Principles of Software Construction:
Objects, Design, and Concurrency

Test case design

Claire Le Goues Bogdan Vasilescu

Carnegie Mellon University
School of Computer Science

institute for
I S SOFTWARE
RESEARCH

17-214/514 1 [s

Administrative issues

e (Canvas submissions

o “Submit a link to your checkpoint commit here on Canvas in the form
https://github.com/CMU-17-214/<reponame>/commit/<commitid>.”

Waitlist-related homework 1 delays

Zoom livestream & recordings

Some OH are moving in person, check the calendar, they’re in TCS
Reading quizzes ahead of lecture for full participation credit

Quizzes will move to Canvas once the waitlisted students are on Canvas

Homework 2 is due next week: testing
o lots of useful stuff in recitation on Wednesday

e Homework 3 will be 2 weeks instead of 1 last semester

17-214/514 2 Lo

Last Week

e Contracts
e Exceptions
e Unit testing: small, simple, per-method tests

17-2 14/5 14 3 Sf gégi{%

Little Quiz

https://forms.gle/NyCauRczqJZdSzmag8

17-214/514 a4 |

https://forms.gle/NyCauRczqJZdSzmg8

Today

e Specifications
e Specification vs. Structural testing

e Testing Strategies
o Structural Testing: Statement, branch, path coverage; limitations
o Specification Testing: Boundary value analysis, combinatorial testing, decision tables

e \Writing testable code & good tests

17-214/514 5 sl

RESEARCH

Specifications and testing are closely related

Q: What exactly do you test given some method?

e \What it claims to do: specification testing — the contract
e \What it does: structural testing

17-214/514 6 [i

RRRRRRRR

How to Encode Specifications?

Most common: prose specification.

17-214/514

/

class Algorithms {

*

* % % X

/**

This method finds the
shortest distance between two
vertices. It returns -1 if
the two nodes are not
connected. */

int shortestDistance(..) {..}

Recall the earlier example?
(Probably too unstructured)

tttttttttttt

How to Encode Specifications?

Most common: prose specification.
Document:

Every parameter

Return value

Every exception (checked and unchecked)
What the method does, including

Primary purpose
Any side effects

O
O
O Any thread safety issues
O

Any performance issues

17-214/514

How to Encode Specifications?

Most common: prose specification.

Document:

©)

©)
©)
©)

17-214/514

Every parameter

Return value

Every exception (checked and unchecked)
What the method does, including

Primary purpose
Any side effects
Any thread safety issues
Any performance issues

Do not document
implementation details

Known as overspecification

This is Java code

Docstring Specification

class RepeatingCardOrganizer {

public boolean isComplete(CardStatus card) {
return card.getResults().stream()
.filter(isSuccess -> isSuccess)
.count() >= this.repetitions;

}
}

17-214/514 13 Lo

Docstring Specification

class RepeatingCardOrganizer {

/**
* Checks if the provided card has been answered correctly the required
number of times.

* @param card The {@link CardStatus} object to check.

* @return {@code true} if this card has been answered correctly at least
{@code this.repetitions} times.

*
/
public boolean isComplete(CardStatus card) {
return card.getResults().stream()
.filter(isSuccess -> isSuccess)
.count() >= this.repetitions;

}

}

17-214/514

14 [

This is Java code

institute for
SOFTWARE
RESEARCH

This is Java code

Docstring Specification
/**

* Checks if the provided card has been answered correctly the required
number of times.

* @param card The {@link CardStatus} object to check.

* @return {@code true} if this card has been answered correctly at least
{@code this.repetitions} times.

*/

public boolean isComplete(CardStatus card);

// What is specified?

17-214/514 16 Lo

This is Java code

Docstring Specification
/**

* Checks if the provided card has been answered correctly the required
number of times.

* @param card The {@link CardStatus} object to check.

* @return {@code true} if this card has been answered correctly at least
{@code this.repetitions} times.

*/

public boolean isComplete(CardStatus card);

// What is specified?
// - What the method does (but not how)

17-214/514 17 Lo

This is Java code

Docstring Specification
/**

* Checks if the provided card has been answered correctly the required
number of times.

* @param card The {@link CardStatus} object to check.

* @return {@code true} if this card has been answered correctly at least
{@code this.repetitions} times.

*/

public boolean isComplete(CardStatus card);

// What is specified?
// - What the method does (but not how)
// - Parameter type (no constraints)

17-214/514 18 Lo

This is Java code

Docstring Specification
/**

* Checks if the provided card has been answered correctly the required
number of times.
* @param card The {@link CardStatus} object to check.

* @return {@code true} if this card has been answered correctly at least
{@code this.repetitions} times.

*/
public boolean isComplete(CardStatus card);

// What is specified?

// - What the method does (but not how)

[/ - Parameter type (no constraints)

// - Return constraints: “at least” this.repetitions correct answers

17-214/514 19 Lo

Specification vs. Structural Testing

e Specification-based testing: test solely the specification
o Ignores implementation, use inputs/outputs only

o Typical objective: Cover all specified behavior

e Structural Testing: consider implementation
O Typical objective: Optimize for various kinds of code coverage

B Line, Statement, Data-flow, etc.

17-214/514 25 sl

RESEARCH

Structural Testing: a closer look

Takes into account the internal mechanism of a system (IEEE, 1990).
e Approaches include tracing data and control flow through a program

17'214/514 30 Sf gé;{"u;“a%

Case Study

Assume various Wallets

public interface Wallet {
boolean pay(int cost);

int getValue();

17-214/514 31 Lo

DebitWallet.pay()

What should we test in this code?

17-214/514

public boolean pay(int cost) {
if (cost <= this.money) {
this.money -= cost;
return true;

}

return false;

DebitWallet.pay()

17-214/514

public boolean pay(int cost) {
if (cost <= this.money) {
this.money -= cost;
return true;

}

return false;

}

new DebitWallet(160).pay(10);

||||||||||||
SSSSSSSS
E H

DebitWallet.pay()

17-214/514

public boolean pay(int cost) {
if (cost <= this.money) {
this.money -= cost;
return true;

}

return false;

}

new DebitWallet(0).pay(10);

||||||||||||
SSSSSSSS
E H

CreditWallet.pay()

How about now?

17-214/514

public boolean pay(int cost, boolean useCredit) {
if (useCredit) {
if (this.credit + cost <= this.maxCredit) {
this.credit += cost;
return true;

}

}

if (cost <= this.cash) {
this.cash -= cost;
return true;

}

return false;

35 [Hj

institute for
SOFTWARE
RESEARCH

CreditWallet.pay()

public boolean pay(int cost, boolean useCredit) {
if (useCredit) {
if (enoughCredit) {
return true;
}
}

if (enoughCash) {
return true;
}

return false;

Exercise: think about as many test scenarios as you can

17-214/514 36 Lo

CreditWallet.pay()

public boolean pay(int cost, boolean useCredit) {
if (useCredit) {
if (enoughCredit) {
return true;

}
) Credit enough enough C
if (enoughCash) { . Cash ~

return true;
) Pass

return false; ‘

17-214/514 37 Lo

CreditWallet.pay()

public boolean pay(int cost, boolean useCredit) {
if (useCredit) {
if (enoughCredit) {
return true;
}
}

enough |enough
t
if (enoughCash) { . useCredit | credit | Cash M Coverage

return true;

} Pass
; return false;) - i T Pass .
3 F - F Fails Statement

17-214/514 38 Lo

010

17-214/514

slido

Join at slido.com
#833921

(@ Start presenting to display the joining instructions on this slide.

https://www.sli.do/features-google-slides?interaction-type=Sm9pbg%3D%3D
https://www.sli.do/features-google-slides?payload=eyJwcmVzZW50YXRpb25JZCI6IjFmN3U4QmRhTVFCRUJ1VGVGTTJTM3RLR2xnU2Zxa2h3WDcxT2RXa05WdjBRIiwic2xpZGVJZCI6IlNMSURFU19BUEk0NTAxMTQ5MjdfMCJ9

Coverage
We have tested every statement; are we done?
Depends on desired coverage:

e Provide at least one test for distinct types of behavior
e Typically on control flow paths through the program
e Statement, branch, basis paths, MC/DC

17-214/514 40 Sf 2?}3}&{%

Structures in Code

® ®
®
®
® L]
sequence If .. then If .. then .. else
9
L
Do .. While While .. Do Switch

17-214/514 a1 | s

RESEARCH

Control-Flow of CreditCard.pay()

public boolean pay(int cost, boolean useCredit) {
if (useCredit) {
if (enoughCredit) {
return true;
}
}

if (enoughCash) {
return true;
Y

return false;

17-214/514

enough

pay

w/credit

Control-Flow of CreditCard.pay()

enough |enough
.M

Pass
enough pay
2 F - T Pass - Cash w/credit
3 F - F Fails Statement

17-214/514

Control-Flow of CreditCard.pay()

enough |enough
.M

Pass
enough pay
2 F - T Pass - Cash w/credit
3 F - F Fails Statement

17-214/514

Control-Flow of CreditCard.pay()

enough |enough
.M

Pass
enough pay
2 F - T Pass - Cash w/credit
3 F - F Fails Statement

17-214/514

CreditWallet.pay()

public boolean pay(int cost, boolean useCredit) {
if (useCredit) {
if (enoughCredit) {
return true;
}
}

enough | enough
Credit C
if (enoughCash) { . useCredit | credit | cash M overage

return true;

} T Pass
} return false; 5 - i T Pass B
3 F - F Fails Statement.
4 T F T Pass

17-214/514 46 Lo

Path Coverage

We have seen every condition ... what else is missing?

17-214/514 47 o

RESEARCH

Path Coverage

We have seen every condition ... but not every path.

e 3 conditions, each with two values = 8 permutations
e Some permutations are impossible
e Still one path left

17-214/514 48 Lo

Control-Flow of CreditCard.pay()

Paths:

e {true, true}. pay w/credit
e {false, true}: pay w/cash
e {false, false}: fail

17-214/514 49 | sk

Control-Flow of CreditCard.pay()

Paths:

{true, true}: pay w/credit
{false, true}: pay w/cash
{false, false}: fail

{true, false, true}: pay w/cash
after failing credit

17-214/514 50 Sf g

Control-Flow of CreditCard.pay()

Paths:

{true, true}: pay w/credit

{false, true}: pay w/cash

{false, false}: fail

{true, false, true}: pay w/cash
after failing credit

e {true, false, false}: try credit, but
fail, and no cash

17-214/514 51 Sf ;g}éﬁ";}g

CreditWallet.pay()

public boolean pay(int cost, boolean useCredit) {
if (useCredit) {
if (enoughCredit) {
return true;

}
} enough enough

return true,

} T Pass
} return false;) - i T Pass B
3 F - F Fails Statement
4 T F T Pass
5 T F F Fails

17-214/514 52 Sf 2?}3}{1{%

BitCoinWallet.pay()

17-214/514

public boolean pay(int cost) {
int currValue;
while ((currValue = getValue()) < cost) {
// Just wait.
}

this.btc -= cost / currValue;
return true;

}

public int getValue() {
return (int)
(this.btc * Math.pow(2, 206*Math.random()));

||||||||||||
SSSSSSSS
E H

Control-flow of BitCoinWallet.pay()

BTC value
enough?
true

What are all the paths?

17-214/514 54 [s

RRRRRRRR

Control-flow of BitCoinWallet.pay()

What are all the paths?

BTC value
{true}
{false, true} true
{false, false, true} false

{false, false, false, true}

17'214/514 55 Sf gé}?i{%

Control-flow of BitCoin\Wallet.pay()

Perfect “general” path coverage is elusive

But “adequate” coverage criteria exist:

BTC value
‘ enough?

false

e Basis paths: each path must cover one new edge

o {true} and {false, true} are sufficient
o Asisjust {false, true}

e Loop adequacy: iterate each loop zero, one, and 2+ times

17-214/514 56 Sf ;?;i’f’.;{":

Coverage and Quality

e Question 1: Is there a defect?

else

17-214/514 58 [s

Coverage and Quality

e Question 2: Can we achieve 100%
statement coverage and miss the

defect?
then @
else

17-214/514 59 |Ij o

Coverage and Quality

Question 3: Can we achieve 100%
branch coverage and miss the defect?

17-214/514 60 [Jj i

slido

f_ Audience Q&A Session

(Start presenting to display the audience questions on this slide.

17-214/514 61 [

https://www.sli.do/features-google-slides?interaction-type=UUE%3D
https://www.sli.do/features-google-slides?payload=eyJwcmVzZW50YXRpb25JZCI6IjFmN3U4QmRhTVFCRUJ1VGVGTTJTM3RLR2xnU2Zxa2h3WDcxT2RXa05WdjBRIiwic2xpZGVJZCI6IlNMSURFU19BUEkxNzY4ODc5MTUyXzAifQ%3D%3D

Outline

e Structural Testing Strategies
e Writing testable code & good tests
e Specification Testing Strategies

17-2 14/5 14 62 Sf g\é}}:i{%

Writing Testable Code

What is the problem with this?

public boolean hasHeader(String path) throws IOException {
List<String> lines = Files.readAllLines(Path.of(path));
return !lines.get(0).isEmpty()

}

// complete control-flow coverage!
hasHeader(“cards.csv”) // true

17-214/514

Writing Testable Code

What is the problem with this?

17-214/514

public boolean hasHeader(String path) throws IOException {
List<String> lines = Files.readAllLines(Path.of(path));
return !lines.get(0).isEmpty()

}

// to achieve a ‘false’ output without having a test input file:
try {
Path tempFile = Files.createTempFile(null, null);
Files.write(tempFile, "\n".getBytes(StandardCharsets.UTF_8));
hasHeader (tempFile.toFile().getAbsolutePath()); // false
} catch (IOException e) {
e.printStackTrace();
}

Writing Testable Code

Exercise: rewrite to make this easier

e And: what would you test?

public boolean hasHeader(String path) throws IOException {
List<String> lines = Files.readAllLines(Path.of(path));
return !lines.get(0).isEmpty()

}

17'2 14/5 14 65 Sf gét;t;;\tsi%

Writing Testable Code

Aim to write easily testable code

e \Which is almost by definition more modular

public List<String> getlLines(String path) throws IOException {
return Files.readAllLines(Path.of(path));
}

public boolean hasHeader(List<String> lines) {
return !lines.get(0).isEmpty()
}

// Test:
// - hasHeader with empty, non-empty first line
// - getLines (if you must) with null, real path

17-214/514 66 Lo

Writing Testable Code

What is the problem with this?

public String[] getHeaderParts(List<String> lines) {
if (!'lines.isEmpty()) {
String header = lines.get(9);
if (header.contains(",")) {
return header.split(",");
} else {
return new String[0];
}

} else {
return null;
}

17-214/514 67 S3F st

Writing Testable Code

Split functionality into easily testable units

public String getFirstLine(List<String> lines) {
if (!lines.isEmpty()) {
return lines.get(0);
} else {
return null;
}

}

public String[] getHeaderParts(String header) {
if (header.contains(",")) {
return header.split(",");
} else {

return new String[0];
}

17-214/514 }

Clean Testing

What is the problem with this?

public String[] getHeaderParts(String header) {
if (header.contains(",")) {
return header.split(",");
} else {
return null;
}
}
@Test
public void testGetHeaderParts() {
for (String header : List.of("line", "", "one,two")) {
String[] parts = getHeaderParts(line);
if (header.contains(",")) assertNull(parts);
else assertEqual(header.split(","), parts.length);
}
17-214/514 ;

||||||||||||
SSSSSSSS
E H

Clean Testing

Keep tests simple, small

public String[] getHeaderParts(String header) {
if (header.contains(",")) {
return header.split(",");
} else {
return null;
}

}

@Test
public void testGetHeaderPartsNoComma() {

String[] parts = getHeaderParts("line");
assertNull(parts);

}

@Test
17-214/514 "~ 70 [ises

Testing Best Practices

Coverage is useful, but no substitute for your insight

e Cannot capture all paths
o Especially beyond “unit”
o Write testable code

e You may be testing buggy code

o (add regression tests)

e Aim for at least branch coverage
o And think through scenarios that demand more

17-214/514

71 [Hi

institute for
SOFTWARE
RESEARCH

Bonus: Coding like the tour the france

public boolean foo() {
try
synchronized () {
if
}else {

%or 0{
if () {

https://thedailywtf.com/articles/coding-like-the-tour-de-france

72 [Hi

institute for
SOFTWARE
RESEARCH

https://thedailywtf.com/articles/coding-like-the-tour-de-france

Outline

e Structural Testing Strategies
e \Writing testable code & good tests
e Specification Testing Strategies

17-214/514 73 Sf 2?;“5*}{1{%

slido

f_ Audience Q&A Session

(Start presenting to display the audience questions on this slide.

17-214/514 74 [s

https://www.sli.do/features-google-slides?interaction-type=UUE%3D
https://www.sli.do/features-google-slides?payload=eyJwcmVzZW50YXRpb25JZCI6IjFmN3U4QmRhTVFCRUJ1VGVGTTJTM3RLR2xnU2Zxa2h3WDcxT2RXa05WdjBRIiwic2xpZGVJZCI6IlNMSURFU19BUEkxNDExNDU1OTA2XzAifQ%3D%3D

Back to Specification Testing

What would you test differently in this situation?

e Previously identified five paths through the code.
o Are there still five given only specification?

e Should we test anything new?

/** Pays with credit if useCredit is set and enough
* credit is available; otherwise, pays with cash if

v
public boolean pay(int cost, boolean useCredit);

* enough cash is available; otherwise, returns false.

17-214/514

o
institute for
75 [H] o

Back to Specification Testing

What would you test differently in this situation?

e ‘“if useCredit is set and enough credit is available”:
o Test both true, either/both false

e “pays with cash if enough cash is available; otherwise”:
o Test true, false

e Could to this with as few as three test cases

/** Pays with credit if useCredit is set and enough
* credit is available; otherwise, pays with cash if

v
public boolean pay(int cost, boolean useCredit);

* enough cash is available; otherwise, returns false.

17-214/514

o
institute for
76 [H]f o

Specification Testing

We need a strategy to identify plausible mistakes

17-214/514 77 [o

RRRRRRRR

Specification Testing

We need a strategy to identify plausible mistakes

e Random: avoids bias, but inefficient
o Yet potentially very valuable, because automatable
o Not for today

17-214/514 78 Lo

Boundary Value Testing

We need a strategy to identify plausible mistakes

e Boundary Value Testing: errors often occur at boundary conditions

o E.qg.

*/
public boolean pay(int cost) {
if (cost | this.money) {
this.money -= cost;
return true;

}

return false;

/** Returns true and subtracts cost if enough
* money is available, false otherwise.

17-214/514

o
institute for
79 [H] o

Boundary Value Testing

We need a strategy to identify plausible mistakes

e Boundary Value Testing: errors often occur at boundary conditions
o ldentify equivalence partitions: regions where behavior should be the same
m cost <= money: true, cost > money: false
m Boundary value: cost == money

/** Returns true and subtracts cost if enough
* money is available, false otherwise.
%)
public boolean pay(int cost) {
if (cost | this.money) {
this.money -= cost;
return true;

}

return false;

17-214/514 80 sl

RESEARCH

Boundary Value Testing

We need a strategy to identify plausible mistakes

e Boundary Value Testing: errors often occur at boundary conditions

o Select: a nominal/normal case, a boundary value, and an abnormal case
o Useful for few categories of behavior (e.g., null/not-null) per value

e Test:cost < credit, cost == credit, cost > credit,
cost < cash, cost == cash, cost > cash

/** Pays with credit if useCredit is set and enough
* credit is available; otherwise, pays with cash if

v
public boolean pay(int cost, boolean useCredit);

* enough cash is available; otherwise, returns false.

17-214/514

o
1 institute for
| S SOFTWARE
RESEARCH

Combinatorial Testing

We need a strategy to identify plausible mistakes

e Combinatorial Testing: focus on tuples of boundary values
o Captures bugs in interactions between risky inputs
o Rarely need to test pairs of “invalid” values (cost too high for credit & cash)

/** Pays with credit if useCredit is set and enough
* credit is available; otherwise, pays with cash if

v
public boolean pay(int cost, boolean useCredit);

* enough cash is available; otherwise, returns false.

17-214/514

82 [Hi

institute for
SOFTWARE
RESEARCH

Combinatorial Testing

We need a strategy to identify plausible mistakes

e Combinatorial Testing: focus on tuples of boundary values
o Captures bugs in interactions between risky inputs
o Rarely need to test pairs of “invalid” values (cost too high for credit & cash)

e Include: {cost > credit && cost == cash}
e Maybe: {cost < credit && cost == cash}

/** Pays with credit if useCredit is set and enough
* credit is available; otherwise, pays with cash if

v
public boolean pay(int cost, boolean useCredit);

* enough cash is available; otherwise, returns false.

17-214/514

= institute for
83 [H] e

Decision Tables

We need a strategy to identify plausible mistakes

e Decision Tables

o You've seen one already U useCredit enough | enough
o Enumerate condition options case
m Leave outimpossibles 1 T T _ Pass
m Identify “don’t-matter” values
o Useful for redundant input domains 2 F - T Pass
3 F - F Fails
4 T F T Pass
5 T F F Fails

17-214/514 84 Lo

Specification Tests

So what is the right granularity?

e Itdepends

e \We are still aiming for coverage

o Just of specifications, and their innumerable implementations
o BVA (& its cousins), decision tables tend to provide good coverage

17-214/514 85 sl

RESEARCH

Structural Testing vs. Specification Testing

You will typically have both code & (prose) specification

e Test specification, but know that it can be underspecified
e TJest implementation, but not to the point that it cannot change

e Use testing strategies that leverage both
o There is a fair bit of overlap; e.g., BVA yields useful branch coverage

17-214/514

Further Testing Strategies

Many more aspects, some later in this course:

e Stubbing/Mocking, to avoid testing dependencies

e Integration testing: scenarios that span units

o With unit testing one should not test for an expected usage scenario
m e.g., in HW2: that everything gets called from Main

o This lets one make some simplifying assumptions
m e.g., that every card is seen equally often

e Beyond correctness: performance, security

17-214/514

87 [Hi

institute for
SOFTWARE
RESEARCH

Summary

Testing comprehensively is hard

e Tailor to your task: specification vs. structural testing

o Do not assume unstated specifications for HW 2; spend your energy wisely
e Pick a strategy, or a few

o Be systematic; defend your decisions
e Tomorrow’s recitation covers:

o Unit test best practices

o Test organization
o Running tests, coverage

17-214/514 88 sl

RESEARCH

