
117-214/514

Principles of Software Construction: 
Objects, Design, and Concurrency

Git Workflows in Practice

Claire Le GouesVincent Hellendoorn



217-214/514

GIT BASICS

Graphics by https://learngitbranching.js.org



317-214/514

git commit



417-214/514

git branch newImage



517-214/514

git commit



617-214/514

git checkout newImage; git commit



717-214/514

1) git merge bugFix (into master)
Three ways to move work around between branches



817-214/514

git checkout bugfix; git merge master (into bugFix)



917-214/514

2) git rebase master
Move work from bugFix directly onto master



1017-214/514

git checkout master; git rebase bugFix
But master hasn't been updated, so: 



1117-214/514

3) git cherry-pick C2 C4
Copy a series of commits below current location



1217-214/514

git reset HEAD~1
HEAD is the symbolic 
name for the currently 
checked out commit

Ways to undo work (1)



1317-214/514

git revert HEAD
git reset does not work 
for remote branches

Ways to undo work (2)



1417-214/514

Highly Recommended

https://git-scm.com/book/en/v2

● Courtesy of Prof. Bogdan Vasilescu 
(teaches this course last & next Spring)

● (second) most useful life skill you will 
have learned in 214/514



1517-214/514

TYPES OF VERSION CONTROL



1617-214/514

Centralized version control
● Single server that contains 

all the versioned files
● Clients check out/in files 

from that central place
● E.g., CVS, SVN 

(Subversion), and Perforce

https://git-scm.com/book/en/v2/Getting-Started-About-Version-Control



1717-214/514

Distributed version control
● Clients fully mirror the 

repository
○ Every clone is a full backup of 

all the data

● E.g., Git, Mercurial, Bazaar

https://git-scm.com/book/en/v2/Getting-Started-About-Version-Control



1817-214/514

SVN (left) vs. Git (right)

• SVN stores changes to a base 
version of each file

• Version numbers (1, 2, 3, …) 
are increased by one after 
each commit 

• Git stores each version as a snapshot

• If files have not changed, only a link 
to the previous file is stored

• Each version is referred by the SHA-1 
hash of the contents

https://git-scm.com/book/en/v2/Getting-Started-About-Version-Control



1917-214/514

Aside: Git process

© Scott Chacon “Pro Git”



2017-214/514

Git Internals

© Scott Chacon “Pro Git”



2117-214/514

Git Internals

© Scott Chacon “Pro Git”



2217-214/514

Aside: Git object graph

© Scott Chacon “Pro Git”



2317-214/514

Aside: Which files to manage
● All code and noncode files

○ Java code
○ Build scripts
○ Documentation

● Exclude generated files (.class, …)
● Most version control systems have a mechanism to exclude files 

(e.g., .gitignore)



2417-214/514

SYNCING LOCAL ↔ REMOTE



2517-214/514

Git Every computer is a server and version 
control happens locally.



2617-214/514

Git

git commit

How do you share code with collaborators if 
commits are local?



2717-214/514

Git

git push git pull

git push

… But requires host names / IP addresses

You push your commits into their repositories / 
They pull your commits into their repositories



2817-214/514

GitHub typical workflow GitHub

Public repository where you make your changes public



2917-214/514

GitHub typical workflow GitHub

git commit



3017-214/514

GitHub typical workflow GitHub

git commit



3117-214/514

GitHub typical workflow GitHub

git push

push your local changes into a remote repository. 



3217-214/514

GitHub typical workflow GitHub

git push

Collaborators can push too if they have access rights.



3317-214/514

git push <remote> <branch>: upload local repository 
content to a remote repository

https://www.atlassian.com/git/tutorials/syncing/git-push



3417-214/514

GitHub typical workflow GitHub

git pull

Without access rights, “don’t call us, we’ll call you” (pull from 
trusted sources) … But again requires host names / IP addresses.



3517-214/514

git pull <remote>: Fetch the specified remote’s copy of the 
current branch and immediately merge it into the local copy

Equivalent to:
git fetch origin HEAD + git merge HEAD
Also possible: git pull --rebase origin



3617-214/514

GitHub typical workflow GitHub

git push

“Main” “Forks”

Instead, people maintain public remote “forks” of “main” 
repository on GitHub and push local changes.



3717-214/514

GitHub typical workflow GitHub

Pull Request

“Main” “Forks”

Availability of new changes is signaled via ”Pull Request”.



3817-214/514

GitHub typical workflow GitHub

git pull
“Main” “Forks”

Changes are pulled into main if PR accepted.



3917-214/514

BRANCH WORKFLOWS
https://www.atlassian.com/git/tutorials/comparing-workflows 

https://www.atlassian.com/git/tutorials/comparing-workflows


4017-214/514

1. Centralized workflow
● Central repository to serve as the 

single point-of-entry for all changes 
to the project

● Default development branch is 
called main

○ all changes are committed into main
○ doesn’t require any other branches



4117-214/514

Example



4217-214/514

Example



4317-214/514

Example



4417-214/514

Example

git push origin main



4517-214/514

Example

git push origin main



4617-214/514

git push origin main

error: failed to push some refs to '/path/to/repo.git’ 
hint: Updates were rejected because the tip of your current branch is behind its 
remote counterpart. Merge the remote changes (e.g. 'git pull') before pushing again. 
See the 'Note about fast-forwards' in 'git push --help' for details.



4717-214/514

Example

git pull --rebase 
origin master



4817-214/514



4917-214/514

Example



5017-214/514

Example

git rebase --continue



5117-214/514

Example



5217-214/514

2. Git Feature Branch Workflow
● All feature development should take place in a dedicated 

branch instead of the main branch
● Multiple developers can work on a particular feature without 

disturbing the main codebase
○ main branch will never contain broken code (enables CI)
○ Enables pull requests (code review)



5317-214/514

Example

git checkout -b marys-feature master
git status 
git add <some-file> 
git commit



5417-214/514

Example

git push -u origin marys-feature



5517-214/514

Example

git push



5617-214/514

Example



5717-214/514

Example



5817-214/514

Example - Merge pull request

git checkout master 
git pull 
git pull origin marys-feature 
git push



5917-214/514

3. Gitflow Workflow

● Strict branching model designed around the project release
○ Suitable for projects that have a scheduled release cycle

● Branches have specific roles and interactions
● Uses two branches

○ main stores the official release history; tag all commits in the master branch 
with a version number

○ dev(elop) serves as an integration branch for features



6017-214/514

GitFlow feature branches (from develop)



6117-214/514

GitFlow release branches (eventually into master)

no new features after this 
point—only bug fixes, docs, 
and other release tasks



6217-214/514

GitFlow hotfix branches

used to quickly patch 
production releases



6317-214/514

Aside: Semantic Versioning



6417-214/514

Semantic Versioning
Given a version number MAJOR.MINOR.PATCH, 
increment the:
1. MAJOR version when you make incompatible API changes,
2. MINOR version when you add functionality in a backwards 

compatible manner, and
3. PATCH version when you make backwards compatible bug 

fixes.



6517-214/514

Code status Stage Rule Example 
version

First release New 
product

Start with 1.0.0 1.0.0

Backward compatible 
bug fixes

Patch 
release

Increment the third digit 1.0.1

Backward compatible 
new features

Minor 
release

Increment the middle digit 
and reset last digit to zero

1.1.0

Changes that break 
backward compatibility

Major 
release

Increment the first digit and 
reset middle and last digits 
to zero

2.0.0

https://docs.npmjs.com/about-semantic-versioning 

https://docs.npmjs.com/about-semantic-versioning


6617-214/514

Summary (part 1 – don’t leave yet!)
● Version control has many advantages

○ History, traceability, versioning
○ Collaborative and parallel development

● Collaboration with branches
○ Different workflows

● From local to central to distributed version control



6717-214/514

DEVELOPMENT AT SCALE



6817-214/514

Releasing at scale in industry
● Facebook: 

https://atscaleconference.com/videos/rapid-release-at-massive-scale/

● Google: 
https://www.slideshare.net/JohnMicco1/2016-0425-continuous-integration-at-google
-scal
https://testing.googleblog.com/2011/06/testing-at-speed-and-scale-of-google.html

● Why Google Stores Billions of Lines of Code in a Single Repository: 
https://www.youtube.com/watch?v=W71BTkUbdqE 

● F8 2015 - Big Code: Developer Infrastructure at Facebook's Scale: 
https://www.youtube.com/watch?v=X0VH78ye4yY 

https://atscaleconference.com/videos/rapid-release-at-massive-scale/
https://www.slideshare.net/JohnMicco1/2016-0425-continuous-integration-at-google-scale
https://www.slideshare.net/JohnMicco1/2016-0425-continuous-integration-at-google-scale
https://testing.googleblog.com/2011/06/testing-at-speed-and-scale-of-google.html
https://www.youtube.com/watch?v=W71BTkUbdqE
https://www.youtube.com/watch?v=X0VH78ye4yY


6917-214/514

Pre-2017 release management model at 
Facebook



7017-214/514

Diff lifecycle: local testing



7117-214/514

Diff lifecycle: CI testing (data center)



7217-214/514

Diff lifecycle: diff ends up on main branch



7317-214/514

Release every two weeks



7417-214/514

Quasi-continuous push from master (1,000+ devs, 1,000 diffs/day); 10 pushes/day



7517-214/514

https://www.softwire.com/blog/2013/09/26/continuous-integration-traffic-lights-revamp/index.ht
ml

https://samritchie.wordpress.com/2013/1
0/16/build-server-traffic-lights/



7617-214/514

You’ve Probably Seen These

https://blog.devops4me.com/status-badges-in-azure-devops-pipelines/



7717-214/514

Diff lifecycle: in production



7817-214/514

Google: similar story. Giant code base



7917-214/514

Exponential growth



8017-214/514

2016 numbers



8117-214/514

Google code base vs Linux kernel code base



8217-214/514

How do they do it?
Automation & Processes



8317-214/514

1. Lots of (automated) testing



8417-214/514

2. Lots of automation

Now also: language model-based completions: 
https://ai.googleblog.com/2022/07/ml-enhanced-code-completion-improves.html

https://ai.googleblog.com/2022/07/ml-enhanced-code-completion-improves.html


8517-214/514

3. Smarter tooling
● Build system
● Version control
● …



8617-214/514

3a. Build
system



8717-214/514

3a. Build
system



8817-214/514



8917-214/514

3a. Build
system



9017-214/514

3a. Build
system



9117-214/514

Which tests to run?



9217-214/514

Scenario 1: a change modifies 
common_collections_util



9317-214/514

Scenario 1: a change modifies 
common_collections_util



9417-214/514

Scenario 1: a change modifies 
common_collections_util



9517-214/514

Scenario 1: a change modifies common_collections_util



9617-214/514

Scenario 2: a change modifies the 
youtube_client



9717-214/514

Scenario 2: a change modifies the youtube_client



9817-214/514

3b. Version control
● Problem: even git can get slow at Facebook scale

○ 1M+ source control commands run per day
○ 100K+ commits per week



9917-214/514

3b. Version control
● Solution: redesign version control

○ Sparse checkouts: only fetch metadata (lightweight), get source on-demand
○ Don’t fetch entire history. Can do this with git too (git clone --depth=1), but 

won’t work for distributed collaboration



10017-214/514

Some Common Principles
● Ensure Isolation

○ Of impacts of a given changeset
■ On the build status
■ On prod

○ Not dissimilar to distributed systems!
■ Which makes sense; this is also a distributed system, just made up of people

● Work incrementally
○ Release carefully, monitor heavily
○ Cut costs where possible by building & testing as little as possible



10117-214/514

Monolithic repository – no major use of 
branches for development



10217-214/514

A recent history of code organization
● A single team with a monolithic application in a single repository 
● …
● Multiple teams with many separate applications in many separate 

repositories 
● Multiple teams with many separate applications microservices in 

many separate repositories 
● A single team with many microservices in many repositories
● …
● Many teams with many applications in one big Monorepo



10317-214/514

What is a monolithic repository (monorepo)?

● A single version control repository containing multiple 
○ Projects
○ Applications
○ Libraries

● Often using a common build system

2015 talk by Benjamin Eberlei 



10417-214/514

Monorepos in industry



10517-214/514

Monorepos in industry



10617-214/514

Monorepos in industry



10717-214/514

Monorepos in open-source

2016 talk by FABIEN POTENCIER 



10817-214/514 2016 talk by FABIEN POTENCIER 

Monorepos in open-source



10917-214/514

Advantages of Monorepos
● High discoverability

○ Developers can read & search the entire codebase
● High reuse

○ The same tools (e.g., linters, auto-complete) are globally available
○ Any package can become a library

■ Which is why you always build an API!

● Simplifies maintenance
○ Global refactorings, cleanup

■ Orgs like Google will regularly dedicate a specific day to a type of improvement 
(e.g., improve documentation), flag all potentially problematic sites



11017-214/514

Some more advantages
● Easy continuous integration and code review for changes 

spanning several projects 
● (Internal) dependency management is a non-issue 
● Less context switching for developers
● Code more reusable in other contexts 
● Access control is easy 



11117-214/514

Summary
● Release management: versioning, branching, …
● Software development at scale requires lots of infrastructure

○ Version control, build managers, testing, CI, deployment, …
● It’s hard to scale development

○ Move towards heavy automation (DevOps)
● Continuous deployment increasingly common
● Opportunities from quick release, testing in production, 

quick rollback


