
117-214/514

Principles of Software Construction: Objects,
Design, and Concurrency

{Static & Dynamic} x {Typing & Analysis}

Claire Le Goues Vincent Hellendoorn

217-214/514

Is this code buggy?

317-214/514

How Do You Find Bugs?
● Run it?

417-214/514

How Else Can You Find Bugs?

517-214/514

IntelliJ can look at this code and say:

617-214/514

(with annotations explicit)

717-214/514

Static Analysis!
How?

817-214/514

Static Analysis!
How?

● We know at compile time where getValue gets routed to
● getValue calls a method on i
● i can be null

917-214/514

What about JS?

fails.js

1017-214/514

What about JS?
Run it: ✓

1117-214/514

Why no warning?

1217-214/514

Another Java vs JS Example

1317-214/514

Static vs. Dynamic Typing
● The more knowledge we inject in the code, the more bugs we

can catch at compile time
○ Types, nullity annotations, invariants

● At compile-time:
○ Dynamically typed languages assume nothing

■ Types exist only for values

○ Static typing is not completely precise either
■ Objects have declared types and run-time types
■ Different “strength” type systems

1417-214/514

Static vs. Dynamic Typing
● The more knowledge we inject in the code, the more bugs we

can catch at compile time
○ Types, nullity annotations, invariants

● Is it worth it?
○ Dynamic typing can severely limit inference
○ But… static types are a lot of work

1517-214/514

Static vs. Dynamic Typing
● The more knowledge we inject in the code, the more bugs we

can catch at compile time
○ Types, nullity annotations, invariants

● Is it worth it?
○ Dynamic typing can severely limit inference
○ But… static types are a lot of work

1617-214/514

Static vs. Dynamic Typing
Okay, but:

https://octoverse.github.com/#geographical-distribution-of-active-users

1717-214/514

Yes, but:

False Dichotomy?

https://octoverse.github.com/#geographical-distribution-of-active-users

1817-214/514

Partial Types
● Low effort, some utility

○ Static types exist and are checked at compile-time
○ Dynamic types are used at run-time

■ So annotations get ignored!
○ Type checker can be shallow or deep; TS is shallow

1917-214/514

Types in TypeScript

2017-214/514

Types in TypeScript

2117-214/514

Step Back
● Why do we care about types so much?

2217-214/514

Step Back
● Why do we care about types so much?

○ We care about common mistakes
○ Type errors happen to be very common
○ What else is common?

2317-214/514

Step Back
● Why do we care about types so much?

○ We care about common mistakes
○ Type errors happen to be very common
○ What else is common?

■ Nullity errors
■ Missing imports
■

2417-214/514

Static Analysis
● Detect real or plausible bugs based on code patterns

○ Plausible: look for risk-prone areas
■ Deeply nested loops
■ Overly general types (e.g,. ‘any’ in TS)
■ Dead code/unused variables
■ Any other places we often make mistakes?

2517-214/514

Static Analysis
● How?

○ Program analysis +
Vocabulary of patterns

https://deepsource.io/blog/introduction-static-code-analysis/

2617-214/514

Static Analysis
● Step 1: Tokenization

○ Tokens are like the words of software
○ Lexical categories, incl. punctuation, identifiers, operators, strings

https://deepsource.io/blog/introduction-static-code-analysis/

2717-214/514

Static Analysis
● Step 2: Parsing

○ To the compiler/interpreter,
software is a tree

○ Root node is file/module
○ Leaves mainly identifiers, literals
○ Internal nodes capture structure

https://deepsource.io/blog/introduction-static-code-analysis/

assign

x 1

x = 1 →

Consider checking out: https://ast.carlosroso.com/

https://ast.carlosroso.com/

2817-214/514

Static Analysis
● Step 2: Parsing

○ What does this get us?
○ Rich structure

■ Syntactic types (variables, method calls)
■ Dead code, deep nesting

○ A lot of type resolution
■ What vars are stored, loaded
■ Not complete!
■ Need to build to understand imports

https://deepsource.io/blog/introduction-static-code-analysis/

2917-214/514

Static Analysis
● Step 2b: Advanced Analysis

○ The compiler doesn’t stop at parsing
○ Familiar?

if a ≤ 1

x = a - 1

y = z / x

else

x = 5

then

public boolean div(int a, int z) {
 int x = 5;
 if (a <= 1) {
 x = a - 1;
 }
 return z / x;
}

3017-214/514

● Step 2b: Advanced Analysis
○ The compiler doesn’t stop at parsing
○ There is a lot more down this rabbit hole

■ Control/data-flow, abstract interpretation, (dynamic) symbolic execution,
○ Consider a programming languages, compilers, or program analysis

course

Static Analysis

3117-214/514

Static Analysis
● Step 3: register analyzers

○ At the core: walk the tree

https://deepsource.io/blog/introduction-static-code-analysis/

3217-214/514

Static Analysis
● Step 3: register analyzers

● Classic: walk a tree →
● Modern: build a database of

code facts, express
analysis as queries over
that database.
○ This is how CodeQL works!

https://deepsource.io/blog/introduction-static-code-analysis/

3317-214/514

Static Analysis
● Modern: build a database of

code facts, express
analysis as queries over
that database.

● This is how CodeQL works!

3417-214/514

Static Analysis
● Compared to Linters:

○ Linters mainly enforce style -- comments, quotes, idioms
■ This also requires static analysis! Just nothing particularly fancy

○ Some overlap; good conventions help avoid bugs

3517-214/514

Static Analysis
● Compared to Parsers:

○ Parsers check for syntactic correctness
■ Can catch bugs as well, e.g. missing “;”

○ Parsing is often a key step in static analysis
■ Hard to do right with just text/regexes.

○ Parsing is a platform for further analyses
■ control-flow, data-flow

3617-214/514

So… Static Analysis for Everything?
● Can we find every bug?

○ No! Rice’s Theorem

"Any nontrivial property about the language recognized by a Turing
machine is undecidable.“ -- Henry Gordon Rice, 1953

○ Every static analysis is necessarily incomplete or unsound or
undecidable (or multiple of these)

3717-214/514

So… Static Analysis for Everything?
● Can we find every bug?
● Can we guarantee correctness?

3817-214/514

So… Static Analysis for Everything?
● Can we find every bug?
● Can we guarantee correctness?

○ Yes, but… much less useful

3917-214/514

Soundness & Precision
● Since we can’t perfectly analyze behavior statically

○ We may miss things by being cautious (unsound; false negative)
○ We might identify non-problems (imprecision, false positive)

4017-214/514

The Social Side
● How to deploy tools that are neither sound nor complete?

4117-214/514

Static Analysis at Google
● Centered around FindBugs (succeeded by SpotBugs)

○ Essentially, a huge collection of risky patterns on Java bytecode
○ Annotated with five levels of concern

4217-214/514

Static Analysis at Google
● Three experiments in the early 2000s:

1. A dashboard: run FindBugs overnight, report results in a centralized
location
Failed because: dashboard is outside the developer’s workflow

4317-214/514

Static Analysis at Google
● Three experiments in the early 2000s:

1. A dashboard: run FindBugs overnight, report results in a centralized
location
Failed because: dashboard is outside the developer’s workflow

2. Recurring FixIt events: company-wide one-week effort to fix warnings
Failed because: actually fixed some bugs, but FindBugs is too imprecise
(44% of issues were “bugs”, but only 16% mattered)

4417-214/514

None of these worked!
● Three experiments in the early 2000s:

1. A dashboard: run FindBugs overnight, report results in a centralized
location
Failed because: dashboard is outside the developer’s workflow

2. Recurring FixIt events: company-wide one-week effort to fix warnings
Failed because: actually fixed some bugs, but FindBugs is too imprecise
(44% of issues were “bugs”, but only 16% mattered)

3. Add to Code Review: run on every change, allow toggling warnings
Failed because: too imprecise; suppressing FPs made it inconsistent

4517-214/514

Static Analysis at Google
Okay so then what?

● What went wrong / what do we need?

4617-214/514

Static Analysis at Google
Okay so then what?

● What went wrong / what do we need?
1. Precision is key -- developers lose faith in inaccurate tools
2. Provide timely warnings -- in-IDE or rapidly on builds

a. Checkers are way more useful during coding
3. Make a platform -- allow adding useful checks

4717-214/514

Static Analysis at Google
Specifically:

● At compile-time:
○ Perfectly Precise

■ No false-positives; never halt a build incorrectly
○ Simple
○ Actionable

■ Ideally to the point of auto-fix suggestions

4817-214/514

Static Analysis at Google
Specifically:

● At review time: TriCoder
○ 90%+ precise

■ If it drops below, checker gets disabled! Onus on checker authors to fix
○ Actionable, but may require some work
○ Improve correctness or code quality
○ Some compile-time checks moved to review-time!

● Ran 50K times per day -- in 2018

4917-214/514

TriCoder

5017-214/514

Static Analysis at Google
● The gist: Many simple precise checks

○ What else could one do?

5117-214/514

● The gist: Many simple precise checks
○ What else could one do?

● Infer at Facebook
○ Built around separation logic; geared heavily towards tracking resources

■ Null-pointer dereferences, resource leaks, unintended data access
○ Google claims this won’t (easily) scale to their multi-billion line mono-repo

Static Analysis at Google

5217-214/514

● The gist: Many simple precise checks
○ What else could one do?

● Use AI?
○ Rule-mining from previous reviews

■ Detects typical vulnerabilities, bad patterns
○ Mostly fairly simple ML (details limited)

Static Analysis at Google

5317-214/514

● The gist: Many simple precise checks
○ What else could one do?

● Use AI?
○ Microsoft’s IntelliSense in VSCode
○ Mostly refactorings, code completions
○ Trained on large volumes of code

Static Analysis at Google

5417-214/514

● Use more complicated logic
○ One example: Infer, at Facebook
○ (Google claims this won’t (easily)

scale to their mono-repo.)
● Use AI?

○ Facebook: Getafix, also integrates
with SapFix

○ Amazon: CodeGuru
○ Microsoft: IntelliSense in VSCode,

mostly refactoring/code completion,
trained on large volumes of code

○ Mostly fairly simple ML (details
limited)

What else could we do?

5517-214/514

Summary
● We all constantly make mistakes

○ Static analysis captures common issues
○ Choose suitable abstractions; consider trade-offs

■ E.g., dynamic vs. static typing; sound vs. precise

● At big-tech-scale, automated checks are key
○ Help normalize coding standards
○ Even rare bugs are common at scale
○ But: social factors are very important

