
117-214/514

Principles of Software Construction:
Objects, Design, and Concurrency

Object-oriented analysis

Claire Le Goues Bogdan Vasilescu

617-214/514

User needs
(Requirements) CodeMiracle?

717-214/514

REQUIREMENTS

817-214/514

917-214/514

Requirements say what the system will do
(and not how it will do it).
The hardest single part of building a software system is deciding
precisely what to build.
No other part of the conceptual work is as difficult as
establishing the detailed technical requirements ...
No other part of the work so cripples the resulting system if done
wrong.
No other part is as difficult to rectify later.

— Fred Brooks

1017-214/514

Requirements
● What does the customer want?

● What is required, desired, not necessary? Legal, policy constraints?

● Customers often do not know what they really want; vague, biased by
what they see; change their mind; get new ideas…

● Difficult to define requirements precisely

● (Are we building the right thing? Not: Are we building the thing right?)

Human and social issues

beyond our scope (see 17-313)

1117-214/514

Requirements
● What does the customer want?

● What is required, desired, not necessary? Legal, policy constraints?

● Customers often do not know what they really want; vague, biased by
what they see; change their mind; get new ideas…

● Difficult to define requirements precisely

● (Are we building the right thing? Not: Are we building the thing right?)

Human and social issues

beyond our scope (see 17-313)

Assumption in this course:
Somebody has gathered most
requirements (mostly text).

Challenges:
How do we start implementing them?

How do we cope with changes?

1617-214/514

This lecture
● Understand functional requirements
● Use basic UML notation to communicate designs
● Identify the key abstractions in a domain, model them as a

domain model
● Identify the key interactions with a system, model them as a

system sequence diagram
● Introduce the design principle low representational gap

1717-214/514

Problem
Space
(Domain
Model)

Solution
Space

(Object Model)

● Real-world concepts

● Requirements, Concepts

● Relationships among concepts

● Solving a problem

● Building a vocabulary

● System implementation

● Classes, objects

● References among objects and
inheritance hierarchies

● Computing a result

● Finding a solution

2317-214/514

An object-oriented design process
Model / diagram the problem, define concepts

● Domain model (a.k.a. conceptual model), glossary

Define system behaviors

● System sequence diagram
● System behavioral contracts

Assign object responsibilities, define interactions

● Object interaction diagrams

Model / diagram a potential solution

● Object model

OO Analysis:
Understanding
the problem

OO Design:
Defining a
solution

2617-214/514

DOMAIN MODELS

Chapter 9

2717-214/514

Object-Oriented Analysis
Find the concepts in the problem domain

● Real-world abstractions, not necessarily software objects
Understand the problem
Establish a common vocabulary
Common documentation, big picture
For communication!
Often using UML class diagrams as (informal) notation

Starting point for finding classes later (low representational gap)

2817-214/514

Input to the analysis process:
Requirements and use cases

2917-214/514

Modeling a problem domain
Identify key concepts of the domain description
● Identify nouns, verbs, and relationships between concepts
● Avoid non-specific vocabulary, e.g. "system"
● Distinguish operations and concepts
● Brainstorm with a domain expert

3017-214/514

Concepts in our library system?
A public library typically stores a collection of books, movies, or other
library items available to be borrowed by people living in a community.
Each library member typically has a library account and a library card with
the account’s ID number, which she can use to identify herself to the
library.
A member’s library account records which items the member has borrowed
and the due date for each borrowed item. Each type of item has a default
rental period, which determines the item’s due date when the item is
borrowed. If a member returns an item after the item’s due date, the
member owes a late fee specific for that item, an amount of money
recorded in the member’s library account.

3117-214/514

A public library typically stores a collection of books, movies, or other
library items available to be borrowed by people living in a community.
Each library member typically has a library account and a library card with
the account’s ID number, which she can use to identify herself to the
library.
A member’s library account records which items the member has borrowed
and the due date for each borrowed item. Each type of item has a default
rental period, which determines the item’s due date when the item is
borrowed. If a member returns an item after the item’s due date, the
member owes a late fee specific for that item, an amount of money
recorded in the member’s library account.

Read description carefully, look for nouns and verbs

3217-214/514

Glossary
Identify and define key concepts

Ensure shared understanding between developers and customers

Library item: Any item that is indexed and can be
borrowed from the library
Library member: Person who can borrow from a
library, identified by a card with an ID number
Book

Define
potentially
ambiguous
concepts

No need to
expand on
obvious
concepts

3317-214/514

Visual notation: UML

Library Account

accountID
lateFees

Name of
real-world
concept
(not software class)

Properties
of concept

Book

title
author

borrow

1 *

Associations
between
concepts

Multiplicities/cardinalities
indicate “how many”

3417-214/514

Reading associations

Library Account

accountID
lateFees

Book

title
author

borrow

1 *

One library account can borrow many books

One book can be borrowed by one library account

3517-214/514

Reading associations

Book

title
author

Library Account

accountID
lateFees

borrowed-by

* 1

3617-214/514

Specialization

Book

title
author

Video

title
director

Library Item

id
More specialized
version of general
concept.
Every video is a
library item

3717-214/514

Concepts vs. Attributes

● "If we do not think of some conceptual class X as text or a number
in the real world, it's probably a concept, not an attribute"

● Avoid type annotations

Library Account

accountID
lateFees
borrowedBooks

Library Account

accountID
lateFees

Book

title
author

borrow

1 *vs.

3817-214/514

One possible domain
model for the library
system

4417-214/514

Notes on the library domain model
● All concepts are accessible to a non-programmer
● UML notation somewhat informal; relationships often described with words
● Real-world "is-a" relationships are appropriate for a domain model
● Real-word abstractions are appropriate for a domain model
● Iteration is important: This example is a first draft. Some terms (e.g. Item vs.

LibraryItem, Account vs. LibraryAccount) would likely be revised in a real
design.

● Aggregate types are usually modeled as separate concepts
● Basic attributes (numbers, strings) are usually modeled as attributes

4517-214/514

Why domain modeling?
Understand the domain

● Details matter! Are books different from videos for the system?

Ensure completeness

● Late fees considered?

Agree on a common set of terms

● library item vs collection entry vs book

Prepare to design

● Domain concepts are good candidates for OO classes (-> low representational gap)

4617-214/514

Hints for Object-Oriented Analysis
(see textbook for details)
● A domain model provides vocabulary

○ for communication among developers, testers, clients, domain experts, …

○ Agree on a single vocabulary, visualize it

● Focus on concepts, not software classes, not data
○ ideas, things, objects

○ Give it a name, define it and give examples (symbol, intension, extension)

○ Add glossary

○ Some might be implemented as classes, other might not

● There are many choices

● The model will never be perfectly correct
○ that’s okay

○ start with a partial model, model what's needed

○ extend with additional information later

○ communicate changes clearly

○ otherwise danger of "analysis paralysis"

4717-214/514

Audience Q&A Session

ⓘ Start presenting to display the audience questions on this slide.

https://www.sli.do/features-google-slides?interaction-type=UUE%3D
https://www.sli.do/features-google-slides?payload=eyJwcmVzZW50YXRpb25JZCI6IjFRa0dOUjJvX2lwc3daX0xJRVY0R3V0Wjh0WHJkR25SNmV3bmVKS3lUR3VzIiwic2xpZGVJZCI6IlNMSURFU19BUEkzMzkzNTkwNzFfMCJ9

4917-214/514

Outlook: Low Representational Gap
Identified concepts provide inspiration for classes in the implementation

Classes mirroring domain concepts often
intuitive to understand
(low representational gap)

Library Account

accountID
lateFees

Book

title
author

borrow

1 *

class Account {

id: Int;

lateFees: Int;

borrowed: List<Book>;

 boolean borrow(Book) { … }

 void save();

}

class Book { … }

5017-214/514

Outlook:
Build a
domain
model for
HW 3

5117-214/514

System Sequence Diagram

Chapter 10

5217-214/514

A system sequence diagram is a model that shows, for one
scenario of use, the sequence of events that occur on the
system’s boundary.

Design goal: Identify and define the interface of the system
● System-level components only: e.g., A user and the overall system

Understanding system behavior

5317-214/514

One example for the library system
Use case scenario: A library member
should be able to use her library card
to log in at a library system kiosk and
borrow a book. After confirming that
the member has no unpaid late fees,
the library system should determine
the book’s due date by adding its
rental period to the current day, and
record the book and its due date as a
borrowed item in the member’s
library account.

5417-214/514

One example for the library system
Use case scenario: A library member
should be able to use her library card
to log in at a library system kiosk and
borrow a book. After confirming that
the member has no unpaid late fees,
the library system should determine
the book’s due date by adding its
rental period to the current day, and
record the book and its due date as a
borrowed item in the member’s
library account.

5517-214/514

UML Sequence Diagram Notation
User System Actors in this

use case
(systems and
real-world
objects/people)

Messages and
responses for
interactions,
text describes what
happens conceptually

Time proceeds
from top to
bottom

login(card)

borrow(book)

success?, due date

5617-214/514

Outlook: System Sequence Diagrams to Tests

s = new System();

a = s.makeNewSale();

t = a.enterItem(…);

assert(50.30, t);

tt = a.endSale();

assert(52.32, tt);

…

: Cashier : System
makeNewSale

enterItem(itemID, quantity)

description, total

endSale

total with taxes

makePayment(amount)

change due, receipt

5717-214/514

Behavioral Contracts

Chapter 11

5817-214/514

Formalize system at boundary

A system behavioral contract describes
the pre-conditions and post-conditions
for some operation identified in the
system sequence diagrams

○ System-level textual specifications, like
software specifications

5917-214/514

System behavioral contract example
Operation: borrow(item)

Pre-conditions: Library member has already logged in to the system.
Item is not currently borrowed by another member.

Post-conditions: Logged-in member's account records the
newly-borrowed item, or the member is warned she has an
outstanding late fee.
The newly-borrowed item contains a future due date,
computed as the item's rental period plus the current date.

6017-214/514

Distinguishing domain vs. implementation concepts

6117-214/514

Distinguishing domain vs. implementation concepts

● Domain-level concepts:
○ Almost anything with a real-world analogue

● Implementation-level concepts:
○ Implementation-like method names
○ Programming types
○ Visibility modifiers
○ Helper methods or classes
○ Artifacts of design patterns

6217-214/514

Recommended Reading:
Applying UML and Patterns

Detailed coverage of modeling steps

Explains UML notation

Many examples

Chapter 9

6317-214/514

Summary: Understanding the problem domain

Know your tools to build domain-level representations
● Domain models
● System sequence diagrams
● System behavioral contracts
Be fast and (sometimes) loose
● Elide obvious(?) details
● Iterate, iterate, iterate, …
Get feedback from domain experts
● Use only domain-level concepts

6417-214/514

Take-Home Messages
● To design a solution, problem needs to be understood
● Know your tools to build domain-level representations

○ Domain models – understand domain and vocabulary
○ System sequence diagrams + behavioral contracts – understand interactions with

environment
● Be fast and (sometimes) loose

○ Elide obvious(?) details
○ Iterate, iterate, iterate, …

● Domain classes often turn into Java classes
○ Low representational gap principle to support design for understanding and change
○ Some domain classes don’t need to be modeled in code; other concepts only live at

the code level
● Get feedback from domain experts

○ Use only domain-level concepts

