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GIT BASICS

Graphics by https://learngitbranching.js.org
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git commit
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git branch newImage



517-214/514

git commit
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git checkout newImage; git commit
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1) git merge bugFix (into master)
Three ways to move work around between branches
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git checkout bugfix; git merge master (into bugFix)
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2) git rebase master
Move work from bugFix directly onto master
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git checkout master; git rebase bugFix
But master hasn't been updated, so: 
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3) git cherry-pick C2 C4
Copy a series of commits below current location
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git reset HEAD~1
HEAD is the symbolic 
name for the currently 
checked out commit

Ways to undo work (1)
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git revert HEAD
git reset does not work 
for remote branches

Ways to undo work (2)
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Highly Recommended

https://git-scm.com/book/en/v2

● Courtesy of Prof. Bogdan Vasilescu 
(teaches this course last & next Spring)

● (second) most useful life skill you will 
have learned in 214/514
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TYPES OF VERSION CONTROL
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Centralized version control
● Single server that contains 

all the versioned files
● Clients check out/in files 

from that central place
● E.g., CVS, SVN 

(Subversion), and Perforce

https://git-scm.com/book/en/v2/Getting-Started-About-Version-Control
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Distributed version control
● Clients fully mirror the 

repository
○ Every clone is a full backup of 

all the data

● E.g., Git, Mercurial, Bazaar

https://git-scm.com/book/en/v2/Getting-Started-About-Version-Control
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SVN (left) vs. Git (right)

• SVN stores changes to a base 
version of each file

• Version numbers (1, 2, 3, …) 
are increased by one after 
each commit 

• Git stores each version as a snapshot

• If files have not changed, only a link 
to the previous file is stored

• Each version is referred by the SHA-1 
hash of the contents

https://git-scm.com/book/en/v2/Getting-Started-About-Version-Control
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Aside: Git process

© Scott Chacon “Pro Git”
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Git Internals

© Scott Chacon “Pro Git”
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Git Internals

© Scott Chacon “Pro Git”
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Aside: Git object graph

© Scott Chacon “Pro Git”
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Aside: Which files to manage
● All code and noncode files

○ Java code
○ Build scripts
○ Documentation

● Exclude generated files (.class, …)
● Most version control systems have a mechanism to exclude files 

(e.g., .gitignore)
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SYNCING LOCAL ↔ REMOTE
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Git Every computer is a server and version 
control happens locally.
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Git

git commit

How do you share code with collaborators if 
commits are local?
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Git

git push git pull

git push

… But requires host names / IP addresses

You push your commits into their repositories / 
They pull your commits into their repositories
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GitHub typical workflow GitHub

Public repository where you make your changes public
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GitHub typical workflow GitHub

git commit
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GitHub typical workflow GitHub

git commit
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GitHub typical workflow GitHub

git push

push your local changes into a remote repository. 
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GitHub typical workflow GitHub

git push

Collaborators can push too if they have access rights.
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git push <remote> <branch>: upload local repository 
content to a remote repository

https://www.atlassian.com/git/tutorials/syncing/git-push
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GitHub typical workflow GitHub

git pull

Without access rights, “don’t call us, we’ll call you” (pull from 
trusted sources) … But again requires host names / IP addresses.
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git pull <remote>: Fetch the specified remote’s copy of the 
current branch and immediately merge it into the local copy

Equivalent to:
git fetch origin HEAD + git merge HEAD
Also possible: git pull --rebase origin
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GitHub typical workflow GitHub

git push

“Main” “Forks”

Instead, people maintain public remote “forks” of “main” 
repository on GitHub and push local changes.
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GitHub typical workflow GitHub

Pull Request

“Main” “Forks”

Availability of new changes is signaled via ”Pull Request”.
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GitHub typical workflow GitHub

git pull
“Main” “Forks”

Changes are pulled into main if PR accepted.
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BRANCH WORKFLOWS
https://www.atlassian.com/git/tutorials/comparing-workflows 

https://www.atlassian.com/git/tutorials/comparing-workflows
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1. Centralized workflow
● Central repository to serve as the 

single point-of-entry for all changes 
to the project

● Default development branch is 
called main

○ all changes are committed into main
○ doesn’t require any other branches
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Example
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Example
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Example
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Example

git push origin main
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Example

git push origin main



4617-214/514

git push origin main

error: failed to push some refs to '/path/to/repo.git’ 
hint: Updates were rejected because the tip of your current branch is behind its 
remote counterpart. Merge the remote changes (e.g. 'git pull') before pushing again. 
See the 'Note about fast-forwards' in 'git push --help' for details.
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Example

git pull --rebase 
origin master
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Example
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Example

git rebase --continue
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Example
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2. Git Feature Branch Workflow
● All feature development should take place in a dedicated 

branch instead of the main branch
● Multiple developers can work on a particular feature without 

disturbing the main codebase
○ main branch will never contain broken code (enables CI)
○ Enables pull requests (code review)
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Example

git checkout -b marys-feature master
git status 
git add <some-file> 
git commit
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Example

git push -u origin marys-feature
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Example

git push
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Example
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Example
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Example - Merge pull request

git checkout master 
git pull 
git pull origin marys-feature 
git push
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3. Gitflow Workflow

● Strict branching model designed around the project release
○ Suitable for projects that have a scheduled release cycle

● Branches have specific roles and interactions
● Uses two branches

○ main stores the official release history; tag all commits in the master branch 
with a version number

○ dev(elop) serves as an integration branch for features
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GitFlow feature branches (from develop)
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GitFlow release branches (eventually into master)

no new features after this 
point—only bug fixes, docs, 
and other release tasks
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GitFlow hotfix branches

used to quickly patch 
production releases
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Aside: Semantic Versioning
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Semantic Versioning
Given a version number MAJOR.MINOR.PATCH, 
increment the:
1. MAJOR version when you make incompatible API changes,
2. MINOR version when you add functionality in a backwards 

compatible manner, and
3. PATCH version when you make backwards compatible bug 

fixes.
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Code status Stage Rule Example 
version

First release New 
product

Start with 1.0.0 1.0.0

Backward compatible 
bug fixes

Patch 
release

Increment the third digit 1.0.1

Backward compatible 
new features

Minor 
release

Increment the middle digit 
and reset last digit to zero

1.1.0

Changes that break 
backward compatibility

Major 
release

Increment the first digit and 
reset middle and last digits 
to zero

2.0.0

https://docs.npmjs.com/about-semantic-versioning 

https://docs.npmjs.com/about-semantic-versioning
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Summary (part 1 – don’t leave yet!)
● Version control has many advantages

○ History, traceability, versioning
○ Collaborative and parallel development

● Collaboration with branches
○ Different workflows

● From local to central to distributed version control
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DEVELOPMENT AT SCALE



6817-214/514

Releasing at scale in industry
● Facebook: 

https://atscaleconference.com/videos/rapid-release-at-massive-scale/

● Google: 
https://www.slideshare.net/JohnMicco1/2016-0425-continuous-integration-at-google
-scal
https://testing.googleblog.com/2011/06/testing-at-speed-and-scale-of-google.html

● Why Google Stores Billions of Lines of Code in a Single Repository: 
https://www.youtube.com/watch?v=W71BTkUbdqE 

● F8 2015 - Big Code: Developer Infrastructure at Facebook's Scale: 
https://www.youtube.com/watch?v=X0VH78ye4yY 

https://atscaleconference.com/videos/rapid-release-at-massive-scale/
https://www.slideshare.net/JohnMicco1/2016-0425-continuous-integration-at-google-scale
https://www.slideshare.net/JohnMicco1/2016-0425-continuous-integration-at-google-scale
https://testing.googleblog.com/2011/06/testing-at-speed-and-scale-of-google.html
https://www.youtube.com/watch?v=W71BTkUbdqE
https://www.youtube.com/watch?v=X0VH78ye4yY
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Pre-2017 release management model at 
Facebook
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Diff lifecycle: local testing
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Diff lifecycle: CI testing (data center)
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Diff lifecycle: diff ends up on main branch
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Release every two weeks
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Quasi-continuous push from master (1,000+ devs, 1,000 diffs/day); 10 pushes/day
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https://www.softwire.com/blog/2013/09/26/continuous-integration-traffic-lights-revamp/index.ht
ml

https://samritchie.wordpress.com/2013/1
0/16/build-server-traffic-lights/
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You’ve Probably Seen These

https://blog.devops4me.com/status-badges-in-azure-devops-pipelines/
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Diff lifecycle: in production
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Google: similar story. Giant code base
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Exponential growth
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2016 numbers
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Google code base vs Linux kernel code base
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How do they do it?
Automation & Processes
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1. Lots of (automated) testing
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2. Lots of automation

Now also: language model-based completions: 
https://ai.googleblog.com/2022/07/ml-enhanced-code-completion-improves.html

https://ai.googleblog.com/2022/07/ml-enhanced-code-completion-improves.html
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3. Smarter tooling
● Build system
● Version control
● …
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3a. Build
system
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3a. Build
system
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3a. Build
system
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3a. Build
system
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Which tests to run?
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Scenario 1: a change modifies 
common_collections_util
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Scenario 1: a change modifies 
common_collections_util
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Scenario 1: a change modifies 
common_collections_util
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Scenario 1: a change modifies common_collections_util
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Scenario 2: a change modifies the 
youtube_client



9717-214/514

Scenario 2: a change modifies the youtube_client
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3b. Version control
● Problem: even git can get slow at Facebook scale

○ 1M+ source control commands run per day
○ 100K+ commits per week
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3b. Version control
● Solution: redesign version control

○ Sparse checkouts: only fetch metadata (lightweight), get source on-demand
○ Don’t fetch entire history. Can do this with git too (git clone --depth=1), but 

won’t work for distributed collaboration
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Some Common Principles
● Ensure Isolation

○ Of impacts of a given changeset
■ On the build status
■ On prod

○ Not dissimilar to distributed systems!
■ Which makes sense; this is also a distributed system, just made up of people

● Work incrementally
○ Release carefully, monitor heavily
○ Cut costs where possible by building & testing as little as possible
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Monolithic repository – no major use of 
branches for development
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A recent history of code organization
● A single team with a monolithic application in a single repository 
● …
● Multiple teams with many separate applications in many separate 

repositories 
● Multiple teams with many separate applications microservices in 

many separate repositories 
● A single team with many microservices in many repositories
● …
● Many teams with many applications in one big Monorepo
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What is a monolithic repository (monorepo)?

● A single version control repository containing multiple 
○ Projects
○ Applications
○ Libraries

● Often using a common build system

2015 talk by Benjamin Eberlei 
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Monorepos in industry
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Monorepos in industry
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Monorepos in industry
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Monorepos in open-source

2016 talk by FABIEN POTENCIER 
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Monorepos in open-source
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Advantages of Monorepos
● High discoverability

○ Developers can read & search the entire codebase
● High reuse

○ The same tools (e.g., linters, auto-complete) are globally available
○ Any package can become a library

■ Which is why you always build an API!

● Simplifies maintenance
○ Global refactorings, cleanup

■ Orgs like Google will regularly dedicate a specific day to a type of improvement 
(e.g., improve documentation), flag all potentially problematic sites
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Some more advantages
● Easy continuous integration and code review for changes 

spanning several projects 
● (Internal) dependency management is a non-issue 
● Less context switching for developers
● Code more reusable in other contexts 
● Access control is easy 
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Summary
● Release management: versioning, branching, …
● Software development at scale requires lots of infrastructure

○ Version control, build managers, testing, CI, deployment, …
● It’s hard to scale development

○ Move towards heavy automation (DevOps)
● Continuous deployment increasingly common
● Opportunities from quick release, testing in production, 

quick rollback


