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Administrative issues

e (Canvas submissions

o “Submit a link to your checkpoint commit here on Canvas in the form
https://github.com/CMU-17-214/<reponame>/commit/<commitid>.”

Waitlist-related homework 1 delays

Zoom livestream & recordings

Some OH are moving in person, check the calendar, they’re in TCS
Reading quizzes ahead of lecture for full participation credit

Quizzes will move to Canvas once the waitlisted students are on Canvas

Homework 2 is due next week: testing
o lots of useful stuff in recitation on Wednesday

e Homework 3 will be 2 weeks instead of 1 last semester
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Last Week

e Contracts
e Exceptions
e Unit testing: small, simple, per-method tests
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Little Quiz

https://forms.gle/NyCauRczqJZdSzmag8
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https://forms.gle/NyCauRczqJZdSzmg8

Today

e Specifications
e Specification vs. Structural testing

e Testing Strategies
o  Structural Testing: Statement, branch, path coverage; limitations
o Specification Testing: Boundary value analysis, combinatorial testing, decision tables

e \Writing testable code & good tests
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Specifications and testing are closely related

Q: What exactly do you test given some method?

e \What it claims to do: specification testing — the contract
e \What it does: structural testing
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How to Encode Specifications?

Most common: prose specification.
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/

class Algorithms {

*

* % % X

/**

This method finds the
shortest distance between two
vertices. It returns -1 if
the two nodes are not
connected. */

int shortestDistance(..) {..}

Recall the earlier example?
(Probably too unstructured)

tttttttttttt



How to Encode Specifications?

Most common: prose specification.
Document:

Every parameter

Return value

Every exception (checked and unchecked)
What the method does, including

Primary purpose
Any side effects

O
O
O  Any thread safety issues
O

Any performance issues
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How to Encode Specifications?

Most common: prose specification.

Document:

©)

©)
©)
©)
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Every parameter

Return value

Every exception (checked and unchecked)
What the method does, including

Primary purpose
Any side effects
Any thread safety issues
Any performance issues

Do not document
implementation details

Known as overspecification



This is Java code

Docstring Specification

class RepeatingCardOrganizer {

public boolean isComplete(CardStatus card) {
return card.getResults().stream()
.filter(isSuccess -> isSuccess)
.count() >= this.repetitions;

}
}
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Docstring Specification

class RepeatingCardOrganizer {

/**
* Checks if the provided card has been answered correctly the required
number of times.

* @param card The {@link CardStatus} object to check.

* @return {@code true} if this card has been answered correctly at least
{@code this.repetitions} times.

*
/
public boolean isComplete(CardStatus card) {
return card.getResults().stream()
.filter(isSuccess -> isSuccess)
.count() >= this.repetitions;

}

}
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This is Java code

Docstring Specification
/**

* Checks if the provided card has been answered correctly the required
number of times.

* @param card The {@link CardStatus} object to check.

* @return {@code true} if this card has been answered correctly at least
{@code this.repetitions} times.

*/

public boolean isComplete(CardStatus card);

// What is specified?
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This is Java code

Docstring Specification
/**

* Checks if the provided card has been answered correctly the required
number of times.

* @param card The {@link CardStatus} object to check.

* @return {@code true} if this card has been answered correctly at least
{@code this.repetitions} times.

*/

public boolean isComplete(CardStatus card);

// What is specified?
// - What the method does (but not how)
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This is Java code

Docstring Specification
/**

* Checks if the provided card has been answered correctly the required
number of times.

* @param card The {@link CardStatus} object to check.

* @return {@code true} if this card has been answered correctly at least
{@code this.repetitions} times.

*/

public boolean isComplete(CardStatus card);

// What is specified?
// - What the method does (but not how)
// - Parameter type (no constraints)
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This is Java code

Docstring Specification
/**

* Checks if the provided card has been answered correctly the required
number of times.
* @param card The {@link CardStatus} object to check.

* @return {@code true} if this card has been answered correctly at least
{@code this.repetitions} times.

*/
public boolean isComplete(CardStatus card);

// What is specified?

// - What the method does (but not how)

[/ - Parameter type (no constraints)

// - Return constraints: “at least” this.repetitions correct answers
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Specification vs. Structural Testing

e Specification-based testing: test solely the specification
o Ignores implementation, use inputs/outputs only

o Typical objective: Cover all specified behavior

e Structural Testing: consider implementation
O  Typical objective: Optimize for various kinds of code coverage

B Line, Statement, Data-flow, etc.
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Structural Testing: a closer look

Takes into account the internal mechanism of a system (IEEE, 1990).
e Approaches include tracing data and control flow through a program
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Case Study

Assume various Wallets

public interface Wallet {
boolean pay(int cost);

int getValue();
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DebitWallet.pay()

What should we test in this code?
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public boolean pay(int cost) {
if (cost <= this.money) {
this.money -= cost;
return true;

}

return false;




DebitWallet.pay()
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public boolean pay(int cost) {
if (cost <= this.money) {
this.money -= cost;
return true;

}

return false;

}

new DebitWallet(160).pay(10);

||||||||||||
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DebitWallet.pay()
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public boolean pay(int cost) {
if (cost <= this.money) {
this.money -= cost;
return true;

}

return false;

}

new DebitWallet(0).pay(10);
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CreditWallet.pay()

How about now?
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public boolean pay(int cost, boolean useCredit) {
if (useCredit) {
if (this.credit + cost <= this.maxCredit) {
this.credit += cost;
return true;

}

}

if (cost <= this.cash) {
this.cash -= cost;
return true;

}

return false;
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CreditWallet.pay()

public boolean pay(int cost, boolean useCredit) {
if (useCredit) {
if (enoughCredit) {
return true;
}
}

if (enoughCash) {
return true;
}

return false;

Exercise: think about as many test scenarios as you can
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CreditWallet.pay()

public boolean pay(int cost, boolean useCredit) {
if (useCredit) {
if (enoughCredit) {
return true;

}
) Credit enough enough C
if (enoughCash) { . Cash ~

return true;
) Pass

return false; ‘
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CreditWallet.pay()

public boolean pay(int cost, boolean useCredit) {
if (useCredit) {
if (enoughCredit) {
return true;
}
}

enough |enough
t
if (enoughCash) { . useCredit | credit | Cash M Coverage

return true;

} Pass
; return false; ) - i T Pass .
3 F - F Fails Statement
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Coverage
We have tested every statement; are we done?
Depends on desired coverage:

e Provide at least one test for distinct types of behavior
e Typically on control flow paths through the program
e Statement, branch, basis paths, MC/DC
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Structures in Code

® ®
®
®
® L]
sequence If .. then If .. then .. else
9
L
Do .. While While .. Do Switch
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Control-Flow of CreditCard.pay()

public boolean pay(int cost, boolean useCredit) {
if (useCredit) {
if (enoughCredit) {
return true;
}
}

if (enoughCash) {
return true;
Y

return false;

17-214/514
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Control-Flow of CreditCard.pay()

enough |enough
.M

Pass
enough pay
2 F - T Pass - Cash w/credit
3 F - F Fails Statement
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Control-Flow of CreditCard.pay()

enough |enough
.M

Pass
enough pay
2 F - T Pass - Cash w/credit
3 F - F Fails Statement
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Control-Flow of CreditCard.pay()

enough |enough
.M

Pass
enough pay
2 F - T Pass - Cash w/credit
3 F - F Fails Statement
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CreditWallet.pay()

public boolean pay(int cost, boolean useCredit) {
if (useCredit) {
if (enoughCredit) {
return true;
}
}

enough | enough
Credit C
if (enoughCash) { . useCredit | credit | cash M overage

return true;

} T Pass
} return false; 5 - i T Pass B
3 F - F Fails Statement.
4 T F T Pass
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Path Coverage

We have seen every condition ... what else is missing?
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Path Coverage

We have seen every condition ... but not every path.

e 3 conditions, each with two values = 8 permutations
e Some permutations are impossible
e Still one path left
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Control-Flow of CreditCard.pay()

Paths:

e {true, true}. pay w/credit
e {false, true}: pay w/cash
e {false, false}: fail
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Control-Flow of CreditCard.pay()

Paths:

{true, true}: pay w/credit
{false, true}: pay w/cash
{false, false}: fail

{true, false, true}: pay w/cash
after failing credit
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Control-Flow of CreditCard.pay()

Paths:

{true, true}: pay w/credit

{false, true}: pay w/cash

{false, false}: fail

{true, false, true}: pay w/cash
after failing credit

e {true, false, false}: try credit, but
fail, and no cash
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CreditWallet.pay()

public boolean pay(int cost, boolean useCredit) {
if (useCredit) {
if (enoughCredit) {
return true;

}
} enough enough

return true,

} T Pass
} return false; ) - i T Pass B
3 F - F Fails Statement
4 T F T Pass
5 T F F Fails
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BitCoinWallet.pay()

17-214/514

public boolean pay(int cost) {
int currValue;
while ((currValue = getValue()) < cost) {
// Just wait.
}

this.btc -= cost / currValue;
return true;

}

public int getValue() {
return (int)
(this.btc * Math.pow(2, 206*Math.random()));

||||||||||||
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Control-flow of BitCoinWallet.pay()

BTC value
enough?
true

What are all the paths?
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Control-flow of BitCoinWallet.pay()

What are all the paths?

BTC value
{true}
{false, true} true
{false, false, true} false

{false, false, false, true}
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Control-flow of BitCoin\Wallet.pay()

Perfect “general” path coverage is elusive

But “adequate” coverage criteria exist:

BTC value
‘ enough?

false

e Basis paths: each path must cover one new edge

o {true} and {false, true} are sufficient
o Asisjust {false, true}

e Loop adequacy: iterate each loop zero, one, and 2+ times
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Coverage and Quality

e Question 1: Is there a defect?

else
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Coverage and Quality

e Question 2: Can we achieve 100%
statement coverage and miss the

defect?
then @
else
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Coverage and Quality

Question 3: Can we achieve 100%
branch coverage and miss the defect?
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f_ Audience Q&A Session

( Start presenting to display the audience questions on this slide.
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Outline

e Structural Testing Strategies
e Writing testable code & good tests
e Specification Testing Strategies
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Writing Testable Code

What is the problem with this?

public boolean hasHeader(String path) throws IOException {
List<String> lines = Files.readAllLines(Path.of(path));
return !lines.get(0).isEmpty()

}

// complete control-flow coverage!
hasHeader(“cards.csv”) // true
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Writing Testable Code

What is the problem with this?
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public boolean hasHeader(String path) throws IOException {
List<String> lines = Files.readAllLines(Path.of(path));
return !lines.get(0).isEmpty()

}

// to achieve a ‘false’ output without having a test input file:
try {
Path tempFile = Files.createTempFile(null, null);
Files.write(tempFile, "\n".getBytes(StandardCharsets.UTF_8));
hasHeader (tempFile.toFile().getAbsolutePath()); // false
} catch (IOException e) {
e.printStackTrace();
}




Writing Testable Code

Exercise: rewrite to make this easier

e And: what would you test?

public boolean hasHeader(String path) throws IOException {
List<String> lines = Files.readAllLines(Path.of(path));
return !lines.get(0).isEmpty()

}
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Writing Testable Code

Aim to write easily testable code

e \Which is almost by definition more modular

public List<String> getlLines(String path) throws IOException {
return Files.readAllLines(Path.of(path));
}

public boolean hasHeader(List<String> lines) {
return !lines.get(0).isEmpty()
}

// Test:
// - hasHeader with empty, non-empty first line
// - getLines (if you must) with null, real path
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Writing Testable Code

What is the problem with this?

public String[] getHeaderParts(List<String> lines) {
if (!'lines.isEmpty()) {
String header = lines.get(9);
if (header.contains(",")) {
return header.split(",");
} else {
return new String[0];
}

} else {
return null;
}
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Writing Testable Code

Split functionality into easily testable units

public String getFirstLine(List<String> lines) {
if (!lines.isEmpty()) {
return lines.get(0);
} else {
return null;
}

}

public String[] getHeaderParts(String header) {
if (header.contains(",")) {
return header.split(",");
} else {

return new String[0];
}
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Clean Testing

What is the problem with this?

public String[] getHeaderParts(String header) {
if (header.contains(",")) {
return header.split(",");
} else {
return null;
}
}
@Test
public void testGetHeaderParts() {
for (String header : List.of("line", "", "one,two")) {
String[] parts = getHeaderParts(line);
if (header.contains(",")) assertNull(parts);
else assertEqual(header.split(","), parts.length);
}
17-214/514 ;
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Clean Testing

Keep tests simple, small

public String[] getHeaderParts(String header) {
if (header.contains(",")) {
return header.split(",");
} else {
return null;
}

}

@Test
public void testGetHeaderPartsNoComma() {

String[] parts = getHeaderParts("line");
assertNull(parts);

}

@Test
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Testing Best Practices

Coverage is useful, but no substitute for your insight

e Cannot capture all paths
o Especially beyond “unit”
o  Write testable code

e You may be testing buggy code

o (add regression tests)

e Aim for at least branch coverage
o And think through scenarios that demand more

17-214/514
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Bonus: Coding like the tour the france

public boolean foo() {
try
synchronized () {
if
}else {

%or 0{
if () {

https://thedailywtf.com/articles/coding-like-the-tour-de-france
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Outline

e Structural Testing Strategies
e \Writing testable code & good tests
e Specification Testing Strategies
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f_ Audience Q&A Session

( Start presenting to display the audience questions on this slide.
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Back to Specification Testing

What would you test differently in this situation?

e Previously identified five paths through the code.
o Are there still five given only specification?

e Should we test anything new?

/** Pays with credit if useCredit is set and enough
* credit is available; otherwise, pays with cash if

v
public boolean pay(int cost, boolean useCredit);

* enough cash is available; otherwise, returns false.

17-214/514
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Back to Specification Testing

What would you test differently in this situation?

e ‘“if useCredit is set and enough credit is available”:
o Test both true, either/both false

e “pays with cash if enough cash is available; otherwise”:
o Test true, false

e Could to this with as few as three test cases

/** Pays with credit if useCredit is set and enough
* credit is available; otherwise, pays with cash if

v
public boolean pay(int cost, boolean useCredit);

* enough cash is available; otherwise, returns false.

17-214/514
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Specification Testing

We need a strategy to identify plausible mistakes
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Specification Testing

We need a strategy to identify plausible mistakes

e Random: avoids bias, but inefficient
o Yet potentially very valuable, because automatable
o Not for today
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Boundary Value Testing

We need a strategy to identify plausible mistakes

e Boundary Value Testing: errors often occur at boundary conditions

o E.qg.

*/
public boolean pay(int cost) {
if (cost | this.money) {
this.money -= cost;
return true;

}

return false;

/** Returns true and subtracts cost if enough
* money is available, false otherwise.

17-214/514
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Boundary Value Testing

We need a strategy to identify plausible mistakes

e Boundary Value Testing: errors often occur at boundary conditions
o ldentify equivalence partitions: regions where behavior should be the same
m cost <= money: true, cost > money: false
m Boundary value: cost == money

/** Returns true and subtracts cost if enough
* money is available, false otherwise.
%)
public boolean pay(int cost) {
if (cost | this.money) {
this.money -= cost;
return true;

}

return false;
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Boundary Value Testing

We need a strategy to identify plausible mistakes

e Boundary Value Testing: errors often occur at boundary conditions

o Select: a nominal/normal case, a boundary value, and an abnormal case
o Useful for few categories of behavior (e.g., null/not-null) per value

e Test:cost < credit, cost == credit, cost > credit,
cost < cash, cost == cash, cost > cash

/** Pays with credit if useCredit is set and enough
* credit is available; otherwise, pays with cash if

v
public boolean pay(int cost, boolean useCredit);

* enough cash is available; otherwise, returns false.
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Combinatorial Testing

We need a strategy to identify plausible mistakes

e Combinatorial Testing: focus on tuples of boundary values
o Captures bugs in interactions between risky inputs
o Rarely need to test pairs of “invalid” values (cost too high for credit & cash)

/** Pays with credit if useCredit is set and enough
* credit is available; otherwise, pays with cash if

v
public boolean pay(int cost, boolean useCredit);

* enough cash is available; otherwise, returns false.

17-214/514
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Combinatorial Testing

We need a strategy to identify plausible mistakes

e Combinatorial Testing: focus on tuples of boundary values
o Captures bugs in interactions between risky inputs
o Rarely need to test pairs of “invalid” values (cost too high for credit & cash)

e Include: {cost > credit && cost == cash}
e Maybe: {cost < credit && cost == cash}

/** Pays with credit if useCredit is set and enough
* credit is available; otherwise, pays with cash if

v
public boolean pay(int cost, boolean useCredit);

* enough cash is available; otherwise, returns false.

17-214/514
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Decision Tables

We need a strategy to identify plausible mistakes

e Decision Tables

o You've seen one already U useCredit enough | enough
o Enumerate condition options case
m Leave outimpossibles 1 T T _ Pass
m Identify “don’t-matter” values
o  Useful for redundant input domains 2 F - T Pass
3 F - F Fails
4 T F T Pass
5 T F F Fails
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Specification Tests

So what is the right granularity?

e Itdepends

e \We are still aiming for coverage

o Just of specifications, and their innumerable implementations
o BVA (& its cousins), decision tables tend to provide good coverage
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Structural Testing vs. Specification Testing

You will typically have both code & (prose) specification

e Test specification, but know that it can be underspecified
e TJest implementation, but not to the point that it cannot change

e Use testing strategies that leverage both
o There is a fair bit of overlap; e.g., BVA yields useful branch coverage
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Further Testing Strategies

Many more aspects, some later in this course:

e Stubbing/Mocking, to avoid testing dependencies

e Integration testing: scenarios that span units

o  With unit testing one should not test for an expected usage scenario
m e.g., in HW2: that everything gets called from Main

o This lets one make some simplifying assumptions
m e.g., that every card is seen equally often

e Beyond correctness: performance, security

17-214/514
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Summary

Testing comprehensively is hard

e Tailor to your task: specification vs. structural testing

o Do not assume unstated specifications for HW 2; spend your energy wisely
e Pick a strategy, or a few

o Be systematic; defend your decisions
e Tomorrow’s recitation covers:

o Unit test best practices

o Test organization
o Running tests, coverage
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