Principles of Software Construction:
Objects, Design, and Concurrency

Specifications and unit testing,

|
exceptions
Claire Le Goues Bogdan Vasilescu
glurm‘gic Mellon University
School of Computer Science

institute for
I S SOFTWARE
RESEARCH

17-214/514 1 [ s



Remember this

Encapsulation / Information hiding discussion from

last week?

e \Well designed objects project internals from others
O  both internal state and implementation details
e \Well-designed code hides all implementation details
O Cleanly separates interface from implementation
O  Modules communicate only through interfaces
O  They are oblivious to each others’ inner workings
e Hidden details can be changed without changing client!
e Fundamental tenet of software design

17-214/514 2 sl

RESEARCH



Who’s to blame?

( )

Algorithms.shortestDistance(g, “Tom”, “Anne”);

> ArrayOutOfBoundsException

17-214/514 3 Sf :?}Eﬁ{z{%



Who’s to blame?

( N

Algorithms.shortestDistance(g, “Tom”, “Anne”);

> -1

17-214/514 4 Sf Z?;‘i’f{z{%



Who’s to blame?

( N

Algorithms.shortestDistance(g, “Tom”, “Anne”);

> 0

17-214/514 5 Sf Z?;‘i’f{z{%



Who’s to blame?

4 N
class Algorithms {

/**

* This method finds the
shortest distance between two
vertices. It returns -1 if
the two nodes are not
connected. */
int shortestDistance(..) {..}

* ok % *

17-214/514 6 Sf :?}Eﬁ{z{%



Who’s to blame?

4 N
class Algorithms {

/**
* This method finds the Think of this (texiual)

. specification as a “contract”
shortest distance between two
vertices. It returns -1 if
the two nodes are not
connected. */
int shortestDistance(..) {..}

*
*
*
*

17-214/514 7 Sf 2?}3}{1{%



What is a contract?

e Agreement between an object and its user
O  What object provides, and user can count on
e Includes:
O  Method signature (type specifications)
O  Functionality and correctness expectations
O Sometimes: performance expectations
e What the method does, not how it does it

O Interface (API), not implementation

17-214/514 8 sl

RESEARCH



Method contract details

e Defines method’s and caller’s responsibilities
e Analogy: legal contract
O If you pay me this amount on this schedule...
O | will build a room with the following detailed spec
O  Some contracts have remedies for nonperformance
e Method contract structure
O  Preconditions: what method requires for correct operation
O Postconditions: what method establishes on completion
O  Exceptional behavior: what it does if precondition violated
e Defines correctness of implementation — we’ll come back to this later today

17-214/514 9 sl

RESEARCH



Most real-world code has a contract

e Imperative to build systems that scale!
e This is why we:

O Encode specifications

O Test

Hidden from Hidden from
service* client service* provider

Service* interface

Service*
implementation

* service = object,
subsystem, ...

17-2 14/5 14 10 Sf gégi{%



Today

1. Exception Handling
2. Unit Testing
3. Specifications

17-214/514 11 [ s



Exceptions

17-214/514 12 [ v

RRRRRRRR



What does this code do?

17-214/514

FileInputStream fIn = new FileInputStream(fileName);
if (fIn == null) {
switch (errno) {
case _ENOFILE:
System.err.println(“File not found: *“ + ..);

return -1;

default:
System.err.println(“Something else bad happened: “ + ..);
return -1;

}

}
DataInput datalnput = new DatalInputStream(fIn);

if (dataInput == null) {
System.err.println(“Unknown internal error.”);
return -1; // errno > 0 set by new DataInputStream
}
int 1 = datalnput.readInt();
if (errno > 0) {
System.err.println(“Error reading binary data from file”);
return -1;
} // The Slide lacks space to close the file. Oh well.
return i;

This is Java code

13 [

institute for
SOFTWARE
RESEARCH



Compare to:

17-214/514

/
FileInputStream fileInput = null;

try {
fileInput = new FileInputStream(fileName);

DataInput datalnput = new
DataInputStream(fileInput);

return datalInput.readInt();
} catch (FileNotFoundException e) {

System.out.println("Could not open file
fileName);

} catch (IOException e) {

System.out.println("Couldn’t read file:

} finally {
if (fileInput != null) fileInput.close();

+

+ e);

This is Java code

14 [

institute for
SOFTWARE
RESEARCH



Exceptions

e Split control-flow into a “normal” and an “erroneous” branch
O  Compare “if/else”

e Inform caller of problem by transfer of control

e \Where do exceptions come from?
O  Program can throw explicitly using throw
O Underlying virtual machine (JVM) can generate

e Semantics

O  Propagates up call stack until exception is caught, or main method is reached (terminates
program!)

17-214/514 15 sl

RESEARCH



The exception hierarchy in Java (messy)

Object
/

Throwable

T T

Exception Error

RuntimeException IOException

ClassNotFoundException

NullPointerException EOFException

FileNotFoundException

IndexOutOfBoundsException
17-214/514 16 [ s

RRRRRRRR



Control-flow of exceptions

17-214/514

/
public static void test() {

try {
System.out.println("Top");
int[] a = new int[10];
) 2[42] = 42;
System.out.println("Bottom");
} catch (NegativeArraySizeException e) {
System.out.println("Caught negative array size");

}
}
public static void main(String[] args) {
try {
test();

} catch (IndexOutOfBoundsException e) {
System.out.println"("Caught index out of bounds");

}

This is Java code

17 [

institute for
SOFTWARE
RESEARCH



Control-flow of exceptions

//public static void test() {
try {
System.out.println("Top");
int[] a = new int[10];
a[42] = 42;
System.out.println("Bottom");
} catch (NegativeArraySizeException e) {
System.out.println("Caught negative array size");
}
}
public static void main(String[] args) {
try {
test();
} catch (IndexOutOfBoundsException e) {
System.out.println"("Caught index out of bounds");
}
\}

17-214/514

This is Java code

Handle errors at a level you
choose, not necessarily in
the low-level methods
where they originally occur.

o
1 8 institute for
I S r SOFTWARE
RESEARCH



This is Java code

Exception Handling

Undeclared VS. Declared
int divide(int a, int b) { String read(String path) throws
return a / b; IOException {
} return Files.lines(Path.of(path))
.collect(Collectors.joining(“\n”));

17-214/514 19 [ v



This is Java code

Exception Handling

Undeclared VS. Declared
int divide(int a, int b) { String read(String path) throws
return a / b; IOException {
} return Files.lines(Path.of(path))
.collect(Collectors.joining(“\n”));
}
Unchecked VS. Checked
divide(4, 3); // Compiles read(“test.txt”); // Unhandled
fine exception: java.io.IOException

17-214/514 20 Lo



Exception Handling

Handling unchecked exceptions is not enforced by the compiler

These are quite common

e E.g., all exceptionsin C++
e In Java: any exception that extends Error or RuntimeException

17-214/514 21 iy



Java’s exception hierarchy (messy)

Object

/
Throwable

— T

Exception Error

\

StackOverflowError

RuntimeException

I0Except iched Exceptions

.- ClassNotFoundException
EOFException

FileNotFoundException

NullPointerException

IndexOutOfBoundsException

17-214/514 23 [[j s

RRRRRRRR



Checked vs. unchecked exceptions

® Checked exception

o Must be caught or propagated, or program won’t compile
o Exceptional condition that programmer must deal with

® Unchecked exception

o No action is required for program to compile...
m But uncaught exception will cause failure at runtime
o Usually indicates a programming error

® Error

o Special unchecked exception typically thrown by VM
o Recovery is usually impossible

17-214/514

24 [Hi

institute for
SOFTWARE
RESEARCH



Benefits of exceptions (summary)

e You can't forget to handle common failure modes
O  Explicit > implicit
O  Compare: using a flag or special return value
e Provide high-level summary of error
O  Compare: core dump in C/C++
e Improve code structure
O  Separate normal code path from exceptional
O  Error handling code is segregated in catch blocks
e Ease task of writing robust, maintainable code

17-214/514

25 [Hi

institute for
SOFTWARE
RESEARCH



This is Java code

Defining & using Exception Types

class BufferBoundsException extends Throwable {
public BufferBoundsException(String message) {

}
}

void atIndex(int[] buff, int 1) throws BufferBoundsException {
if (buff.length <= 1)
throw new BufferBoundsException(“...”);
return buff[i];

}

17-214/514 26 Lo



Exception Handling

e It’s still wise to guard for “obvious” unchecked exceptions

if (arr.length > 10)
return arr[10];

e Or explicitly signal the problem, recall:

if (buff.length <= 1)
throw new BufferBoundsException(“...”);
return buff[i];

e Why is this better than letting the index fail?

17-214/514

This is Java code



This is Java code

Exception Handling

e It’s still wise to guard for “obvious” unchecked exceptions

if (arr.length > 10)
return arr[10];

e Or explicitly signal the problem, recall:

if (buff.length <= 1)
throw new BufferBoundsException(“...”);
return buff[i];

e Why is this better than letting the index fail?

O

(@)
@)

@)

17-214/514

BufferBoundsException can be a checked exception!
Which forces someone to handle it
Here, we declared: atIndex(int[] buff, int 1) throws BufferBoundsException

So every calling method must handle it, or throw it on

o
institute for
28 [H] o



This is Java code

Guidelines for using exceptions

e Document all exceptions thrown by each method in the specification
O Unchecked as well as checked (EJ Iltem 74)
O  But don'’t declare unchecked exceptions!

e Include failure-capture info in detail message (ltem 75)

throw new IlegalArgumentException(

"Quantity must be positive: " + quantity);

17-214/514 30 sl

RESEARCH



This is Java code

Guidelines for using exceptions (2)

e Document all exceptions thrown by each method
O Unchecked as well as checked (EJ Iltem 74)
O  But don'’t declare unchecked exceptions!
e Include failure-capture info in detail message (ltem 75)

throw new IllegalArgumentException(
"Quantity must be positive: " + quantity);

e Don'tignore exceptions (EJ Item 77)

try {
processPayment(payment);

}
catch (Exception e) { // BAD!

}

17-214/514 31 Lo




This is JavaScript code

Cleanup

Exception handling often also supports cleaning up

openMyFile();

try {
writeMyFile(theData);

} catch(e) {

handleError(e);
} finally {
closeMyFile();

}

https://developer.mozilla.org/en-US/docs/Web/JavaScript/Guide/Control_flow_and_error_handling
17‘2 14/5 14 32 E institute for

SOFTWARE
RESEARCH



Manual Resource Termination

Is ugly and error-prone, especially for multiple resources

e Even good programmers usually get it wrong
O  Sun’s Guide to Persistent Connections got it wrong in code that claimed to be exemplary

O  Solution on page 88 of Bloch and Gafter’s Java Puzzlers is badly broken; no one noticed
for years

e 70% of the uses of close in the JDK itself were wrong in 2008!
e Even the “correct” idioms for manual resource management are deficient

17-214/514 33 sl

RESEARCH



The solution: try-with-resources

Automatically closes resources!

17-214/514

This is Java code

try (DataInputStream dataInput =
new DataInputStream(new FileInputStream(fileName))) {
return dataInput.readInt();
} catch (IOException e) {

}

o
institute for
34 [H] o



Exceptions Across Languages

Alas, try-with-resources does not exist in JS/TS
e Neither does ‘throws’
Exception structures differ radically across languages

e Most languages have ‘try/catch’and “throw’
O Some have ‘finally’

e Python has ‘with’ for resource management (since 2006)
O C#has ‘using’
O Java’s try-with-resources was added in 2011

e (o returns an error-typed value, to be checked for nullity

17-214/514



Exceptions Across Languages

Use what you have

e \When possible, be explicit
O  Use the compiler to enforce, where possible
O  Proactively avoid corner-cases, where not
B Unchecked exceptions, JS/TS
e Make exceptions part of your contract

17-214/514

36 [Hi

institute for
SOFTWARE
RESEARCH



Outline

1. Exception Handling
2. Unit Testing
3. Specifications

17-214/514 37 sl



Functional correctness

e Compiler ensures types are correct (type-checking)

o Prevents many runtime errors, such as “Method Not Found” and “Cannot add boolean to int”

17-214/514 38 el

RESEARCH



Functional correctness

e Compiler ensures types are correct (type-checking)

o Prevents many runtime errors, such as “Method Not Found” and “Cannot add boolean to int”

e How to ensure functional correctness, beyond type correctness?

17-214/514 39 sl

RESEARCH



One option: Formal verification

e Use mathematical methods to prove correctness with respect to
the formal specification

e Formally prove that all possible executions of an implementation
fulfill the specification

e Manual effort; partial automation; not automatically decidable

17-214/514



Another option: Testing

e Executing the program with selected inputs in a controlled environment
e Goals

O Reveal bugs, so they can be fixed (main goal)

O  Assess quality

O  Clarify the specification, documentation
e Testing is related to contracts

O Because we need to know what to test!

17-214/514 a1 sl

RESEARCH



Re: Formal verification, Testing

“Beware of bugs in the above code; |
have only proved it correct, not tried it.”
Donald Knuth, 1977

"Testing shows the presence, not the
absence of bugs.”
Edsger W. Dijkstra, 1969

17-214/514 42 [ s

RRRRRRRR



Q: Who's right, Dijkstra or Knuth?

/E: public static int binarySearch(int[] a, int key) {

2: int low = 0;

3: int high = a.length - 1;

4.

5: while (low <= high) {

6: int mid = (low + high) / 2;

7: int midVal = a[mid];

8:

9: if (midVal < key)

10: low = mid + 1

11: else if (midval > key)

12: high = mid - 1;

13: else

14: return mid; // key found

15: }

16: return -(low + 1); // key not found.

17 } This is Java code
\_ %

17-214/514 Binary search from java.util.Arrays 43 [ s



Q: Who's right, Dijkstra or Knuth?

/iz public static int binarySearch(int[] a, int key) { \W
g: IQE kggh—zoé length - 1; Spec: sets mid to the average of 1low and ‘
4: ’ ’ high, truncated down to the nearest integer.
5: while (low <= high) {
6: int mid = (low + high) / 2;
7: int midval = a[mid]; Fails if low + high > MAXINT (2% - 1) ‘
8: Sum overflows to negative value
9: if (midVal < key)
10: low = mid + 1
11: else if (midvVal > key)
12: high = mid - 1;
13: else
14: return mid; // key found
15: }
16: return -(low + 1); // key not found.
17: }
\ %

17-214/514 Binary search from java.util.Arrays a4 [



A: They're both right

® There is no silver bullet!

® Use all the tools at your disposal
O Careful design
O Testing
O Formal methods (where appropriate)

O Code reviews

o ..

® You'll still have bugs, but hopefully fewer.

17-214/514 45 sl

RESEARCH



Manual testing

GENERIC TEST CASE: USER SENDS MMS WITH PICTURE ATTACHED.

Effort, Costs?

Step ID User Action System Response

1 Go to Main Menu Main Menu appears

2 Go to Messages Menu Message Menu appears

3 Select “Create new Mes- Message Editor screen
® Live System? sage S SRR i

- Add Recipient Recipient 1s added
® Extra Testing System? 5 Sclect “Insert Picture” Insert Picture Menu opens

6 Select Picture Picture 1s Selected
®  Check output / assertions? 7 Select “Send Message™ Message is correctly sent
L
L

Reproducible?

17-214/514 46 sl

RESEARCH



Automated testing

® Execute a program with specific inputs,
check output for expected values

® Easier to test small pieces than testing user interactions
® Set up testing infrastructure

® Execute tests regularly

O After every change

17-214/514 47 B

RESEARCH



This is Java code

Testing

How do we know int isPos(int x) {

this works? return x >= 1;
}

17-214/514 48 sl

RESEARCH



Testing

How do we know
this works?

Testing

Are we done?

17-214/514

int isPos(int x) {
return x >= 1;

}

@Test
void testIsPos() {
assertTrue(isPos(1));

}

This is Java code

49 [Hi

institute for
SOFTWARE
RESEARCH



Testing

How do we know
this works?

Testing

Are we done?

17-214/514

int isPos(int x) {
return x >= 1;

}

@Test
void testIsPos() {
assertTrue(isPos(1));

}

@Test
void testNotPos() {
assertFalse(isPos(-1));

}

This is Java code

50 [Hi

institute for
SOFTWARE
RESEARCH



Testing

How do we know
this works?

Testing

Are we done?

17-214/514

int isPos(int x) {
return x >= 0; // What i1f?
}

@Test
void testIsPos() {
assertTrue(isPos(1));

}

@Test
void testNotPos() {
assertFalse(isPos(-1));

}

This is Java code

51 [Hj

institute for
SOFTWARE
RESEARCH



This is Java code

Testing

How do we know int isPos(int x) {

this works? return x >= 0; // What if?
}

Testing @Test

void testlIsPos() {
assertTrue(isPos(1));

}

@Test
Are we done? void test0@IsNotPos() {
assertFalse(isPos(0)); // Fails

}

17-214/514 52 sl

RESEARCH



This is Java code

Boundary Value Testing

We cannot test for every integer. int isPos(int x) {
return x >= 0; // What i1f?
}
Choose representative values: @Test
1 for positives, -1 for negatives voild testiIsPos() {
assertTrue(isPos(1));
}
And boundary cases: 0 is a likely @Test
candidate for mistakes void testOIsNotPos() {
assertFalse(isPos(0)); // Fails
e Think like an attacker }

17-214/514 53 [[j 5



Unit Tests

e For “small” units: methods, classes, subsystems
O  Unit is smallest testable part of system
O  Test the parts before assembling them
O Intended to catch local bugs
Typically (but not always) written by developers
Many small, fast-running, independent tests
Few dependencies on other system parts or environment
Insufficient, but a good starting point

17-214/514 55 sl

RESEARCH



For Java: JUnit

e Popular unit-testing framework for Java

e FEasytouse

e TJool support available, e.g., IntelliJ integration

i Problems @ Javadoc Declaration Ju JUnit 2%
Finished after 0.012 seconds

Runs: 4/4 B Errors: 0 B Failures: 1

> fi edu.cmu.cs.cs214.hwi.tests.AlgorithmTest [Runner: JUnit 4] (0.000 s)

v & edu.cmu.cs.cs214.hw1.tests.AdjacencyMatrixTest [Runner: JUnit 4] (0.000 s)
g
gl basicNullTest2 (0.000 s)

» §i edu.cmu.cs.cs214.hwi.tests.AdjacencyListTest [Runner: JUnit 4] (0.000 s)

17-214/514

O ¢ "B QB B> = =0

= Failure Trace [ 2|

79 java.lang.AssertionError: Expected exception:java.lang.NullPointerExce;;tioﬁ

o
institute for
5 | S SOFTWARE
RESEARCH



For Java: JUnit

Syntax:

17-214/514

import static org.junit.Assert.*;
class PosTests {

@Before
void setUp() {
// Anything you want to run
before each test

@Test
vold testl1IsPos() {
assertTrue(isPos(1));

}
}

This is Java code

57 i

institute for
SOFTWARE
RESEARCH



For TS: Jest

e In particular, ts-jest

O

Many other options; your choice

e Requires a few files:

O

©)

jest.config.js, to specify testing mode

package.json with (ts-)jest dependencies

e Provides useful features:

©)
©)

©)

17-214/514

‘test’, ‘expect’ (= ‘assert’)
‘toBe’, ‘toEqual’
‘fn’, for Mocking (later)

test > TS isPos.test.ts > ...

import { isPos } from "../src/isPos"
test('1l is positive', () => {
expect(isPos(1)).toBe(true);

1

2

3

4

5 1)
6

7 test('-1 is not positive', () => {
8 expect(isPos(-1)).toBe(false);
9

Hs
10

T test('0 is not positive', () => {

12 | expect(isPos(0)).toBe(false);
13 1);
PROBLEMS ~ OUTPUT  TERMINAL  DEBUG CONSOLE

at Object.<anonymous> (test/isPos.test.ts:12:19)

Test Suites: 1 failed, 1 total
Tests: 1 failed, 2 passed, 3 total
Snapshots: 0 total

58 [Hi

institute for
SOFTWARE
RESEARCH



Test organization

® Conventions (not requirements)

® Have a test class FooTest for each public
class Foo
® Have a source directory and a test directory

o Store FooTest and Foo in the same package

o Tests can access members with default (package)
visibility

17-214/514

v = hwi

v S8 grc
¥ B edu.cmu.cs.cs214.hwi.graph
> [J] AdjacencyListGraph.java
» [J] AdjacencyMatrixGraph.java
» [J] Algorithm.java
2 edu.cmu.cs.cs214.hwl.sols
> £ edu.cmu.cs.cs214.hw1.staff
> 5 edu.cmu.cs.cs214.hwi.staff.tests
v 8 tests
¥ /4 edu.cmu.cs.cs214.hwi.graph
> 1J] AdjacencyListTest.java
» 1)) AdjacencyMatrixTest.java
» ) AlgorithmTest.java
> [J] GraphBuilder.java
> £ edu.cmu.cs.cs214.hwil.staff.tests
=4 JRE System Library [jdk1.7.0]
=i JUnit 4
& docs
(= theory

o
institute for
| S SOFTWARE
RESEARCH



Writing Testable Code

e Think about testing when writing code
O  Unit testing encourages you to write testable code
e Modularity and testability go hand in hand
O  Same test can be used on multiple implementations of an interface!
e Test-Driven Development
O Adesign and development method in which you write tests before you write the code

O  Writing tests can expose APl weaknesses!

17-214/514 60 sl

RESEARCH



Run Tests Often

e You should only commit code that passses all tests...

e So run tests before every commit

e If test suite becomes too large & slow for rapid feedback
O  Run local package-level tests (“smoke tests”) frequently
O  Run all tests nightly
O  Medium sized projects often have thousands of test cases

e Continuous integration (Cl) servers help to scale testing

O  We ask you to use GitHub Actions in this class

17-214/514

61 [Hi

institute for
SOFTWARE
RESEARCH



Outline

1. Exception Handling
2. Unit Testing
3. Specifications — to be continued on Tuesday

17-2 14/5 14 63 Sr g\é}}:i{%



Outlook

Homework 2 is all about testing

e Specification-testing the FlashCard system
e Some structural testing as well

O  More next Tuesday, also on coverage, test-case design
e To be released soon

17-214/514 64 sl

RESEARCH



Summary

e Being explicit about program behavior is ideal
O  Helps you detect bugs
O Forces handling of special cases -- a key source of bugs
O Increases transparency of your program’s interface
e Specification comes in multiple forms
O  Explicit contracts, formal or informal
O  Compile-time signals, e.g. through exceptions
O  Testing helps clarify, often improve specifications
B TDD takes this to the extreme

B You rarely know your code until you test it

17-214/514 65 sl

RESEARCH



