
117-214/514

Principles of Software Construction:
Objects, Design, and Concurrency

Introduction, Overview, and Syllabus

Claire Le Goues Bogdan Vasilescu

217-214/514

Principles of Software Construction:
Objects, Design, and Concurrency

Introduction, Overview, and Syllabus

Claire Le GouesBogdan Vasilescu

317-214/514

How Modern Software Gets Built

“Building software is like
constructing a building. A
construction company
wouldn’t build its hammers
and drills from scratch, or
source and chop all of the
lumber themselves.”

417-214/514

517-214/514

617-214/514

A Few Questions

How many lines of code behind twitter.com?

> A few million, maybe more

How many LOC to build an okay Twitter replica?

> A few 10K

How many LOC to run a Twitter replica?

> A few

https://github.com/vinitkumar/node-twitter

717-214/514

Welcome to the era of “big code”

(informal reports)

817-214/514

● Nobody wants to write a million lines of code.
○ You don’t want to write Twitter.

Modern Software Engineering

917-214/514

● Nobody wants to write a million lines of code.
○ You don’t want to write Twitter.
○ (Aside) Sometimes you have to:

Modern Software Engineering

1017-214/514

● Nobody wants to write a million lines of code.
○ You don’t want to write Twitter.

● Instead, you use libraries
○ E.g., import Android => +12M LOC
○ You don’t write most of the code you use

■ And why would you want to?
● And your libraries use libraries

○ Et cetera
○ https://npm.anvaka.com/#/view/2d/gifsicle

Modern Software Engineering

https://npm.anvaka.com/#/view/2d/gifsicle

1117-214/514

● An engineer understands the pieces and how to put them together.
● But:

○ There are many (and always new) pieces.
○ They involve different and continuously changing programming languages and

technologies.
○ There are many ways to compose applications, with different tradeoffs.
○ The implications can be very subtle.

But “a few lines of code” does not mean easy!

1217-214/514

1317-214/514

● An engineer understands the pieces and how to put them together.
● But:

○ There are many (and always new) pieces.
○ They involve different and continuously changing programming languages and

technologies.
○ There are many ways to compose applications, with different tradeoffs.
○ The implications can be very subtle.

● You’ll need to become fluent in using and composing new systems.
And you’ll need to do it over and over again throughout your
careers.

But “a few lines of code” does not mean easy!

1417-214/514

This class teaches principles of
software construction

1517-214/514

Our goal: understanding both the building blocks and also the
design principles for construction of software systems at scale

17-214/514: From Programs to Applications & Systems

Writing algorithms, data
structures from scratch

Functions with inputs
and outputs

Sequential and local
computation

Full functional
specifications

Reuse of libraries,
frameworks

Asynchronous and
reactive designs

Parallel and distributed
computation

Partial, composable,
targeted models

1617-214/514

Equipment of a Modern Programmer

Less emphasis on:
(though not unimportant!)

● Clever algorithmics
● Low-level code (kernels, drivers)
● Writing common components

(command-line parsers, HTML)

More emphasis on:

● Using APIs, libraries (hw1)
● Quality assurance (hw2)
● Design for reuse, extension (hw3+)
● Flexibility in ecosystems (all)

1717-214/514

Flexibility & Ecosystems

Flexibility is perhaps the key skill, besides good design.
In this course:
● Learn to choose & use libraries
● Adopting new tools, troubleshooting
● Also, Java vs. JavaScript/TypeScript

1817-214/514

2021 GitHub State of the Octoverse report

1917-214/514

https://softwareengineering.stackexchange.com/questions/370135

2017-214/514

https://softwareengineering.stackexchange.com/questions/370135

2117-214/514

https://softwareengineering.stackexchange.com/questions/370135

2217-214/514

2317-214/514

2020 International Conference on Software Engineering

2417-214/514

You’ll learn to be:

● An architect, approaching programming as design
○ This is the only way to scale up to larger systems
○ You’ll learn a rich vocabulary, of both components and their combinations

● A polyglot, able to pick up new languages and libraries
○ Because you know the underlying concepts
○ And you’ve had plenty of practice reading documentation, debugging setups

● An engineer, safeguarding the quality of your programs
○ You’ll get dextrous at testing, be explicit about specification
○ You’ll know the tools that improve your work

Outcomes, hopefully

2517-214/514

Principles of Software Construction:
Objects, Design, and Concurrency

Introduction, Overview, and Syllabus

Claire Le Goues Bogdan Vasilescu

2617-214/514

Objects in the real world

2717-214/514

Object-oriented programming
Programming based on structures that
contain both data and methods
public class Bicycle {
 private int speed;
 private final Wheel frontWheel, rearWheel;
 private final Seat seat;
 …
 public Bicycle(…) { … }

 public void accelerate() {
 speed++;
 }

 public int speed() { return speed; }
}

2817-214/514

Principles of Software Construction:
Objects, Design, and Concurrency

Introduction, Overview, and Syllabus

Claire Le Goues Bogdan Vasilescu

2917-214/514

User needs
(Requirements) CodeMiracle?

3017-214/514

User needs
(Requirements) CodeMiracle?

Maintainable?
Testable?
Extensible?
Scalable?
Robust? ...

3117-214/514

A typical Intro CS design process

1. Discuss software that needs to be written

2. Write some code

3. Test the code to identify the defects

4. Debug to find causes of defects

5. Fix the defects

6. If not done, return to step 1

3217-214/514

Better software design

● Think before coding: broadly consider quality attributes

○ Maintainability, extensibility, performance, …

● Propose, consider design alternatives

○ Make explicit design decisions

3317-214/514

Sorting with a configurable order, version A
static void sort(int[] list, boolean ascending) {
 …
 boolean mustSwap;
 if (ascending) {
 mustSwap = list[i] > list[j];
 } else {
 mustSwap = list[i] < list[j];
 }
 …
}

3417-214/514

Sorting with a configurable order, version B
interface Order {
 boolean lessThan(int i, int j);
}

class AscendingOrder implements Order {
 public boolean lessThan(int i, int j) { return i < j; }
}
class DescendingOrder implements Order {
 public boolean lessThan(int i, int j) { return i > j; }
}

static void sort(int[] list, Order order) {
 …
 boolean mustSwap =
 order.lessThan(list[j], list[i]);
 …
}

3517-214/514

Sorting with a configurable order, version B'
const ASC = function(i: number, j: number): boolean {

return i < j;
}
const DESC = function(i: number, j: number): boolean {

return i > j;
}

function sort(
list: number[],
order: (number, number) => boolean) {

 …
 boolean mustSwap = order(list[j], list[i]);
 …
}
> sort(list, ASC);

3617-214/514

Which version is better?

static void sort(int[] list, boolean ascending) {
 …
 boolean mustSwap;
 if (ascending) {
 mustSwap = list[i] > list[j];
 } else {
 mustSwap = list[i] < list[j];
 }
 …
}

interface Order {
 boolean lessThan(int i, int j);
}
class AscendingOrder implements Order {
 public boolean lessThan(int i, int j) { return i < j; }
}
class DescendingOrder implements Order {
 public boolean lessThan(int i, int j) { return i > j; }
}

static void sort(int[] list, Order order) {
 …
 boolean mustSwap =
 order.lessThan(list[j], list[i]);
 …
}

Version A:

Version B':

3717-214/514

it depends

3817-214/514

it depends
Depends on what?
What are scenarios?
What are tradeoffs?

3917-214/514

it depends
Depends on what?
What are scenarios?
What are tradeoffs?

In this specific case, what
would you recommend?
(Engineering judgement)

4017-214/514

"Software engineering is the branch of computer science that creates practical,
cost-effective solutions to computing and information processing problems,
preferentially by applying scientific knowledge, developing software systems in the
service of mankind.

4117-214/514

"Software engineering is the branch of computer science that creates practical,
cost-effective solutions to computing and information processing problems,
preferentially by applying scientific knowledge, developing software systems in the
service of mankind.
Software engineering entails making decisions under constraints of limited time,
knowledge, and resources. […]

Engineering quality resides in engineering judgment. […]
Quality of the software product depends on the engineer's faithfulness to the
engineered artifact. […]
Engineering requires reconciling conflicting constraints. […]
Engineering skills improve as a result of careful systematic reflection on
experience. […]
Costs and time constraints matter, not just capability. […]

Software Engineering for the 21st Century: A basis for rethinking the curriculum
Manifesto, CMU-ISRI-05-108

4217-214/514

Goal of software design

● Think before coding

● For each desired program behavior there are infinitely many programs

○ What are the differences between the variants?

○ Which variant should we choose?

○ How can we synthesize a variant with desired properties?

● Consider qualities: Maintainability, extensibility, performance, …

● Make explicit design decisions

4317-214/514

Tradeoffs?

static void sort(int[] list, boolean ascending) {
 …
 boolean mustSwap;
 if (ascending) {
 mustSwap = list[i] > list[j];
 } else {
 mustSwap = list[i] < list[j];
 }
 …
}

interface Order {
 boolean lessThan(int i, int j);
}
class AscendingOrder implements Order {
 public boolean lessThan(int i, int j) { return i < j; }
}
class DescendingOrder implements Order {
 public boolean lessThan(int i, int j) { return i > j; }
}

static void sort(int[] list, Order order) {
 …
 boolean mustSwap =
 order.lessThan(list[j], list[i]);
 …
}

4417-214/514

Some qualities of interest, i.e., design goals
Functional

correctness Adherence of implementation to the specifications

Robustness Ability to handle anomalous events

Flexibility Ability to accommodate changes in specifications

Reusability Ability to be reused in another application

Efficiency Satisfaction of speed and storage requirements

Scalability Ability to serve as the basis of a larger version of the application

Security Level of consideration of application security

Source: Braude, Bernstein,
Software Engineering. Wiley

2011

4517-214/514

Using a design process

● A design process organizes your work

● A design process structures your understanding

● A design process facilitates communication

4617-214/514

Semester overview

● Introduction to Object-Oriented
Programming

● Introduction to design
○ Design goals, principles, patterns

● Designing objects/classes
○ Design for change
○ Design for reuse

● Designing (sub)systems
○ Design for robustness
○ Design for change (cont.)

● Design for large-scale reuse

Crosscutting topics:
● Building on libraries and frameworks
● Building libraries and frameworks
● Modern development tools: IDEs,

version control, refactoring, build
and test automation, static analysis

● Testing, testing, testing
● Concurrency basics

4717-214/514

Preview: Design goals, principles, and patterns

● Design goals enable evaluation of designs

○ e.g. maintainability, reusability, scalability

● Design principles are heuristics that describe best practices

○ e.g. high correspondence to real-world concepts

● Design patterns codify repeated experiences, common solutions

○ e.g. template method pattern

4817-214/514

Software Engineering at CMU

● 17-214: “Code-level” design

○ extensibility, reuse, concurrency, functional correctness, medium-size to large programs

● 17-313: “Human aspects” of software development

○ requirements, team work, balancing qualities, scheduling, costs, risks, business models

● 17-413 Practicum, Seminar, Internship

● SE electives: SE4Startups, Program Analysis, Machine Learning in Production

● Various master-level courses on requirements, architecture, software analysis, etc

● SE Minor/Concentration: http://isri.cmu.edu/education/undergrad/

48

http://isri.cmu.edu/education/undergrad/

4917-214/514

This is not a
Java/JavaScript course

5017-214/514

but you will write a
lot of

Java/JavaScript code

This is not a
Java/JavaScript course

5117-214/514

 int a = 010 + 3;
 System.out.println("A" + a);

5217-214/514

 int a = 010 + 3;
 System.out.println("A" + a);

 const a = 010 + 3;
 console.log("A" + a);

5317-214/514

 int a = 010 + 3;
 System.out.println("A" + a);

 const a = 010 + 3;
 console.log("A" + a);

5417-214/514

Java + JavaScript / TypeScript

Focus on design concepts and cross-cutting skills, not programming language

Language proficiency through practice and homeworks

Lectures show examples in pseudo code, Java, JavaScript, TypeScript, and
other languages

Both Java and TypeScript for homeworks (sometimes your choice)

 int a = 010 + 3;
 System.out.println("A" + a); const a = 010 + 3;

 console.log("A" + a);

5517-214/514

Java AND TypeScript/JavaScript

● HW 1&2: Both
○ Flashcard learning app (command line)

● HW 3: Java + HW 5: TypeScript/JavaScript
○ Board game with web interface (could also be a mobile app)

● Your choice:
○ HW4: Static website generator / CMS (command line application)

○ HW6: Data analysis and visualization tool (desktop/web application)

Recitations will provide tools/examples in both languages.

5617-214/514

COURSE ORGANIZATION

56

5717-214/514

5817-214/514

Trying to get back to normal with …
gestures widely everything

Talk to us about concerns and
accommodations

5917-214/514

Disclaimer:
General structure from Fall ‘21, with
a few changes.
Some things will go wrong.
Have patience with us.
Give us feedback.

CC BY-NC-ND 2.0 Suzanne Hamilton

6017-214/514

Course materials

Course website (syllabus, slides, calendar): https://cmu-17-214.github.io/s2022/

Discussions, questions, announcements: Piazza

Assignments, readings, and grades: Canvas (and Gradescope)

Homework submission: GitHub (signup instructions in assignment) and other tools

https://cmu-17-214.github.io/s2022/

6117-214/514

GitHub ID/start of class survey.

Please fill out: https://forms.gle/t3BnzBDzBVCREsgj9

● (It’s in the chat! And on piazza!)

If you don’t have a github account, signing up is fast. Do that right now and fill out the survey.

Are you finished? Have you set up pushing via ssh key-pair or PAT?

● https://docs.github.com/en/github/authenticating-to-github/connecting-to-github-with-ssh
● https://docs.github.com/en/github/authenticating-to-github/keeping-your-account-and-data-s

ecure/creating-a-personal-access-token

It’s OK if you don’t finish setting up push right now, but you’ll need to do it to do the homework.
Come to office hours or post on piazza if you get stuck.

https://forms.gle/t3BnzBDzBVCREsgj9
https://docs.github.com/en/github/authenticating-to-github/connecting-to-github-with-ssh
https://docs.github.com/en/github/authenticating-to-github/keeping-your-account-and-data-secure/creating-a-personal-access-token
https://docs.github.com/en/github/authenticating-to-github/keeping-your-account-and-data-secure/creating-a-personal-access-token

6217-214/514

Course preconditions

● 15-122 or equivalent: Basic programming skills in any language, algorithms
and data structures (lists, graphs, sorting, binary search)

● 21-127 or equivalent: Basic discrete math concepts, logic

6317-214/514

Course staff

● Claire Le Goues

clegoues@cs.cmu.edu, TCS 363

● Bogdan Vasilescu

vasilescu@cmu.edu, TCS 326

● Teaching assistants:

George, Haoran, Isabel, Jake, Jessica, Julia, Katrina, Lihao, Michael, Olivia

6417-214/514

Course meetings
● Lectures: Tuesday and Thursday 3:05 – 4:25pm

● Recitations: Wednesdays 9:05 - … - 3:20pm

○ Preparing for homeworks, hands-on practice, supplementary material

○ Starting tomorrow! (setting up environments -- relevant for HW1)

● Office hours: see course web page

Recitation
attendance
is required

6517-214/514

Homework & Exams

6 homeworks, 4 small + 2 large (with milestones), 1000 points total

(1) intro, (2) testing, (3) first design, (4) fixing design,
(5) extensibility + GUI, (6) framework and API design

Homeworks and milestones usually due Mondays, see course calendar

Homework 1 due Jan 24 (milestone) / Jan 31 (final)

Two midterms + final

1a 1b 2 3M
1 4 5a 5b 5c 6aM

2 6b - F6c

6617-214/514

Late day policy

● See syllabus on course web page for details

● 2 possible late days per deadline (some exceptions may be announced)

○ 5 total free late days for semester (+ separate 2 late days for assignments done in pairs)

○ 10% penalty per day after free late days are used

○ but we won’t accept work 3 days late

● Extreme circumstances – talk to us

6717-214/514

Textbooks

● Craig Larman. Applying UML and Patterns: An Introduction to
Object-Oriented Analysis and Design and Iterative Development.
3rd Edition. Prentice Hall. 2004. ISBN 0-13-148906-2

● Joshua Bloch. Effective Java, Third Edition. Addison-Wesley, ISBN
978-0-13-468599-1.

● Selective other readings throughout the semester

● Webpage also has pointers for references for Java and Typescript!

● Occasional in-class reading quizzes after reading assignment due

● Electronic versions are all available for free through CMU library

67

6817-214/514

Approximate grading policy

● 50% assignments

● 20% midterms (2 x 10% each)

● 20% final exam

● 10% quizzes and participation

This course does not have a fixed letter grade policy; i.e., the final letter grades
will not be A=90-100%, B=80-90%, etc.

6917-214/514

Collaboration policy

● See course web page for details!

● We expect your work to be your own

● Do not release your solutions (not even after end of semester)

● Ask if you have any questions

● If you are feeling desperate, please reach out to us

○ Always turn in any work you've completed before the deadline

● We run cheating detection tools. Trust us, academic integrity meetings are
painful for everybody

7017-214/514

10% quizzes and participation / attendance

● Recitation participation counts toward your participation grade

● Lecture has in-class quizzes

The key to your success in this course is your
regular, engagement with course activities, staff,

and other students

7117-214/514

Summary

● Software engineering requires decisions, judgment

● Good design follows a process

● You will get lots of practice in 17-214!

