

17'214/514 55 Sf gé};'uﬁ%

Example

Bill receives the pull request

& & &

17-214/514 56 Sf ;?;i’f’.;{":

Example

Mary makes the changes
S

S,

oA S,

b

17'214/514 57 Sf :gnés);;tii{%

Example - Merge pull request

Mary publishes her feature
O——"2 —@
git checkout master
git pull

git pull origin marys-feature
git push

17-214/514 58 [[j s

3. Gitflow Workﬂow

v v v
01“ O O
O O O
e Strict branching model designed around the project release
o Suitable for projects that have a scheduled release cycle

e Branches have specific roles and interactions

e Uses two branches

o main stores the official release history; tag all commits in the master branch
with a version number
o dev(elop) serves as an integration branch for features

0.1 v0.2 v1.0

17-214/514 59 Lo

GitFlow feature branches (from develop)
~ | [.

17-2 14/5 14 60 Sf gégi{%

GitFlow release branches (eventually into master)

no new features after this
point—only bug fixes, docs,

and other release tasks
17-214/514 61 Sf ;3}&&{*@

GitFlow hotfix branches
v | [oom][] [omen] [rome] []

¥ used to quickly patch

O— i J‘I* production releases

17-214/514 62 Sf 2?}3}&{%

Aside: Semantic Versioning

17-214/514 63 [i

RRRRRRRR

Semantic Versioning

Given a version number MAJOR.MINOR.PATCH,
Increment the:
1. MAJOR version when you make incompatible AP| changes,

2. MINOR version when you add functionality in a backwards

compatible manner, and
3. PATCH version when you make backwards compatible bug

fixes.

17-214/514 64 Sf 2?&{%

Code status

First release

Backward compatible
bug fixes

Backward compatible
new features

Changes that break
backward compatibility

Stage
New
product

Patch
release

Minor
release

Major
release

Rule

Start with 1.0.0

Increment the third digit

Increment the middle digit
and reset last digit to zero

Increment the first digit and
reset middle and last digits
to zero

17-214/514 https://docs.npmjs.com/about-semantic-versioning

Example
version
1.0.0
1.0.1
1.1.0
2.0.0
65

https://docs.npmjs.com/about-semantic-versioning

Summary (part 1 — don't leave yet!)

e \ersion control has many advantages
o History, traceability, versioning
o Collaborative and parallel development

e C(Collaboration with branches
o Different workflows

e From local to central to distributed version control

17'214/514 66 Sf gé;{"u;“a%

DEVELOPMENT AT SCALE

Releasing at scale Iin industry

e Facebook:
https://atscaleconference.com/videos/rapid-release-at-massive-scale/

e Google:
https://www.slideshare.net/JohnMicco1/2016-0425-continuous-integration-at-gooqgle
-scal

https://testing.googleblog.com/2011/06/testing-at-speed-and-scale-of-google.html

e Why Google Stores Billions of Lines of Code in a Single Repository:
https://www.youtube.com/watch?v=W71BTkUbdqE

e F8 2015 - Big Code: Developer Infrastructure at Facebook's Scale:
https://www.youtube.com/watch?v=X0VH78yedyY

17-214/514 68 Lo

https://atscaleconference.com/videos/rapid-release-at-massive-scale/
https://www.slideshare.net/JohnMicco1/2016-0425-continuous-integration-at-google-scale
https://www.slideshare.net/JohnMicco1/2016-0425-continuous-integration-at-google-scale
https://testing.googleblog.com/2011/06/testing-at-speed-and-scale-of-google.html
https://www.youtube.com/watch?v=W71BTkUbdqE
https://www.youtube.com/watch?v=X0VH78ye4yY

Pre-2017 release management model at
Facebook

17-214/514 69 [s

RRRRRRRR

Diff lifecycle: local testing

B Tools/xctool/xctool/xctool/Version.m View Options ¥

sion.h'

NSString * const XCToolVersionString = @"0.2.1"; NSString * const XCToolVersionString =

BB ExampleTest (0.050s)

Diff OK (1 test, 4 assertions)

—

Test and lint locally

stitute for
OF TWARE
ESEARCH

Diff lifecycle: CI testing (data center)

App and Build
Configuration Matrix

FFFFFF
EEEEEEE

Diff lifecycle: diff ends up on main branch

Dogfooding

FFFFFF
EEEEEEE

Release every two weeks
www.facebook.com

1week of development

Master

Release
branch

Stabilize

Release branch

Tuesday
(“weekly”)

Every weekday (3x)

||||||
SSSSSSSS

Quasi-continuous push from master (1,000+ devs, 1,000 diffs/day); 10 pushes/day

) Push-Blocking Alerts
(008 arod Push-Blocking Tasks Flytrap
Crash Bot for WWW Anomaly

Emergency Button Alerts

Push-Blocking Alerts
Push-Blocking Tasks
Emergency Button

employees

Master

17-214/514

https://samritchie.wordpress.com/2013/1
0/16/build-server-traffic-lights/

https://www.softwire.com/blog/2013/09/26/continuous-integration-traffic-lights-revamp/index.ht
ml
17-214/514 75 e

RESEARCH

You've Probably Seen These

Status

Build Pipeline

Release Pipeline

Dev Test Prod

o deployment succeeded o deployment succeeded o deployment succeeded
o= NuGet 0.6.0 o= NuGet 0.6.0 o= NuGet 0.4.0

https://blog.devops4me.com/status-badges-in-azure-devops-pipelines/
17-214/514 76 sl

RESEARCH

Diff lifecycle: in production

.—'—."'Q 6 ||

FFFFFF
EEEEEEE

Google: similar story. Giant code base

Google repository statistics

Total number of files*
Number of source files
Lines of code

Depth of history

Size of content

Commits per workday

*The total number of files includes source files copied into release branches, files that are

1 billion

9 million

2 billion

35 million commits
86 terabytes

45 thousand

deleted at the latest revision, configuration files, documentation, and supporting data files

Exponential growth

Millions of changes committed (cumulative)

40
30
20

10

0

1/1/2000 1/1/2005 1/1/2010 1/1/2015

institute for
SSSSSSSS

Google Speed and Scale
¢ >30,000 developers in 40+ offices

e 13,000+ projects under active development

¢ 30k submissions per day (1 every 3 seconds)

¢ Single monolithic code tree with mixed language code 2016 numbers
e Development on one branch - submissions at head

¢ All builds from source

e 30+ sustained code changes per minute with 90+ peaks

¢ 50% of code changes monthly

e 150+ million test cases / day, > 150 years of test / day

e Supports continuous deployment for all Google teams!

Google Confidential and Proprigtary

17-2 14/5 14 80 Sf g\é}}:i{%

Google code base vs Linux kernel code base

Some perspective

e 15 million lines of code in 40 thousand files (total)

e 15 million lines of code in 250 thousand files changed per week,
by humans

e 2 billion lines of code, in 9 million source files (total)

FFFF
EEEEEE

How do they do it?

Automation & Processes

17-214/514 82 [|j s

1. Lots of (automated) testing

Google workflow

Sync user

workspace » Write code » rg\(/)igsv ‘ Commit
to repo

All code is reviewed before commit (by humans and automated tooling)

Each directory has a set of owners who must approve the change to their
area of the repository

Tests and automated checks are performed before and after commit
Auto-rollback of a commit may occur in the case of widespread breakage

2. Lots of automation

Additional tooling support

Now also: language model-based completions:

Critique Code review

CodeSearch* Code browsing, exploration, understanding, and archeology

Tricorder** Static analysis of code surfaced in Critique, CodeSearch
Presubmits Customizable checks, testing, can block commit

TAP Comprehensive testing before and after commit, auto-rollback
Rosie Large-scale change distribution and management

* See “How Developers Search for Code: A Case Study”, In European Software Engineering Conference and the ACM SIGSOFT Symposium on the Foundations of Software Engineering, 2015

** See “Tricorder: Building a program analysis ecosystem”. In International Conference on Software Engineering (ICSE), 2015 stitute for
- o)

https://ai.googleblog.com/2022/07/ml-enhanced-code-completion-improves.html

3. Smarter tooling

e Build system

e \/ersion control
o

17-214/514 85 [5

Google: Standard Continuous Build System
3a . BU Ild ® Trggers builds in continuous cycle

@® Cycle ime =longest build +test cycle

SySte m ® Tests many changes together

® Which change broke the build?

Change 1 Change 2 Change 3

] ;
I ==y

Test One | Test One |
Test Two Test Two

17-214/514 86 el

RRRRRRRR

3a. Build
system

17-214/514

Google Google Continuous Build System

@® Triggers tests on every change
® Uses fine-grained dependencies
® Change 2 broke test 1

Change 1 Change 2 Change 3
Test One |
Test Two |
Test One
Test Two
1 1
- -
1 A 1
Test One | Test One | :
Test Two Test Two
| | :
I 1 1
1] 1
1 1 1

Google: Continuous Integration Display

e e

& | Fsluy | ‘-Ahl:n"w-| etz Suweh L e Haad « Nasar Cf s | 30315734 20003899 Cidars |
Showing 12 of 1100 targets: | o ed ! Eroker Lo o) ey
Changallst and 1t | WAGTIE WeITI WACT2 AeITIT WAC6LT Re3TTI WS35 wee3Id WACLT Al WAtdE) Ae3d2E 2ACl00 AeI2] WALITY RLI2TC WALI0C Ae32D] w119 AeeT10l XALCSI Am3I21 XeME6 AsI21 XaMCE0 ':-.;m
angellst and RUbMIEUMA: "y g e e Ve s Wim o few | Wie i Mo I Ml ie WIm in Mim Wt Wim Ml Wim Ml Wie S W
o e e e i i e o M K i
AMECted Largety: m#1 1 tee & bl ek 2 basi ket) Meaid ek 1 bal 4 ket 7 $atd T el bk P Rl D badu T Mesak T bakd X Vsl M Meant 1 Vsl A48 mesod 708 Piamis] 40 Aes e 08 el 1
* Pawet THE Fivene 133 3ot 2T Bovrns 403 Sa00nt T/0 Roerne 390 R L = Byrre 13 Pasent 16 Brne 781 Pasant NG Ryrre 281 Byrra W Frannt TR

.\
=
<

i
I

F;
I
I

SO NEEE

institute for
[sorrware
RESEARCH

Google Benefits

3a. Build
system

e l|dentifies failures sooner
Identifies culprit change precisely
o Avoids divide-and-conquer and tribal knowledge
e Lower compute costs using fine grained dependencies
o Keeps the build green by reducing time to fix breaks
e Accepted enthusiastically by product teams
e Enables teams to ship with fast iteration times
o Supports submit-to-production times of less than 36

hours for some projects

17-214/514 89 [Wj i

RRRRRRRR

Google: Costs

3a] B U Ild Requires enormous investment in compute resources (it
SyStem helps to be at Google) grows in proportion to:

o Submission rate
¢ Average build + test time
¢ Variants {debug, opt, valgrind, etc.)
o Increasing dependencies on core libraries
o Branches
« Requires updating dependencies on each change
o Takes time to update - delays start of testing

17-214/514 90 el

RESEARCH

Which tests to run?

GMAIL

Test Target:
name: //depot/gmail_client_tests
name: //depot/gmail_server_tests

buzz_client_tests

youtube_client gmail_client

BUZZ

Test targets:
name: //depot/buzz_server_tests
name: //depot/buzz_client_tests

gmail_client_tests gmail_server_tests

gmail_server

buzz_server_tests

buzz_server

common_collections_util >

17-214/!

tttttttttttt

Scenario 1: a change modifies
common_collections_ util

buzz_client_tests gmail_client_tests gmail_server_tests buzz_server_tests

buzz_client buzz_server

youtube_client gmail_client gmail_server youtube_server

When a change modifying = < common_collections_util >
common_collections_util is
submitted.

17-214/514 92 |Ij L

RRRRRRRR

N

Scenario 1: a change modifies
common_collections_ util

buzz_client_tests gmail_client_tests gmail_server_tests buzz_server_tests
N

buzz_client buzz_server

youtube_client gmail_client Qutube_ser\D

When a change modifying common_collections_util J
common_collections_util is ‘::> < = -

submitted.
17-214/514 93 [j L

RRRRRRRR

Scenario 1: a change modifies
common_collections_ util

gmail_client_tests @I_server_tesb buzz_server_tests

buzz_client_tests

m

youtube_i cllent gmall cllent

When a change modifying = < common_collections_util
common_collections_util is
submitted.
17-214/514 94 [|j s

RRRRRRRR

Scenario 1: a change modifies common_ collections_util

All tests are affected! Both Gmail and Buzz projects need to be updated

[/ o
N \

— | | =

youtube_ cllent gmall chent

WA CROICTOM W) common_collections util
common_collections_util is E:> < = -

submitted.
17-214/514 95 el

RESEARCH

Cyoutube_server

Scenario 2: a change modifies the
youtube client

buzz_client_tests gmail_client_tests gmail_server_tests buzz_server_tests

buzz_client buzz_server

youtube_client gmail_client gmail_server youtube_server

When a change modifying
youtube_client is submitted.

common_collections_util

r
L/-214/D14 vo lﬂ' SOFTVARE

RRRRRRRR

Scenario 2: a change modifies the youtube_cliel

Only buzz_client_tests are run and
only Buzz project needs to be updated.

buzz_client_tests > gmail_client_tests gmail_server_tests buzz_server_tests

A

buzz_server
youtube_client gmail_client gmail_server youtube_server
When a change modifying

youtube_client is submitted.

common_collections_util

institute for
L/7LLF) 0L+ 27 Iﬂi SSSSSSSS
RRRRRRR H

3b. Version control

o Problem: even git can get slow at Facebook scale

o 1M+ source control commands run per day
o 100K+ commits per week

Cloning with git: iOS Today

Many files
Deep history

Large “footprint” makes git slow

17-214/514

3b. Version control

e Solution: redesign version control
o Sparse checkouts: only fetch metadata (lightweight), get source on-demand
o Don’t fetch entire history. Can do this with git too (git clone --depth=1), but
won'’t work for distributed collaboration

Enter Mercurial: Sparse Checkouts Enter Mercurial: Shallow History

Work on only the files you need. Work locally without complete history.

~/fbsource/.hg ~/fbsource/.hg

Build system knows how to
check out more.

Need more history?
Downloaded automatically on demand.

17-214/514 99 [s

Some Common Principles

e Ensure Isolation

o Of impacts of a given changeset

m On the build status
m On prod

o Not dissimilar to distributed systems!
m Which makes sense; this is also a distributed system, just made up of people

e \Work incrementally

o Release carefully, monitor heavily
o Cut costs where possible by building & testing as little as possible

17-214/514 100 [s

Monolithic repository — no major use of

branches for development

Trunk-based development

Piper users work at “head”, a consistent view of the codebase

All changes are made to the repository in a single, serial ordering
There is no significant use of branching for development

Release branches are cut from a specific revision of the repository

trunk / mainline
cherry pick

release branch

A recent history of code organization

e A single team with a monolithic application in a single repository

e Multiple teams with many separate applications in many separate
repositories

e Multiple teams with many separate-apphecattenrs microservices in
many separate repositories

e A single team with many microservices in many repositories

e Many teams with many applications in one big Monorepo

17-214/514 102 [y s

What is a monolithic repository (monorepo)?

e A single version control repository containing multiple

o Projects
o Applications
o Libraries

e Often using a common build system

17-214/514 2015 talk bv Beniamin Eberlei 103 [| i

Monorepos in industry

Google (computer science version

About Communications | ACM Resources lerts & Feeds Ff B I

17-214/514

COMMUNICATIONS

0F ThE

ACM

HOME ' CURRENT ISSUE NEWS | BLOGS OPINION | RESEARCH PRACTICE

Home | Magazine Archive { July 2016 (Vol. 59, No.7) / Why Google Storas Sillions of Lines of Cods in a Single... / Full Text

CONTRIBUTED ARTICLES

SIGN IN

Search

CAREERS | ARCHIVE VIDEOS

Why Google Stores Billions of Lines of Code in a Single

Repository

By Rachel Potvin, Josh Levenberg
Communications of the ACM, Vol. 59 No. 7, Pages 78-87
10.1145/2854146

Comments (3)

VIEWAS: B Dgﬂﬁ;‘ SHARE: =@ & @ o & B8

Early Google emplovees decided to work with a shared codebase
mansged through a centralized source control system. This
approach has served Google well for more than 16 years, and
today the vast majority of Google's soflware assels conlinues to
be slored in a single, shared reposilory. Meanwhile, the number
of Google software developers has steadily incressed, and the size
of the Google codebase has grown exponentially (see Figure 1), As
a resull. the technology used o host the codebase has also

evolved signilicantly.

Backto Top

3 TSN N

SIGN IN for Full Access

Password 5

» Forgot Password?
» Create an ACM Web Account

SIGN IN

»

ARTICLE CONTENTS:
Introduction

Key Insights
Google-Scale
Background

104

institute for
SOFTWARE
RESEARCH

Monorepos in industry

Scaling Mercurial at Facebook

Ei coue

Open Source Platforms v Infrastructure Systems v Hardware Infrastructure + Video & VR v Artificial Intelligence v

17-214/514

OPTIMIZAT ON

© 7January 2014 ¥ INFRA - OPEN 3 CE - PERFORMAN

Scaling Mercurial at Facebook

‘ Durham Goode . Siddharth P Ag:

va

With thousands of commits a week across hundreds of thousands of files, Facebook's main source
repository is enormous-—-many times larger than even the Linux kernel, which checked in at 17 million
lines of code and 44,000 files in 2013. Given our size and complexity—and Facebook's oractice of
shipping code twice a day--improving our source control is one way we help our engineers move fast.

Choosing a source control system

Two years ago, as we saw our repository continue to grow at a staggering rate, we sat down and
extrapolated our growth forward a few years. Based on those projections, it appeared likely that our
then-current technology, a Subversion server with a Git mirror, would become a productivity
bottleneck very soon. We looked at the available options and found none that were both fast and
easy to use at scale.

Qur code base has grown organically and its internal dependencies are very complex, We could have
spent a lot of time making it mare modular in a way that would be friendly to a source control toal, but
there are a number of benefits {o using a single repository. Even at our current scale, we often make
large changes throughout our code base, and having a single repository is useful for continuous

Recommended

Scaling rren

105

institute for
SOFTWARE
RESEARCH

Monorepos in industry

Microsoft claim the largest git repo on the planet

17-214/514

an Harrys bleg

Brian Harrys blog

thin ant to ki

Farming

al

The largest Git repo on the planet

y Brian Harry MS 4 59 Comments

B3 Share 2.2k 3213 _

It's been 3 menths since | first wrote about our efforts cale Git to extremely large projects and teams with an effort we called "Git Virtual
File System”. As a reminder, GVFS, together with a set of enhancements tc Git, enables Git to scale 1o VERY large repos by virtualizing both the
.gi: folder and the working directory. Rather than download the entire repo and checkout all the files, it dynamically downloads only the
portions you need based on what you use

A lot has happened and | wanted to giv
concrete implementation, but rather, it

w

you an update. Three months age, GYFS was still a dream. | don't mean it didn't exist— we had &
s unproven. We had validated on some big repos but we hadn't rolled it out to any meaningfu!
number of engineers so we had only conviction that it was going to work. Now we have proof.

Today, | want to shae our results. In addition, we're announcing the next steps in our GVFS journey for customers, including expanded open

cing to start taking contributions and improving how it works for us at Microsoft, as well as for partners and custemers.
Windows is live on Git
Over the past 3 months, we have largely completed the -ollout of Git/GVFS to the Windows team at Microsoft.

As a refresher, the Windows code base is approximately 3.5M files and. when checked in to a Git repo, results in a repo of about 300GB.

Visual Studio

Download Visual @
Download TF;
Visual Studio Team Services

Search

Search MSDN wiitl

Search this

notifications of new

Email Address

Subscribe

Dl bn

LJ
institute for
106 SorTasE

Monorepos in open-source

foresquare public monorepo

17-214/514

 foursquare / fsqio

<> Code ssues 20

Pull requests o Projects 0 Wiki Insights

A monorepo that holds all of Foursquare's opensource projects

pants foursquare

{® 538 commits

mongodb scala

¥ 1branch Q2 releases

© Watch ~

42 16 contributors

Branch: master v New pull request

& mateor committed with mateor Upgrade

B 3rdparty

M build-suppoert

Z) .dockerignore

.gitignore

Aravis.ym

mw

BUILD.opensource

)

BUILD.tools

L

CLAmd

) CARITDIRNITING mnAd

80

Wstar 120 Y Fark

s Apache-
N ——

19

S e i

Latest commit 434b37¢ on 1 Aug

q.10 Travis

1o use mongodh3.0+ (#780)

Update the testinfra deployed file (#748)

Monalithi

lvy resolve commit

k

he cur

ac ore

Add installation instructions to pom

Spindle; Make ThriftParserTest actually depend on its input {
Spindle: Make ThriftP: T ly 1 put

te fsqio/fsqio Dockerfile and add one for fs fishes

0 no longer clobber

io Travis config o use mongod

esolve commit (¥

directory.

Dct ~ FONTDIDUITING madl

2016 talk bv FABIEN POTENCIER

3 mont

go

3 months ago

w

months

months
2 years

0 months

g

3 months ago

go

months age

months age

LJ
institute for
107 SorTasE

Monorepos in open-source

The @ Symfony monorepo
43 projects, 25 000 commits, and 400 000 LOC

https://github. conf synfony/synfony

Bri dge/

5 sub-projects
Bundl e/

5 sub-projects
Conponent/

33 i ndependent sub-projects like Asset, Cache,
CssSel ector, Finder, Form HttpKernel, Ldap,

Routing, Security, Serializer, Tenplating,
Translation, Yam, ...

17-214/514 2016 talk bv FABIEN POTENCIER

Advantages of Monorepos
e High discoverability

o Developers can read & search the entire codebase

e High reuse

o The same tools (e.g., linters, auto-complete) are globally available

o Any package can become a library
m Which is why you always build an API!

e Simplifies maintenance

o Global refactorings, cleanup

m Orgs like Google will regularly dedicate a specific day to a type of improvement
(e.g., improve documentation), flag all potentially problematic sites

17-214/514 109 Lo

Some more advantages

e Easy continuous integration and code review for changes
spanning several projects

(Internal) dependency management is a non-issue

Less context switching for developers

Code more reusable in other contexts

Access control is easy

17-214/514 110 [y s

Summary

e Release management: versioning, branching, ...

e Software development at scale requires lots of infrastructure
o Version control, build managers, testing, Cl, deployment, ...

e |t's hard to scale development
o Move towards heavy automation (DevOps)

e Continuous deployment increasingly common
e Opportunities from quick release, testing in production,
quick rollback

17-214/514 111 ek

