
117-214/514

Principles of Software Construction:
Objects, Design, and Concurrency

Specifications and unit testing,
exceptions

Claire Le Goues Bogdan Vasilescu

217-214/514

Encapsulation / Information hiding

● Well designed objects project internals from others

○ both internal state and implementation details

● Well-designed code hides all implementation details

○ Cleanly separates interface from implementation

○ Modules communicate only through interfaces

○ They are oblivious to each others’ inner workings

● Hidden details can be changed without changing client!

● Fundamental tenet of software design

Remember this
discussion from
last week?

317-214/514

Who’s to blame?

Algorithms.shortestDistance(g, “Tom”, “Anne”);

> ArrayOutOfBoundsException

417-214/514

Who’s to blame?

Algorithms.shortestDistance(g, “Tom”, “Anne”);

> -1

517-214/514

Who’s to blame?

Algorithms.shortestDistance(g, “Tom”, “Anne”);

> 0

617-214/514

Who’s to blame?

class Algorithms {
 /**
 * This method finds the
 * shortest distance between two
 * vertices. It returns -1 if
 * the two nodes are not
 * connected. */
 int shortestDistance(…) {…}
}

717-214/514

Who’s to blame?

class Algorithms {
 /**
 * This method finds the
 * shortest distance between two
 * vertices. It returns -1 if
 * the two nodes are not
 * connected. */
 int shortestDistance(…) {…}
}

Think of this (textual)
specification as a “contract”

817-214/514

What is a contract?

● Agreement between an object and its user
○ What object provides, and user can count on

● Includes:
○ Method signature (type specifications)

○ Functionality and correctness expectations

○ Sometimes: performance expectations

● What the method does, not how it does it
○ Interface (API), not implementation

917-214/514

Method contract details

● Defines method’s and caller’s responsibilities
● Analogy: legal contract

○ If you pay me this amount on this schedule…

○ I will build a room with the following detailed spec

○ Some contracts have remedies for nonperformance

● Method contract structure
○ Preconditions: what method requires for correct operation

○ Postconditions: what method establishes on completion

○ Exceptional behavior: what it does if precondition violated

● Defines correctness of implementation – we’ll come back to this later today

1017-214/514

Service*
implementation

Service* interface

Client
environment

 Hidden from
service* provider

 Hidden from
service* client

* service = object,
subsystem, …

● Imperative to build systems that scale!
● This is why we:

○ Encode specifications
○ Test

Most real-world code has a contract

1117-214/514

Today

1. Exception Handling
2. Unit Testing
3. Specifications

1217-214/514

Exceptions

1317-214/514

What does this code do? This is Java code

FileInputStream fIn = new FileInputStream(fileName);
if (fIn == null) {
 switch (errno) {
 case _ENOFILE:
 System.err.println(“File not found: “ + …);
 return -1;
 default:
 System.err.println(“Something else bad happened: “ + …);
 return -1;
 }
}
DataInput dataInput = new DataInputStream(fIn);
if (dataInput == null) {
 System.err.println(“Unknown internal error.”);
 return -1; // errno > 0 set by new DataInputStream
}
int i = dataInput.readInt();
if (errno > 0) {
 System.err.println(“Error reading binary data from file”);
 return -1;
} // The Slide lacks space to close the file. Oh well.
return i;

1417-214/514

Compare to:
FileInputStream fileInput = null;

try {

 fileInput = new FileInputStream(fileName);

 DataInput dataInput = new
DataInputStream(fileInput);

 return dataInput.readInt();

} catch (FileNotFoundException e) {

 System.out.println("Could not open file " +
fileName);

} catch (IOException e) {

 System.out.println("Couldn’t read file: " + e);

} finally {

 if (fileInput != null) fileInput.close();

}

This is Java code

1517-214/514

● Split control-flow into a “normal” and an “erroneous” branch
○ Compare “if/else”

● Inform caller of problem by transfer of control
● Where do exceptions come from?

○ Program can throw explicitly using throw

○ Underlying virtual machine (JVM) can generate

● Semantics
○ Propagates up call stack until exception is caught, or main method is reached (terminates

program!)

Exceptions

1617-214/514

The exception hierarchy in Java (messy)

Throwable

Exception

RuntimeException IOException

EOFException

FileNotFoundException

NullPointerException

IndexOutOfBoundsException

ClassNotFoundException
… …

. . .

Object

Error

1717-214/514

Control-flow of exceptions
public static void test() {
 try {
 System.out.println("Top");
 int[] a = new int[10];
 a[42] = 42;
 System.out.println("Bottom");
 } catch (NegativeArraySizeException e) {
 System.out.println("Caught negative array size");
 }
}

public static void main(String[] args) {
 try {
 test();
 } catch (IndexOutOfBoundsException e) {
 System.out.println"("Caught index out of bounds");
 }
}

This is Java code

1817-214/514

Control-flow of exceptions

Handle errors at a level you
choose, not necessarily in
the low-level methods
where they originally occur.

public static void test() {
 try {
 System.out.println("Top");
 int[] a = new int[10];
 a[42] = 42;
 System.out.println("Bottom");
 } catch (NegativeArraySizeException e) {
 System.out.println("Caught negative array size");
 }
}

public static void main(String[] args) {
 try {
 test();
 } catch (IndexOutOfBoundsException e) {
 System.out.println"("Caught index out of bounds");
 }
}

This is Java code

1917-214/514

Exception Handling

Undeclared vs. Declared

int divide(int a, int b) {
 return a / b;
}

String read(String path) throws
 IOException {
 return Files.lines(Path.of(path))
 .collect(Collectors.joining(“\n”));
}

This is Java code

2017-214/514

Exception Handling

Undeclared vs. Declared

Unchecked vs. Checked

int divide(int a, int b) {
 return a / b;
}

String read(String path) throws
 IOException {
 return Files.lines(Path.of(path))
 .collect(Collectors.joining(“\n”));
}

divide(4, 3); // Compiles
 fine

read(“test.txt”); // Unhandled
 exception: java.io.IOException

This is Java code

2117-214/514

Exception Handling

Handling unchecked exceptions is not enforced by the compiler

These are quite common

● E.g., all exceptions in C++
● In Java: any exception that extends Error or RuntimeException

2317-214/514

Throwable

Exception

RuntimeException

IOException

EOFException

FileNotFoundException

NullPointerException

IndexOutOfBoundsException

ClassNotFoundException

Object

Error

StackOverflowError

…

…

…

…

Checked Exceptions

Java’s exception hierarchy (messy)

2417-214/514

Checked vs. unchecked exceptions
● Checked exception

○ Must be caught or propagated, or program won’t compile
○ Exceptional condition that programmer must deal with

● Unchecked exception
○ No action is required for program to compile…

■ But uncaught exception will cause failure at runtime
○ Usually indicates a programming error

● Error
○ Special unchecked exception typically thrown by VM
○ Recovery is usually impossible

2517-214/514

● You can’t forget to handle common failure modes
○ Explicit > implicit

○ Compare: using a flag or special return value

● Provide high-level summary of error
○ Compare: core dump in C/C++

● Improve code structure
○ Separate normal code path from exceptional

○ Error handling code is segregated in catch blocks

● Ease task of writing robust, maintainable code

Benefits of exceptions (summary)

2617-214/514

class BufferBoundsException extends Throwable {
 public BufferBoundsException(String message) {
 ...
 }
}

void atIndex(int[] buff, int i) throws BufferBoundsException {
 if (buff.length <= i)
 throw new BufferBoundsException(“...”);
 return buff[i];
}

Defining & using Exception Types
This is Java code

2717-214/514

Exception Handling

● It’s still wise to guard for “obvious” unchecked exceptions

● Or explicitly signal the problem, recall:

● Why is this better than letting the index fail?

if (arr.length > 10)
 return arr[10];

if (buff.length <= i)
 throw new BufferBoundsException(“...”);
return buff[i];

This is Java code

2817-214/514

Exception Handling

● It’s still wise to guard for “obvious” unchecked exceptions

● Or explicitly signal the problem, recall:

● Why is this better than letting the index fail?
○ BufferBoundsException can be a checked exception!
○ Which forces someone to handle it
○ Here, we declared: atIndex(int[] buff, int i) throws BufferBoundsException
○ So every calling method must handle it, or throw it on

if (arr.length > 10)
 return arr[10];

if (buff.length <= i)
 throw new BufferBoundsException(“...”);
return buff[i];

This is Java code

3017-214/514

● Document all exceptions thrown by each method in the specification
○ Unchecked as well as checked (EJ Item 74)

○ But don’t declare unchecked exceptions!

● Include failure-capture info in detail message (Item 75)

throw new IlegalArgumentException(
 "Quantity must be positive: " + quantity);

Guidelines for using exceptions
This is Java code

3117-214/514

● Document all exceptions thrown by each method
○ Unchecked as well as checked (EJ Item 74)

○ But don’t declare unchecked exceptions!

● Include failure-capture info in detail message (Item 75)

● Don’t ignore exceptions (EJ Item 77)

throw new IllegalArgumentException(
 "Quantity must be positive: " + quantity);

Guidelines for using exceptions (2)

try {
 processPayment(payment);
}
catch (Exception e) { // BAD!
}

This is Java code

3217-214/514

Cleanup

Exception handling often also supports cleaning up

openMyFile();
try {
 writeMyFile(theData); // This may throw an error
} catch(e) {
 handleError(e); // If an error occurred, handle it
} finally {
 closeMyFile(); // Always close the resource
}

https://developer.mozilla.org/en-US/docs/Web/JavaScript/Guide/Control_flow_and_error_handling

This is JavaScript code

3317-214/514

Manual Resource Termination

Is ugly and error-prone, especially for multiple resources

● Even good programmers usually get it wrong
○ Sun’s Guide to Persistent Connections got it wrong in code that claimed to be exemplary

○ Solution on page 88 of Bloch and Gafter’s Java Puzzlers is badly broken; no one noticed
for years

● 70% of the uses of close in the JDK itself were wrong in 2008!
● Even the “correct” idioms for manual resource management are deficient

3417-214/514

Automatically closes resources!

try (DataInputStream dataInput =
 new DataInputStream(new FileInputStream(fileName))) {
 return dataInput.readInt();
} catch (IOException e) {
 ...
}

The solution: try-with-resources
This is Java code

3517-214/514

Exceptions Across Languages

Alas, try-with-resources does not exist in JS/TS

● Neither does ‘throws’

Exception structures differ radically across languages

● Most languages have ‘try/catch’ and ‘throw’
○ Some have ‘finally’

● Python has ‘with’ for resource management (since 2006)
○ C# has ‘using’

○ Java’s try-with-resources was added in 2011

● Go returns an error-typed value, to be checked for nullity

3617-214/514

Exceptions Across Languages

Use what you have

● When possible, be explicit
○ Use the compiler to enforce, where possible

○ Proactively avoid corner-cases, where not

■ Unchecked exceptions, JS/TS

● Make exceptions part of your contract

3717-214/514

Outline

1. Exception Handling
2. Unit Testing
3. Specifications

3817-214/514

Functional correctness
● Compiler ensures types are correct (type-checking)

○ Prevents many runtime errors, such as “Method Not Found” and “Cannot add boolean to int”

3917-214/514

Functional correctness
● Compiler ensures types are correct (type-checking)

○ Prevents many runtime errors, such as “Method Not Found” and “Cannot add boolean to int”

● How to ensure functional correctness, beyond type correctness?

4017-214/514

One option: Formal verification
● Use mathematical methods to prove correctness with respect to

the formal specification

● Formally prove that all possible executions of an implementation
fulfill the specification

● Manual effort; partial automation; not automatically decidable

4117-214/514

Another option: Testing

● Executing the program with selected inputs in a controlled environment
● Goals

○ Reveal bugs, so they can be fixed (main goal)

○ Assess quality

○ Clarify the specification, documentation

● Testing is related to contracts
○ Because we need to know what to test!

4217-214/514

Re: Formal verification, Testing

"Testing shows the presence, not the
absence of bugs.”

Edsger W. Dijkstra, 1969

“Beware of bugs in the above code; I
 have only proved it correct, not tried it.”

Donald Knuth, 1977

4317-214/514 Binary search from java.util.Arrays

Q: Who’s right, Dijkstra or Knuth?
1: public static int binarySearch(int[] a, int key) {
2: int low = 0;
3: int high = a.length - 1;
4:
5: while (low <= high) {
6: int mid = (low + high) / 2;
7: int midVal = a[mid];
8:
9: if (midVal < key)
10: low = mid + 1
11: else if (midVal > key)
12: high = mid - 1;
13: else
14: return mid; // key found
15: }
16: return -(low + 1); // key not found.
17: } This is Java code

4417-214/514

1: public static int binarySearch(int[] a, int key) {
2: int low = 0;
3: int high = a.length - 1;
4:
5: while (low <= high) {
6: int mid = (low + high) / 2;
7: int midVal = a[mid];
8:
9: if (midVal < key)
10: low = mid + 1
11: else if (midVal > key)
12: high = mid - 1;
13: else
14: return mid; // key found
15: }
16: return -(low + 1); // key not found.
17: }

Binary search from java.util.Arrays

Q: Who’s right, Dijkstra or Knuth?

Fails if low + high > MAXINT (231 - 1)
Sum overflows to negative value

Spec: sets mid to the average of low and
high, truncated down to the nearest integer.

4517-214/514

A: They’re both right
● There is no silver bullet!

● Use all the tools at your disposal

○ Careful design

○ Testing

○ Formal methods (where appropriate)

○ Code reviews

○ …

● You’ll still have bugs, but hopefully fewer.

4617-214/514

Manual testing

● Live System?

● Extra Testing System?

● Check output / assertions?

● Effort, Costs?

● Reproducible?

4717-214/514

Automated testing

● Execute a program with specific inputs,
check output for expected values

● Easier to test small pieces than testing user interactions

● Set up testing infrastructure

● Execute tests regularly

○ After every change

4817-214/514

Testing

How do we know
this works?

int isPos(int x) {
 return x >= 1;
}

This is Java code

4917-214/514

Testing

How do we know
this works?

Testing

Are we done?

int isPos(int x) {
 return x >= 1;
}

@Test
void testIsPos() {
 assertTrue(isPos(1));
}

This is Java code

5017-214/514

Testing

How do we know
this works?

Testing

Are we done?

int isPos(int x) {
 return x >= 1;
}

@Test
void testIsPos() {
 assertTrue(isPos(1));
}

@Test
void testNotPos() {
 assertFalse(isPos(-1));
}

This is Java code

5117-214/514

Testing

How do we know
this works?

Testing

Are we done?

int isPos(int x) {
 return x >= 0; // What if?
}

@Test
void testIsPos() {
 assertTrue(isPos(1));
}

@Test
void testNotPos() {
 assertFalse(isPos(-1));
}

This is Java code

5217-214/514

Testing

How do we know
this works?

Testing

Are we done?

int isPos(int x) {
 return x >= 0; // What if?
}

@Test
void test1IsPos() {
 assertTrue(isPos(1));
}

@Test
void test0IsNotPos() {
 assertFalse(isPos(0)); // Fails
}

This is Java code

5317-214/514

Boundary Value Testing

We cannot test for every integer.

Choose representative values:
1 for positives, -1 for negatives

And boundary cases: 0 is a likely
candidate for mistakes

● Think like an attacker

int isPos(int x) {
 return x >= 0; // What if?
}

@Test
void test1IsPos() {
 assertTrue(isPos(1));
}

@Test
void test0IsNotPos() {
 assertFalse(isPos(0)); // Fails
}

This is Java code

5517-214/514

Unit Tests

● For “small” units: methods, classes, subsystems
○ Unit is smallest testable part of system

○ Test the parts before assembling them

○ Intended to catch local bugs

● Typically (but not always) written by developers
● Many small, fast-running, independent tests
● Few dependencies on other system parts or environment
● Insufficient, but a good starting point

5617-214/514

For Java: JUnit

● Popular unit-testing framework for Java
● Easy to use
● Tool support available, e.g., IntelliJ integration

5717-214/514

For Java: JUnit

Syntax: import static org.junit.Assert.*;

class PosTests {

 @Before
 void setUp() {
 // Anything you want to run
 before each test
 }

 @Test
 void test1IsPos() {
 assertTrue(isPos(1));
 }
}

This is Java code

5817-214/514

For TS: Jest

● In particular, ts-jest
○ Many other options; your choice

● Requires a few files:
○ jest.config.js, to specify testing mode

○ package.json with (ts-)jest dependencies

● Provides useful features:
○ ‘test’, ‘expect’ (= ‘assert’)

○ ‘toBe’, ‘toEqual’

○ ‘fn’, for Mocking (later)

5917-214/514

Test organization

● Conventions (not requirements)

● Have a test class FooTest for each public
class Foo

● Have a source directory and a test directory
○ Store FooTest and Foo in the same package

○ Tests can access members with default (package)
visibility

6017-214/514

Writing Testable Code

● Think about testing when writing code
○ Unit testing encourages you to write testable code

● Modularity and testability go hand in hand
○ Same test can be used on multiple implementations of an interface!

● Test-Driven Development
○ A design and development method in which you write tests before you write the code

○ Writing tests can expose API weaknesses!

6117-214/514

Run Tests Often

● You should only commit code that passses all tests…
● So run tests before every commit
● If test suite becomes too large & slow for rapid feedback

○ Run local package-level tests (“smoke tests”) frequently

○ Run all tests nightly

○ Medium sized projects often have thousands of test cases

● Continuous integration (CI) servers help to scale testing
○ We ask you to use GitHub Actions in this class

6317-214/514

Outline

1. Exception Handling
2. Unit Testing
3. Specifications – to be continued on Tuesday

6417-214/514

Outlook

Homework 2 is all about testing

● Specification-testing the FlashCard system
● Some structural testing as well

○ More next Tuesday, also on coverage, test-case design

● To be released soon

6517-214/514

Summary

● Being explicit about program behavior is ideal
○ Helps you detect bugs

○ Forces handling of special cases -- a key source of bugs

○ Increases transparency of your program’s interface

● Specification comes in multiple forms
○ Explicit contracts, formal or informal

○ Compile-time signals, e.g. through exceptions

○ Testing helps clarify, often improve specifications

■ TDD takes this to the extreme

■ You rarely know your code until you test it

