
117-214/514

Principles of Software Construction:
Objects, Design, and Concurrency

Design Patterns

Claire Le Goues Bogdan Vasilescu

217-214/514

One design scenario
● Amazon.com processes millions of orders each year,

selling in 75 countries, all 50 states, and thousands of
cities worldwide. These countries, states, and cities
have hundreds of distinct sales tax policies and, for
any order and destination, Amazon.com must be able
to compute the correct sales tax for the order and
destination.

317-214/514

Another design scenario
● A vision processing system must detect lines in an

image. For different applications the line detection
requirements vary. E.g., for a vision system in a
driverless car the system must process 30 images per
second, but it's OK to miss some lines in some
images. A face recognition system can spend 3-5
seconds analyzing an image, but requires accurate
detection of subtle lines on a face.

417-214/514

A third design scenario
● Suppose we need to sort a list in different orders…

const ASC = function(i: number, j: number): boolean {
return i < j;

}
const DESC = function(i: number, j: number): boolean {

return i > j;
}

function sort(
list: number[],
order: (number, number) => boolean) {

 // …
 boolean mustSwap = order(list[j], list[i]);
 // …
}
> sort(list, ASC);

517-214/514

Design Patterns

617-214/514

Design patterns

“Each pattern describes a problem
which occurs over and over again
in our environment, and then
describes the core of the solution
to that problem, in such a way that
you can use this solution a million
times over, without ever doing it
the same way twice”
 – Christopher Alexander,
 Architect (1977)

717-214/514

How not to discuss design (from Shalloway and Trott)

● Carpentry:
○ How do you think we should build these drawers?
○ Well, I think we should make the joint by cutting straight down

into the wood, and then cut back up 45 degrees, and then
going straight back down, and then back up the other way 45
degrees, and then going straight down, and repeating…

817-214/514

How not to discuss design (from Shalloway and Trott)

● Software Engineering:
○ How do you think we should write this method?
○ I think we should write this if statement to handle … followed

by a while loop … with a break statement so that…

917-214/514

Discussion with design patterns
● Carpentry:

○ "Is a dovetail joint or a miter joint better here?"

● Software Engineering:
○ "Is a strategy pattern or a template method better here?"

1017-214/514

History:
Design Patterns
(1994)

1117-214/514

Elements of a design pattern
● Name
● Abstract description of problem
● Abstract description of solution
● Analysis of consequences

1217-214/514

Strategy Pattern

1317-214/514

Strategy pattern
● Problem: Clients need different variants of an algorithm
● Solution: Create an interface for the algorithm, with an

implementing class for each variant of the algorithm
● Consequences:

○ Easily extensible for new algorithm implementations
○ Separates algorithm from client context
○ Introduces an extra interface and many classes: (1) Code can be

harder to understand, (2) Lots of overhead if the strategies are
simple

1417-214/514

Context

Strategy
execute()

ConcreteStrA ConcreteStrB

algorithm()

execute() execute()

1517-214/514

s :
ConcrStrA

algorithm
(s) s.execute()

:
Context

Strategy can be provided in method call or in any other way to context

algorithm
(t) t.execute()

t :
ConcrStrB

1617-214/514

One design scenario
● Amazon.com processes millions of orders each year,

selling in 75 countries, all 50 states, and thousands of
cities worldwide. These countries, states, and cities
have hundreds of distinct sales tax policies and, for
any order and destination, Amazon.com must be able
to compute the correct sales tax for the order and
destination.

1717-214/514

Another design scenario
● A vision processing system must detect lines in an

image. For different applications the line detection
requirements vary. E.g., for a vision system in a
driverless car the system must process 30 images per
second, but it's OK to miss some lines in some
images. A face recognition system can spend 3-5
seconds analyzing an image, but requires accurate
detection of subtle lines on a face.

1817-214/514

Design Patterns and
Programming Languages
Design patterns address general design challenges

Some patterns address problems with built-in solutions

Example: Strategy pattern vs higher-order functions

const ASC = function(i: number, j: number): boolean {
return i < j;

}
const DESC = function(i: number, j: number): boolean {

return i > j;
}

function sort(
list: number[],
order: (number, number) => boolean) {

 …
 boolean mustSwap = order(list[j], list[i]);
 …
}
> sort(list, ASC);

1917-214/514

Strategy Pattern vs Higher-Order Function
const ASC =

function(i: number, j: number): boolean {
return i < j;

}
const DESC =

function(i: number, j: number): boolean {
return i > j;

}

function sort(
list: number[],
order: (number, number) => boolean) ...;

interface Order {
 boolean lessThan(int i, int j);
}

class AscendingOrder implements Order {
 public boolean lessThan(int i, int j) {

return i < j; }
}
class DescendingOrder implements Order {
 public boolean lessThan(int i, int j) {

return i > j; }
}

void sort(int[] list, Order order) ;

2017-214/514

Strategy Pattern vs Higher-Order Function
const ASC = function(i, j) { return i < j; }
const DESC = function(i, j) { return i > j; }

function sort(list, order) ...;

interface Order {
 boolean lessThan(int i, int j);
}

class AscendingOrder implements Order {
 public boolean lessThan(int i, int j) {

return i < j; }
}
class DescendingOrder implements Order {
 public boolean lessThan(int i, int j) {

return i > j; }
}

void sort(int[] list, Order order) ;

2117-214/514

New Java Syntax for “Functions”
const ASC =

function(i: number, j: number): boolean {
return i < j;

}
const DESC =

function(i: number, j: number): boolean {
return i > j;

}

function sort(
list: number[],
order: (number, number) => boolean) ...;

interface Order {
 boolean lessThan(int i, int j);
}

final Order ASCENDING = (i, j) -> i < j;
final Order DESCENDING = (i, j) -> i > j;

static void sort(int[] list, Order order);

Convenient syntax (introduced for lambdas) to create objects of interface with single method.

2217-214/514

Module Pattern

2317-214/514

(function () {
// ... all vars and functions are in this scope only
// still maintains access to all globals

}());

Module pattern: Hide internals in closure

Function provides local scope, internals not accessible

Function directly invoked to execute it once

Wrapped in parentheses to make it expression

Discovered around 2007, became very popular, part of Node

2417-214/514

function createPolarPoint(len, angle) {
 let xcache = -1;
 let internalLen=len;
 function computeX() {…}

return {
getX: function() {

computeX(); return xcache; },
getY: function() {

return len * sin(angle); }
};

}

Using closures to hide methods and fields

2517-214/514

var MODULE = (function () {
var my = {},
privateVariable = 1;

function privateMethod() {
// ...

}

my.moduleProperty = 1;
my.moduleMethod = function () {

// ...
};

return my;
}());

Module pattern: Decide what to export

2617-214/514

Java: Module Pattern?
Public/private built in, problem does not exist

Fully qualified names (“edu.cmu.cs17214.FlashCard”) as
convention/pattern to solve naming clashes

Newer JavaScript/TypeScript features make it less
important (ES6 modules, classes, public/private)

2717-214/514

Composite Pattern

2817-214/514

Design Exercise (on paper)
● You are designing software for a shipping company.

● There are several different kinds of items that can be shipped: letters, books, packages, fragile items, etc.

● Two important considerations are the weight of an item and its insurance cost.

○ Fragile items cost more to insure.

○ All letters are assumed to weigh an ounce

○ We must keep track of the weight of other packages.

● The company sells boxes and customers can put several items into them.

○ The software needs to track the contents of a box (e.g. to add up its weight, or compute the total insurance value).

○ However, most of the software should treat a box holding several items just like a single item.

● Think about how to represent packages; what are possible interfaces, classes, and methods? (letter, book, box
only)

2917-214/514

The Composite Design Pattern

3017-214/514

The Composite Design Pattern
● Applicability

○ You want to represent part-whole hierarchies
of objects

○ You want to be able to ignore the difference
between compositions of objects and
individual objects

● Consequences
○ Makes the client simple, since it can treat

objects and composites uniformly
○ Makes it easy to add new kinds of

components
○ Can make the design overly general

■ Operations may not make sense on
every class

■ Composites may contain only certain
components

3117-214/514

We have seen this before
interface Point {

int getX();

int getY();

}

class MiddlePoint implements Point {

Point a, b;

MiddlePoint(Point a, Point b) {this.a = a; this.b = b; }

int getX() { return (this.a.getX() + this.b.getX()) / 2;}

int getY() { return (this.a.getY() + this.b.getY()) / 2; }

}

3217-214/514

Composite Pattern and Flash Cards?

3317-214/514

We have seen this before
function newCombinedCardOrganizer (cardOrganizers: CardOrganizer[]): CardOrganizer {

 return {

 reorganize: function (cards: CardStatus[]): CardStatus[] {

 let status = cards.slice()

 for (const cardOrganizer of cardOrganizers) {

 status = cardOrganizer.reorganize(status)

 }

 return status

 }

 }

}

3417-214/514

Design pattern conclusions
● Provide shared language
● Convey shared experience
● Can be system and language specific

