
117-214/514

Principles of Software Construction:
Objects, Design, and Concurrency

IDEs, Build system, Continuous
Integration, Libraries

Bogdan Vasilescu Claire Le Goues

217-214/514

Wait list update: should be able to basically clear it. We’ll give updated deadlines
for students who enroll late when they’re officially enrolled.

Please don’t email just one of us unless it’s very sensitive.
● Only email us about big picture stuff.
● Waitlist questions: include Jenni Cooper on the CC

Please check Piazza periodically both for technical and non-technical questions!
● We encourage you to help each other out.

We’ll be in a classroom next week.

Administrivia

317-214/514

New staff, new OH, new recitation.

We have hired three new TAs! Welcome to Li Guo, Deyuan Chen, and Yuwei Li.

There is a new recitation section: W 7-7:50.
● It is remote only.
● AFAIK it doesn’t exist yet but the registrar is working on it
● So we will have it this week.
● If you are on the waitlist and can attend this one, do try to.

We now have a lot more office hours!

Links/info on course calendar on website. Click on “more info” if necessary.

417-214/514

Homework 1: Welcome to the deep end?

The milestone has set you up for the rest of the semester! Hooray!

All of the code necessary for the options we’re asking you to support with the
command line library exist in the code.

We’re here to help! Come to recitation and/or Office Hours.
● We’re using OHQueue (see Piazza).

517-214/514

Mini-quiz

https://forms.gle/gaCB7xkPFijaUYWy6

https://forms.gle/gaCB7xkPFijaUYWy6

617-214/514

● For each in {IDE, Build systems, libraries, CI}:
○ What is it today?
○ What is under the hood?

● What is next?

Abstraction, Reuse, and Programming Tools

717-214/514

Automation Requires Abstraction

817-214/514

Automation Requires Abstraction

917-214/514

Automation Requires Abstraction

We all treat familiar levels of abstraction as normal/natural

● That’s fine if you only drive your car
○ Not so much if you are a mechanic
○ How to debug a broken transmission?

● Also slow to evolve
○ Conf. people adamantly refusing to use an automatic

● Engineers seek out abstractions that simplify their work, help focus on the
hard parts

○ They also know what is beneath the abstractions

1017-214/514

Automation Requires Abstraction

Today’s “normal”:
● Integrated-development environments (IDEs) galore

○ Web-based too! Press “.” on a GitHub (file) page 😲
● Frequent build, test, release

○ In some companies, every commit is a “release”
● Never write code for which there is a useful library

○ Define “useful”?
● All of the above, entangled

1117-214/514

● For each in {IDE, Build systems, libraries, CI}:
○ What is it today?
○ What is under the hood?

● What is next?

Abstraction, Reuse, and Programming Tools

1217-214/514

● For each in {IDE, Build systems, libraries, CI}:
○ What is it today?
○ What is under the hood?

● What is next?

Abstraction, Reuse, and Programming Tools

1317-214/514

Quick overview of today’s toolchain: IDEs

Integrated Development Environments, bundle development workflows in
a single UI

○ Editing, refactoring, running & debugging, adding dependencies, compiling,
deploying, plugins, you name it

○ They often try to be everything, with mixed results
○ Leverage them to the fullest extent, to automate and check your work

1417-214/514

Quick overview of today’s toolchain: IDEs

Eclipse was the dominant player in Java for 20-odd years, owing to its
powerful backbone and plugin architecture

1517-214/514

Quick overview of today’s toolchain: IDEs

Recently, IntelliJ has been more dominant
● Packs a lot of “recipes” to create certain types of projects (e.g., web-app with Spring

& Maven)

VSCode is surging in popularity
● Local & web, lightweight but with a massive plugin ecosystem

○ Quick tangent: if you can build either a large product or a platform, build a platform

But choose based on need!
● You can relearn key-bindings; “killer features” are rare and temporary
● E.g., Android: might want Android Studio (itself built on IntelliJ) since Google

supports it
● We recommended VSCode for TS and IntelliJ for Java, but you can actually use

either for both (and we don’t care).

1617-214/514

● For each in {IDE, Build systems, libraries, CI}:
○ What is it today?
○ What is under the hood?

● What is next?

Abstraction, Reuse, and Programming Tools

1717-214/514

Under the Hood: IDEs

Automate common programming actions:

● Handy refactorings, suggestions
○ E.g., just press `alt+enter` in IntelliJ while highlighting nearly any code

■ Keyboard shortcuts are super useful: explore your IDE!
○ These can make you a better programmer: encode a lot of best-practices

■ Though, don’t read into them too much

1817-214/514

Under the Hood: IDEs

● The engine: continuous parsing, building
○ Key feature: most partial programs don’t parse, but IDEs make sense of them
○ That allows quickly relaying compile warnings/errors and useful suggestions
○ Same with API resolution

● Powered by rapid incremental compilation
○ Only build what has been updated

■ Virtually every edit you make triggers a compilation, re-linking
■ Of just the changed code and its dependencies

○ Works because very little of the code changes most of the time
■ But no free lunch: tends to drop optimizations (mostly fine), may struggle with big

projects
○ Just try it: call an API with the wrong parameters & see how fast it triggers an alert; contrast

with running a full Maven build (e.g., with `mvn install`)

1917-214/514

Under the Hood: IDEs
Automate common programming actions, like debugging, which is often the
default mode when you run in the IDE (like in VSCode)

Java:

2017-214/514

Debugging allows setting breakpoints in the GUI, access to rich execution info.

Under the Hood: IDEs

TS:

2117-214/514

TS:

2217-214/514

Under the Hood: IDEs

● IDE designers spend a lot of time automating common development tasks
○ Sometimes they get a little too helpful (modifying pom’s)
○ Many plugins provide customized experience
○ Mostly evolve with new tools, prioritizing emerging routines

● Useful to know how these actions work
○ Often not much more than invoking commands for you

■ VSCode, IntelliJ are very explicit about this in the terminal -- great for
customization

2317-214/514

● For each in {IDE, Build systems, libraries, CI}:
○ What is it today?
○ What is under the hood?

● What is next?

Abstraction, Reuse, and Programming Tools

2417-214/514

Quick overview of today’s toolchain: Build Systems

How does this happen?

2517-214/514

Quick overview of today’s toolchain: Build Systems

Compiling is “easy” when all your source
code is here

Nowadays, your code is not “here”
● Even libraries that you use in the IDE!
● Interfaces make that possible

Study the CI log:
● What is it doing?
● Downloading, compiling, running

checks
● Most of this is “building”, using Maven
● More on CI later

2617-214/514

Quick overview of today’s toolchain: Build Systems

● Has a few basic tasks:
○ Compiling & linking, to produce an executable
○ Creating secondary artifacts, e.g. documentation-pages, linter reports, test suite reports
○ Different levels of “depth” may be appropriate, for large code bases (e.g. Google)

● Popular options:
○ For Java: Maven and Gradle -- historically Ant.

■ You could do any homework in either; we’re not attached to one
○ For JS/TS: Node(JS)

■ Generally coupled with the Node Package Manager (NPM)
● Often built into IDEs, as plugins

2717-214/514

● For each in {IDE, Build systems, libraries, CI}:
○ What is it today?
○ What is under the hood?

● What is next?

Abstraction, Reuse, and Programming Tools

2817-214/514

Under the Hood: Build Systems

● These days: intricately tied with IDEs, package managers
● Projects often come with a build config file or two

○ ‘pom.xml’ for Maven
○ ‘tsconfig.json’ + ‘package.json’ for TypeScript+NPM -- the second

deals with packages
○ These can be nested, one per (sub-)directory, to compose larger

systems
■ On GitHub, you can create links across repositories

2917-214/514

Under the Hood: Build Systems

Projects often come with a build config file or two
● ‘pom.xml’ for Maven
● ‘tsconfig.json’ + ‘package.json’ for

TypeScript+NPM -- the second deals with
packages

● Specifies:
○ Compilation source and target version
○ High-level configuration options
○ Targets for various phases in development

■ “lifecycle” in Maven; e.g. ‘compile’, ‘test’, ‘deploy’
○ Often involving plugins
○ Dependencies with versions

TS:

3017-214/514

https://maven.apache.org/guides/getting-
started/maven-in-five-minutes.html

3117-214/514

● Node.js is a JS runtime. npm is its
package manager.

3217-214/514

Meanwhile, the IDE can interact with these build systems!

TS:

3317-214/514
TS:

3417-214/514
Java:

3517-214/514
Java:

3617-214/514

● For each in {IDE, Build systems, libraries, CI}:
○ What is it today?
○ What is under the hood?

● What is next?

Abstraction, Reuse, and Programming Tools

3717-214/514

Quick overview of today’s toolchain: Libraries

● Myriad. Publicly hosted on various package managers
○ Often tied, but not inextricably linked, to build tools, and languages
○ Maven/Gradle for Java, NPM for JS/TS, Nuget for C#, ...
○ Registries of managers, e.g., GitHub Packages

3817-214/514
Java:

3917-214/514

TS:

4017-214/514

Quick overview of today’s toolchain: Libraries

● Myriad. Publicly hosted on various managers
○ Often tied, but not inextricably linked, to build tools, and languages
○ Maven, Gradle, NPM, Nuget, Docker, …
○ Registries of managers, e.g., GitHub Packages

● Releases are generally fast-paced or frigid
○ Almost all volunteer-based, so support waivers, as does documentation quality
○ Often open-source, so you can check out the status & details on GitHub
○ Beware of vulnerabilities and bugs, esp. with minor-releases and nightly’s, old packages

4117-214/514

Quick overview of today’s toolchain: Libraries

● A Case-Study:
○ ‘pac-resolver’ (3M weekly downloads) has a major security vulnerability

■ Uses ‘degenerator’ (same author), which misuses a Node module
■ “The vm module is not a security mechanism. Do not use it to run untrusted code.”
■ (a mistake that’s been made before: people rarely read disclaimers)

○ ‘pac-proxy-agent’ (2M weekly downloads, same author) uses the above
■ Is widely popular, the main reason people use ‘degenerator’
■ Most people using this package have never heard of the latter -- many never will

https://nodejs.org/api/vm.html#vm_vm_executing_javascript

4217-214/514

log4shell

4317-214/514

● For each in {IDE, Build systems, libraries, CI}:
○ What is it today?
○ What is under the hood?

● What is next?

Abstraction, Reuse, and Programming Tools

4417-214/514

Under the Hood: Libraries & Frameworks

Packages can be either:
● Libraries:

○ A set of classes and methods that provide reusable functionality
○ Typically: programmer calls, library returns data, that’s it.

4517-214/514

Under the Hood: Libraries & Frameworks

Packages can be either:
● Libraries:

○ A set of classes and methods that provide reusable functionality
○ Typically: programmer calls, library returns data, that’s it.

● Frameworks:
○ Reusable skeleton code that can be customized into an application
○ Framework calls back into client code

■ The Hollywood principle: “Don’t call us. We’ll call you.”
○ E.g., Android development: you declare your UI elements, activities to be composed
○ Principle: inversion of control

https://martinfowler.com/bliki/InversionOfControl.html

4617-214/514

Under the Hood: Libraries & Frameworks

Packages can be either:
● Libraries:

○ A set of classes and methods that provide reusable functionality
○ Typically: programmer calls, library returns data, that’s it.

● Frameworks:
○ Reusable skeleton code that can be customized into an application
○ Framework calls back into client code

■ The Hollywood principle: “Don’t call us. We’ll call you.”
○ E.g., Android development: you declare your UI elements, activities to be composed
○ Principle: inversion of control

● You typically use zero/one framework and many libraries
○ Frameworks might be especially constraining, but for good reason.
○ Some tools are a bit of both, and not all frameworks quite invert control

https://martinfowler.com/bliki/InversionOfControl.html

4717-214/514

Under the Hood: Libraries & Frameworks

Which kind is a command-line parsing package?

Which kind is Android?

How about a tool that runs tests based on annotations you add in your code?

http://tom.lokhorst.eu/2010/09/why-libraries-are-better-than-frameworks`

4817-214/514

Under the Hood: Libraries & Frameworks

Look into:

● Stated Goal:
○ A simple interface (“get started in one line!”) also means lots of abstraction
○ That’s neither good nor bad; know what you need
○ Docs with “advanced use cases” are always neat

● Maintenance:
○ Active release cycle, recent updates to documentation
○ GitHub build status, issue tracker (filled with unmerged ‘dependabot’ PRs?)
○ Lots of companies deliberately lag by one minor (or even major) version

● Recursive dependencies
○ Myriad, beyond inspection. Using OSS in corporate environments is a headache

5017-214/514

● For each in {IDE, Build systems, libraries, CI}:
○ What is it today?
○ What is under the hood?

● What is next?

Abstraction, Reuse, and Programming Tools

5117-214/514

Quick overview of today’s toolchain: Continuous Integration

CI: Automates standard build, test, deploy pipelines

(Technically, the latter is “CD”)

Typically builds from scratch in a clean container

Often tied to code-review; triggers on new commits, pull requests

● Ideally, official releases pass the build

Produces (long) logs with debugging outputs

5217-214/514

Defines a series of actions to be run in a clean build:

● Actions start from the very top:
○ Clone repository, checkout branch
○ Download & install Java/Node
○ Invoke commands with timeouts

● Travis allocates a new (Docker) container for each build
○ Think of this like a fresh, temporary computer
○ Usually with a few default libraries present (i.e., based on an image)

● That means: fully replicable builds

Under the Hood: Continuous Integration

5317-214/514

Continuous
integration – GitHub
Actions

You can see the results of
builds over time

5417-214/514

5517-214/514

Automatically builds, tests,
and displays the result

We – and everyone else – used to
use Travis CI.
● Until they randomly stopped

supporting OSS.

GitHub now has native CI support,
and it’s pretty good: GitHub
Actions.

Under the Hood: Continuous Integration

5617-214/514

Quick overview of today’s toolchain: not mentioned

Docker: containerize applications for coarse-grained reuse

Cloud: deploy and scale rapidly, release seamlessly

Bug/Issue trackers, often integrated with reviews

5717-214/514

Behind the Abstraction: Some Nuance

● Automation vs. Reuse
○ We tend to automate common chains of actions

■ Gear-up := {Press clutch, switch gear, release clutch
while accelerating}

○ To facilitate reusing such “subroutines”, we introduce abstractions
■ Accelerate in ‘D’ => Gear-up when needed

● Reuse vs. Interfaces
○ Interfaces facilitate reuse through abstraction

■ Allow upgrading implementation without breaking things
■ Provide explicit & transparent contract

5817-214/514

Behind the Abstraction, Some Nuance

Most tools are abstractions of
common commands
● Typically operated via

GUI and/or a DSL
● Obvious for GitHub

Actions: just read the
Yaml

○ Script-like languages are
common

○ Involving a vocabulary of
“targets”

○ E.g., `mvn site`

5917-214/514

Behind the Abstraction, Some Nuance

Most tools are abstractions of common commands
● Typically operated via GUI and/or a DSL
● Obvious for GitHub Actions: just read the Yaml

○ Script-like languages are common
○ Involving a vocabulary of “targets”
○ E.g., `mvn site`

Abstraction can also “trap” us
● When/how do we leave the abstraction?
● Command-line comes built into IDEs for a reason
● Non-trivial in general! May require switching/“patching” libraries

○ E.g., Maven → Gradle for more unusual build routines

6017-214/514

● For each in {IDE, Build systems, libraries, CI}:
○ What is it today?
○ What is under the hood?

● What is next? (any guesses?)

Abstraction, Reuse, and Programming Tools

6117-214/514

What’s Next: AI Powered Programming

● Easier in Web IDEs
○ Which are themselves

“next”

6217-214/514

What’s Next: Collaborative online coding

● Think: Google Docs for code
● E.g. VS Live Share
● How will this change “commits”?

6317-214/514

What’s Next: Tighter IDE-to-cloud integration

● Google Cloud is pushing on this
with VSCode

● We will (lightly) touch on Containers &
Clouds in this course

6417-214/514

Summary

● Programming Tools are abundant, and rapidly evolving
○ Learn multiple; you will have to inevitably

● They rely on abstractions through interfaces to facilitate reuse
○ Which come in many shapes: GUI, API, DSL
○ And can be a limitation -- choose wisely

● Your HW1 toolchain sets you up for all homeworks
○ With modest variations (frameworks, new build targets)
○ Self-discovery is a big asset
○ Recitation should be helpful!

