Principles of Software Construction:
Objects, Design, and Concurrency

Object-oriented analysis

Claire Le Goues Bogdan Vasilescu

17-214/514

SOFTWARE
((((((

-

\

User needs

~

(Requirements)

Miracle?

/

17-214/514

Code

nstitute for
VVVVVVVV
nnnnnnnn

REQUIREMENTS

How the customer
explained it

How the Project
Leader understood it

How the Analyst
designed it

How the Programme
wrote it.

How the Business
Consultant sold it.

Documented

17-214/514

How the project was | | What operations

installed

How the customer
was billed

How it was
supported

What the customer
really wanted

institute for
SOFTWARE
RESEARCH

Requirements say what the system will do

(and not how it will do it).

The hardest single part of building a software system is deciding
precisely what to build.

No other part of the conceptual work is as difficult as
establishing the detailed technical requirements ...

No other part of the work so cripples the resulting system if done
wrong.

No other part is as difficult to rectify later.
— Fred Brooks

17-214/514 9 [Hiws

Requirements

o What does the customer want?
o What is required, desired, not necessary? Legal, policy constraints?

« Customers often do not know what they really want; vague, biased by
what they see; change their mind; get new ideas...

» Difficult to define requirements precisely

o (Are we building the right thing? Not: Are we building the thing right?)

Human and social issues
X beyond our scope (see 17-313)

17-214/514 10 [Hizns

Requirements

. Wh

° Assumption in this course:
» Wha Somebody has gathered most ts?
« Cust requirements (mostly text). ed by

what

ey see; change their mind; get new ideas...

Challenges:
G How do we start implementing them? L%

17-214/514 11 s

This lecture

e Understand functional requirements

e Use basic UML notation to communicate designs

e I|dentify the key abstractions in a domain, model them as a
domain model

e I|dentify the key interactions with a system, model them as a
system sequence diagram

e Introduce the design principle low representational gap

17-214/514 16 [Hisns

Solution
Space

Problem
Space

| O LInE | (Object Model) |
MOdeI) v
e Real-world concepts e System implementation
e Requirements, Concepts e (lasses, objects
e Relationships among concepts e References among objects and
e Solving a problem inheritance hierarchies
e Building a vocabulary e Computing a result

e Finding a solution
17-214/514 17 s

An object-oriented design process

—

Model / diagram the problem, define concepts

e Domain model (a.k.a. conceptual model), glossary OO Analysis:
Define system behaviors - Understanding
e System sequence diagram the problem

e System behavioral contracts

J \

Assign object responsibilities, define interactions

e Object interaction diagrams OO Design:
Model / diagram a potential solution - Defining d
e Object model solution

17-214/514 23 |

tttttttttttt
VVVVVVVV
nnnnnnnn

APPLYING UML
AND PATTERNS

DOMAIN MODELS

17-214/514 26 [Hizw

Object-Oriented Analysis

Find the concepts in the problem domain
o Real-world abstractions, not necessarily software objects

Understand the problem

Establish a common vocabulary

Common documentation, big picture

For communication!

Often using UML class diagrams as (informal) notation

Starting point for finding classes later (low representational gap)

17-214/514 27 Mz

Input to the analysis process:
Requirements and use cases

A public library typically stores a collection of books, movies, or other

library items available to be

Each library member typically has a library account and a library card with
the account’s ID number, which she can use to identify herself to the
library. A member’s library account records which items the member has
borrowed and the due date for each borrowed item. Each type of item has
a default rental period, which determines the item’s due date when the item

borrowed by people living in a community.

trirne Aan itam aftar thea itam’e Ao Aata the

is borrowed. If a member r
member must pay a late fee
member’s library account.

17-214/514

Use case scenario: A library member should be able to use her library card
to log in at a library system kiosk and borrow a book. After confirming that
the member has no unpaid late fees, the library system should determine
the book’s due date by adding its rental period to the current day, and
record the book and its due date as a borrowed item in the member’s
library account.

Modeling a problem domain

|dentify key concepts of the domain description
o Identify nouns, verbs, and relationships between concepts

o Avoid non-specific vocabulary, e.g. "system"
e Distinguish operations and concepts
o Brainstorm with a domain expert

17-214/514

Concepts in our library system?

A public library typically stores a collection of books, movies, or other
library items available to be borrowed by people living in a community.
Each library member typically has a library account and a library card with
the account’s ID number, which she can use to identify herself to the
library.

A member’s library account records which items the member has borrowed
and the due date for each borrowed item. Each type of item has a default
rental period, which determines the item’s due date when the item is
borrowed. If a member returns an item after the item’s due date, the
member owes a late fee specific for that item, an amount of money
recorded in the member’s library account.

17-214/514 30 Mz

Read description carefully, look for nouns and verbs

A public library typically stores a collection of books, movies, or other
library items available to be borrowed by people living in a community.
Each library member typically has a library account and a library card with
the account’s ID number, which she can use to identify herself to the
library.

A member’s library account records which items the member has borrowed
and the due date for each borrowed item. Each type of item has a default
rental period, which determines the item’s due date when the item is
borrowed. If a member returns an item after the item’s due date, the
member owes a late fee specific for that item, an amount of money
recorded in the member’s library account.

17-214/514 31 [Mizes

xxxxxxxx

Glossary

|ldentify and define key concepts

Ensure shared understanding between developers and customers

17-214/514

Define
potentially

Library item: Any item that is indexed and can be— ambiguous

borrowed from the library concepts
Library member: Person who can borrow from a No need 1o
library, identified by a card with an ID number expand on
Book <« __ obvious
concepts
32

SOFTWARE
stststststst

Visual notation: UML

Name of
real-world
concept

(not software class)

Properties
of concept

17-214/514

Library Account

accountlD
lateFees

Book
borrow title
1 * | author
Associations
between Multiplicities/cardinalities
concepts indicate “how many”

Reading associations

One library account can borrow many books

Library Account Book
accountID borrow title
lateFees 1 * | author

)

One book can be borrowed by one library account

<

17-214/514

nstitute for
ssssssss
nnnnnnnn

Reading associations

17-214/514

Book

title
author

borrowed-by

Library Account

accountlD
lateFees

SOFTWARE
stststststst

" " " Library Item
Specialization |-
id
More specialized
version of general
concept.
Every video is a
4 library item

Book Video

title title

author director

17-214/514 36 [Hizw

Concepts vs. Attributes

Library Account Library Account Book
accountID accountID borrow | tjtle
lateFees VS. lateFees 1 * | author
borrowedBooks

® "|f we do not think of some conceptual class X as text or a number
in the real world, it's probably a concept, not an attribute”

® Avoid type annotations

17-214/514 37

nstitute for
SSSSSSSS
nnnnnnnn

T tem |

has \"’\‘1“/‘/ O ¥
cental Periodd

| ~ i One possible domain
L/o,—f/ <k Fee J model for the library
dg LLMJ system

\ || ibeary Pegont

\ {
Y] \\d r\‘ um ‘D&r
Al

Yot
&(lake Fee Owed
[

\)

Notes on the library domain model

All concepts are accessible to a non-programmer

UML notation somewhat informal; relationships often described with words
Real-world "is-a" relationships are appropriate for a domain model
Real-word abstractions are appropriate for a domain model

lteration is important: This example is a first draft. Some terms (e.g. ltem vs.
Libraryltem, Account vs. LibraryAccount) would likely be revised in a real
design.

e Aggregate types are usually modeled as separate concepts

e Basic attributes (numbers, strings) are usually modeled as attributes

17-214/514 44 [z

Why domain modeling?

Understand the domain

e Details matter! Are books different from videos for the system?
Ensure completeness

e Late fees considered?

Agree on a common set of terms

e library item vs collection entry vs book

Prepare to design

e Domain concepts are good candidates for OO classes (-> low representational gap)

17-214/514 45 [Hizs

Hints for Object-Oriented Analysis
(see textbook for details)

® A domain model provides vocabulary
O for communication among developers, testers, clients, domain experts, ...
O Agree on a single vocabulary, visualize it

° Focus on concepts, not software classes, not data
e} ideas, things, objects
O Give it a name, define it and give examples (symbol, intension, extension)
O Add glossary
O Some might be implemented as classes, other might not

® There are many choices

® The model will never be perfectly correct

O that's okay
start with a partial model, model what's needed
extend with additional information later

communicate changes clearly

O O O O

otherwise danger of "analysis paralysis"

17-214/514 a6 [Hiz

RESEARCH

=

17-214/514

slido

Audience Q&A Session

(Start presenting to display the audience questions on this slide.

47

https://www.sli.do/features-google-slides?interaction-type=UUE%3D
https://www.sli.do/features-google-slides?payload=eyJwcmVzZW50YXRpb25JZCI6IjFRa0dOUjJvX2lwc3daX0xJRVY0R3V0Wjh0WHJkR25SNmV3bmVKS3lUR3VzIiwic2xpZGVJZCI6IlNMSURFU19BUEkzMzkzNTkwNzFfMCJ9

Outlook: Low Representational Gap

|dentified concepts provide inspiration for classes in the implementation

Classes mirroring domain concepts often

intuitive to understand

(low representational gap)

Library Account

accountlD
lateFees

borrow

Book

17-214/514

*

title
author

class Account {
id: Int;

lateFees: Int;

borrowed: List<Book>;

boolean borrow(Book) { .. }

void save();

}
class Book { .. }

tttttttttttt
VVVVVVVV
nnnnnnnn

Video Tulotiqls More of a visual learner? We've got
you covered! Head over to roxley.com/santorini-video
for video tutorials on how to play, as well as complete
visual demonstrations of all God Powers!

Sqnlovini App Can't decide which God Powers to
match up? Head over to Google Play Store or the Apple
App Store and download the Santorini App absolutely
free. Complete with video tutorials, match randomizer
and much more!

o‘ Place the smaller side of the Cliff Pedestal o on
the Ocean Board), using the long and short
tabs on the CIiff Pedestal to guide assembly.

o' Place the Island Board {@ on top of the Cliff
Pedestal {J), again using the long and short tabs
to guide assembly.

6 The youngest player is the Start Player, who
begins by placing 2 Workers o of their chosen
color into any unoccupied spaces on the board.

The other player(s) then places their Workers G

_ Hows To- Play |
R
Players take turns, starting with the Start Player, who first

placed their Workers. On your turn, select one of your
V\'orkers‘ You must move and then build with the selected

Outlook:
Build a

If one of your Workers moves
up on top of level 3 during
your turn, you instantly

Norker. O win! d .
m(Wf/yourselected . ‘Ql 0 You%stalmperfonna Omaln
‘ 5 ’. move then on)’DUI
to) ::}::l::?g:ﬁn? & \ é < turn. If you are unable m O d e I fo r
spaces \/) 2 _" to, you lose.

HW 3

A Worker may move up a maximum of one level higher,
move down any number of levels
lower, or move along the same
level. A Worker may not move up
more than one level .

15 X Domel] (22 X dewel R |18 X bewel2 |14 X lower 3

'”“OG

—+— Blodks \»

The space your Worker moves into must be unoccupied
(not containing a Worker or Dome).

Bull,d/ ablock C) or
dome (4.) on an unoccupied
space neighboring the moved
Worker.

You can build onto a level
el et B el T I e S

= institute for
50 M

APPLYING UML
I

System Sequence Diagram

17-214/514 51 [Hiaus

Understanding system behavior

A system sequence diagram is a model that shows, for one

scenario of use, the sequence of events that occur on the
system’s boundary.

Design goal: Identify and define the interface of the system

e System-level components only: e.g., A user and the overall system

17-214/514 52 [z

One example for the library system

Use case scenario: A library member
should be able to use her library card
to log in at a library system kiosk and
borrow a book. After confirming that
the member has no unpaid late fees,
the library system should determine
the book’s due date by adding its
rental period to the current day, and
record the book and its due date as a
borrowed item in the member’s
library account.

17-214/514 53 [His

One example for the library system

Use case scenario: A library member .
should be able to use her library card / @ k
Uge Case

by
to log in at a library system kiosk and ’Ad Sysk/m
borrow a book. After confirming that i '

the member has no unpaid late fees,
the library system should determine
the book’s due date by adding its T
rental period to the current day, and
record the book and its due date as a bsrrow (Jowk—htem\
borrowed item in the member’s

library account. i scess] oheDerke

borrow 4 book /)oej,‘r\membcr'(l"br‘*“/ Gmf)
* 7

N
7

17-214/514 54 [His

UML Sequence Diagram Notation

User System Actors in this
\ use case
(systems and
> real-world
objects/people)

login(card)

€~ =~ m e Time proceeds
success?, due date from tOp to

bottom

Messages and
responses for
interactions,

text describes what
happens conceptually

17-2 14/5 14 55 [Hi:na

zzzzzzzz

Outlook: System Sequence Diagrams to Tests

X

: Cashier : System

s = new System(); makeNewSale

Y

a = s.makeNewSale();
enterltem(itemID, quantity) .

t = a.enterItem(..);
assert(50.30, t);
tt = a.endSale();
assert(52.32, tt);

———

__

17-214/514 56 iz

APPLYING UML
ANILATTING

rient
terative Development

Behavioral Contracts

17-214/514 57 Mz

Formalize system at boundary
A system behavioral contract describes E'W/
the pre-conditions and post-conditions uc« / § petean

log, i Q

for some operation identified in the A el

system sequence diagrams e e =

o System-level textual specifications, like """““’(J”"*j‘ij'“j >
software specifications %’;@;ﬁ@;N

17-214/514 S ——

£
zzzzzzzz

System behavioral contract example

Operation: borrow(item)

Pre-conditions: Library member has already logged in to the system.
ltem is not currently borrowed by another member.

Post-conditions: Logged-in member's account records the
newly-borrowed item, or the member is warned she has an
outstanding late fee.

The newly-borrowed item contains a future due date,
computed as the item's rental period plus the current date.

17-214/514 59 [Hizw

Distinguishing domain vs. implementation concepts

17-214/514 60 [MHizs

Distinguishing domain vs. implementation concepts

e Domain-level concepts:
o Almost anything with a real-world analogue

e |Implementation-level concepts:
o Implementation-like method names
o Programming types
o Visibility modifiers
o Helper methods or classes
o Artifacts of design patterns

17-214/514 61 [Hiss

Recommended Reading:
Applying UML and Patterns

~ APPLYING UML
Detailed coverage of modeling steps AND PATTERNS

An Introduction to Object-Oriented Analysis and Design
and Iterative Development

Explains UML notation

Many examples

Chapter 9

17-214/514

Summary: Understanding the problem domain

Know your tools to build domain-level representations
e Domain models

o System sequence diagrams

o System behavioral contracts

Be fast and (sometimes) loose

o Elide obvious(?) details

o lterate, iterate, iterate, ...

Get feedback from domain experts

o Use only domain-level concepts

17-214/514 U —

zzzzzzzz

Take-Home Messages

® To design a solution, problem needs to be understood

® Know your tools to build domain-level representations
O Domain models — understand domain and vocabulary

O System sequence diagrams + behavioral contracts — understand interactions with
environment

® Be fast and (sometimes) loose
O Elide obvious(?) details
O Iterate, iterate, iterate, ...
® Domain classes often turn into Java classes
O Low representational gap principle to support design for understanding and change

O Some domain classes don’t need to be modeled in code; other concepts only live at
the code level

® Get feedback from domain experts
O Use only domain-level concepts

17-214/514 64 [Hizis

