
117-214/514

Principles of Software Construction:
Objects, Design, and Concurrency

Refactoring & Anti-patterns

Claire Le Goues Bogdan Vasilescu

217-214/514

Join at slido.com
#124127

ⓘ Start presenting to display the joining instructions on this slide.

https://www.sli.do/features-google-slides?interaction-type=Sm9pbg%3D%3D
https://www.sli.do/features-google-slides?payload=eyJwcmVzZW50YXRpb25JZCI6IjF5VHFhNXo5WHpqTi1zbVF2ZUxkV0UwRU5iMVp0UTB6OUowN28yYmlpRVhrIiwic2xpZGVJZCI6IlNMSURFU19BUEkxMDUwNzIwMTQ5XzAifQ%3D%3D

317-214/514

I promise we will sync Canvas grades with Gradescope.

Submit the correct link on Canvas.
● If you notice you submitted the wrong link, send us a DM and then

resubmit the right link. We won’t take late days if you submitted
the wrong link on time.

HW4 will be released today, due a either Tuesday or Wednesday
depending on what the TAs need for grading.
● …but promise me you’ll start HW5 early, it’s much longer.

Administrivia

417-214/514

Reading quiz is on Canvas!
…go there and do it it’ll take 30 seconds…

517-214/514

Audience Q&A Session

ⓘ Start presenting to display the audience questions on this slide.

https://www.sli.do/features-google-slides?interaction-type=UUE%3D
https://www.sli.do/features-google-slides?payload=eyJwcmVzZW50YXRpb25JZCI6IjF5VHFhNXo5WHpqTi1zbVF2ZUxkV0UwRU5iMVp0UTB6OUowN28yYmlpRVhrIiwic2xpZGVJZCI6IlNMSURFU19BUEkxMzIxNzU2NjkxXzAifQ%3D%3D

617-214/514

Today: Patterns, anti-patterns, and refactoring
● Patterns: using and choosing between them.
● Antipatterns and refactoring

○ Sidequest on equals, toString, typecasting
● Several other useful patterns

717-214/514

Refactoring: Any functionality-preserving
rewrite or restructure.

817-214/514

Midterm Scenario: Shape drawing software
Assume you have a complex drawing that consists of many shapes, and you want to save it.
Some logic of the saving functionality is always the same (e.g., going through all shapes,
reducing them to drawable lines), but others you want to vary to support saving in different
file formats (e.g., as png, as svg, as pdf). You want to support different file formats later.

Which pattern makes the most sense? How can we tell?
● Strategy Pattern
● Template Method Pattern
● Composite Pattern
● Decorator Pattern
● Observer Pattern

917-214/514

Drawing Example -- Basics
class Line {

 // TODO

}

interface Shape {

 toLines(): Line[];

}

class Triangle implements Shape {

 public toLines(): Line[] {

 return ...;

 }

}

// A drawing consists of many shapes.

class Drawing {

 shapes: Shape[]

 constructor(shapes: Shape[]) {

 this.shapes = shapes;

 }

 public toLines() {

 let lines: Line[] = []

 for (let shape of this.shapes) {

 lines.push(shape.toLines());

 }

 return lines;

 }

}

1017-214/514

Midterm Scenario: Shape drawing software
Assume you have a complex drawing that consists of many shapes, and you want to save it.
Some logic of the saving functionality is always the same (e.g., going through all shapes,
reducing them to drawable lines), but others you want to vary to support saving in different
file formats (e.g., as png, as svg, as pdf). You want to support different file formats later.

Which pattern makes the most sense? How can we tell?
● Strategy Pattern
● Template Method Pattern
● Composite Pattern
● Decorator Pattern??
● Observer Pattern

1117-214/514

Drawing Example -- Decorator?

1217-214/514

Drawing Example -- Decorator?
interface DrawingSaver {

 saveDrawing(drawing: Drawing, path: string): void;

}

class BasicSaver implements DrawingSaver {

 public saveDrawing(drawing: Drawing, path: string): void {

 let lines: Line[] = drawing.toLines();

 // Now what?

 }

}

1317-214/514

Drawing Example -- Decorator?
class DrawingSaverDecorator implements DrawingSaver {

 wrappee: DrawingSaver

 constructor(source: DrawingSaver) { this.wrappee = source; }

 public saveDrawing(drawing: Drawing, path: string): void {

 this.wrappee.saveDrawing(drawing, path);

 }

}

class JPEGDecorator extends DrawingSaverDecorator {

 public saveDrawing(drawing: Drawing, path: string): void {

 let lines: Line[] = drawing.toLines();

 // Internally store in JPEG

 super.saveDrawing(drawing, path);

 }

}

1417-214/514

Midterm Scenario: Shape drawing software
Assume you have a complex drawing that consists of many shapes, and you want to save it.
Some logic of the saving functionality is always the same (e.g., going through all shapes,
reducing them to drawable lines), but others you want to vary to support saving in different
file formats (e.g., as png, as svg, as pdf). You want to support different file formats later.

Which pattern makes the most sense? How can we tell?
● Strategy Pattern
● Template Method Pattern
● Composite Pattern
● Decorator Pattern
● Observer Pattern

1517-214/514

Drawing Example -- Strategy
interface LineFormatter {

 write(lines: Line[], writer: Writer): void;

}

class DrawingSaver {

 public save(drawing: Drawing, formatter: LineFormatter, path: string) {

 let lines: Line[] = drawing.toLines();

 let writer: Writer = new Writer(path);

 formatter.write(lines, writer);

 }

}

class JPEGFormatter implements LineFormatter {

 public write(lines: Line[], writer: Writer) { // Store JPEG data. }

}

1617-214/514

Drawing Example -- Template Method
abstract class DrawingSaver {

 public save(drawing: Drawing, path: string) {

 let lines = drawing.toLines();

 let formatted = this.toFormat(lines);

 let writer: Writer = new Writer(path);

 writer.write(formatted);

 }

 abstract toFormat(lines: Line[]): any[];

}

class JPEGSaver extends DrawingSaver {

 public toFormat(lines: Line[]): any[] { // Store JPEG data. }

}

Notice how we can get basically the
same functionality but with different
structure/patterns applied!

(strategy is better if you want to
implement this per-shape rather than
per-drawing).

1717-214/514

public class RedShapeDecorator extends ShapeDecorator {
 public RedShapeDecorator(Shape decoratedShape) {
 super(decoratedShape);
 }

 @Override
 public void draw() {
 decoratedShape.draw();
 setRedBorder(decoratedShape);
 }

 private void setRedBorder(Shape decoratedShape){
 System.out.println("Border Color: Red");
 }
}

public class DecoratorPatternDemo {
 public static void main(String[] args) {
 Shape circle = new Circle();
 Shape redRectangle = new RedShapeDecorator(new Rectangle());
 System.out.println("Circle with normal border");
 circle.draw();

 System.out.println("\nRectangle with red border");
 redRectangle.draw();
 }
}

public interface Shape {
 void draw();
}

public class Rectangle implements Shape {
 @Override
 public void draw() {
 System.out.println("Shape: Rectangle");
 }
}

public class Circle implements Shape {
 @Override
 public void draw() {
 System.out.println("Shape: Circle");
 }
}

public abstract class ShapeDecorator implements Shape {
 protected Shape decoratedShape;

 public ShapeDecorator(Shape decoratedShape){
 this.decoratedShape = decoratedShape;
 }

 public void draw(){
 decoratedShape.draw();
 }
}

A good use of Decorator

1817-214/514

Audience Q&A Session

ⓘ Start presenting to display the audience questions on this slide.

https://www.sli.do/features-google-slides?interaction-type=UUE%3D
https://www.sli.do/features-google-slides?payload=eyJwcmVzZW50YXRpb25JZCI6IjF5VHFhNXo5WHpqTi1zbVF2ZUxkV0UwRU5iMVp0UTB6OUowN28yYmlpRVhrIiwic2xpZGVJZCI6IlNMSURFU19BUEkyODEyNjQyNTVfMCJ9

1917-214/514

Revisiting: type-casting
● Sometimes you want a different type than you have

○ e.g., double pi = 3.14;

 int indianaPi = (int) pi;

● Useful if you know you have a more specific subtype:
 Account acct = …;

 CheckingAccount checkingAcct = (CheckingAccount) acct;

 long fee = checkingAcct.getFee();

○ Will get a ClassCastException if types are incompatible

● Advice: avoid downcasting types
○ Never(?) downcast within superclass to a subclass

In TS:
(dog as Animal).identify()

2017-214/514

Typecasting revisited
class Animal {
 name : string;

 constructor(name : string) {
 this.name = name;
 }

 identify() : string {
 return this.name;
 }
}

class Dog extends Animal {
 public constructor() {
 super("dog");
 }
}

…
function printAnimal(animal : Animal) {
 if (animal instanceof Dog) {

 console.log(“dog”);
}
else if(animal instance of Cat) {
 console.log(“cat”);
}

}

2117-214/514

We all agree that’s bad, right?

2217-214/514

Refactoring
● Any functionality-preserving restructuring

○ Typically automated by IDE
○ Ideas?

2317-214/514

Refactoring: IDE support
● Rename class, method, variable to something not in-scope
● Extract method/inline method
● Extract interface
● Move method (up, down, laterally)
● Replace duplicates

2417-214/514

Refactoring and Anti-Patterns
● Often, all the functionality is correct, but the organization is bad

○ High coupling, high redundancy, poor cohesion, god classes, …
● Refactoring is the principal tool to improve structure

○ Automated refactorings even guarantee correctness
■ But you can’t always count on those being right

○ A series of refactorings is usually enough to introduce design patterns

2517-214/514

Refactoring and Anti-Patterns
● Often, all the functionality is correct, but the organization is bad

○ High coupling, high redundancy, poor cohesion, god classes, …
● Refactoring is the principal tool to improve structure

○ Automated refactorings even guarantee correctness
■ But you can’t always count on those being right

○ A series of refactorings is usually enough to introduce design patterns
● HW4 involves analyzing such a system and making primarily

refactoring changes
○ “primarily”, because sometimes you do need to alter things slightly.

2617-214/514

Anti-patterns
Anti-patterns are common forms of bad/no-design

● Can you think of examples?
● Where do they come from?

2717-214/514

Anti-patterns
● We have talked a fair bit about bad design heuristics

○ High coupling, low cohesion, law of demeter, …
● You will see a much larger vocabulary of related issues

○ Commonly called code/design “smells”
○ Worthwhile reads:

■ A short overview: https://refactoring.guru/refactoring/smells
■ Wikipedia: https://en.wikipedia.org/wiki/Anti-pattern#Software_engineering
■ Book on the topic (no required reading): Refactoring for Software Design Smells:

Managing Technical Debt, Suryanarayana, Samarthyam and Sharma
● S.O. summary: https://stackoverflow.com/a/27567960

https://refactoring.guru/refactoring/smells
https://en.wikipedia.org/wiki/Anti-pattern#Software_engineering
https://stackoverflow.com/a/27567960

2817-214/514

Anti-patterns
● Two ways of looking at this:

○ Design issues that manifest as bad/unmaintainable code
○ Poorly written/evolved code that leads to bad design

2917-214/514

(switch to IntelliJ for example)

3017-214/514

Audience Q&A Session

ⓘ Start presenting to display the audience questions on this slide.

https://www.sli.do/features-google-slides?interaction-type=UUE%3D
https://www.sli.do/features-google-slides?payload=eyJwcmVzZW50YXRpb25JZCI6IjF5VHFhNXo5WHpqTi1zbVF2ZUxkV0UwRU5iMVp0UTB6OUowN28yYmlpRVhrIiwic2xpZGVJZCI6IlNMSURFU19BUEk5NzYwMzU4MjBfMCJ9

3117-214/514

While we’re on the subject of
objects and equality.

3217-214/514

The Java class hierarchy
● The root is Object (all non-primitives are objects)
● All classes except Object have one parent class

○ Specified with an extends clause
class Guitar extends Instrument { ... }

○ If extends clause omitted, defaults to Object
● A class is an instance of all its superclasses

Object

ToyInstrument

YoyoGuitar

3317-214/514

Methods common to all objects
● How do collections know how to test objects for equality?

○ Why did this work:
 for(Person p: this.records) {
 if(p.equals(newP)) {

 …

● How do they know how to hash and print them?

● The relevant methods are all present on Object
○ equals - returns true if the two objects are “equal”
○ hashCode - returns an int that must be equal for equal objects, and is likely to differ on unequal

objects
○ toString - returns a printable string representation (default is gross: Type and hashcode)

3417-214/514

Comparing values
x == y compares x and y “directly”:
 primitive values: returns true if x and y have the same value
 objects references: returns true if x and y refer to same object

x.equals(y) typically compares the values of the objects referred
to by x and y*

* Assuming it makes sense to do so for the objects in question

3517-214/514

True or false?

int i = 5;

int j = 5;

System.out.println(i == j);

3617-214/514

True or false?

int i = 5;

int j = 5;

System.out.println(i == j);

true

5j

i 5

3717-214/514

True or false?

int i = 5;

int j = 5;

System.out.println(i == j);

true

String s = "foo";

String t = s;

System.out.println(s == t);

5j

i 5

3817-214/514

True or false?

int i = 5;

int j = 5;

System.out.println(i == j);

true

String s = "foo";

String t = s;

System.out.println(s == t);

true

5j

i 5

"foo"

t

s

3917-214/514

True or false?

int i = 5;

int j = 5;

System.out.println(i == j);

true

String s = "foo";

String t = s;

System.out.println(s == t);

true

String u = "iPhone";

String v = u.toLowerCase();

String w = "iphone";

System.out.println(v == w);

5j

i 5

"foo"

t

s

4017-214/514

True or false?

int i = 5;

int j = 5;

System.out.println(i == j);

true

String s = "foo";

String t = s;

System.out.println(s == t);

true

String u = "iPhone";

String v = u.toLowerCase();

String w = "iphone";

System.out.println(v == w);

false (in practice)

5j

"foo"

t

v

u

w

"iPhone"

si 5

"iphone"

"iphone"
?

4117-214/514

The moral

● Always use .equals to compare object refs!

○ (Except for enums, which are special)

○ The == operator can fail silently and unpredictably when applied to
object references

○ Same goes for the != operator

4217-214/514

Overriding Object implementations
● No need to override equals and hashCode if you want identity semantics

○ When in doubt, don't override them

○ It's easy to get it wrong

○ Records give you equals for free, neato!

● Nearly always override toString

○ println invokes it automatically

○ Why settle for ugly?

4317-214/514

Overriding toString is easy and beneficial
final class PhoneNumber {

 private final short areaCode;

 private final short prefix;

 private final short lineNumber;

 ...

 @Override public String toString() {

 return String.format("(%03d) %03d-%04d",

 areaCode, prefix, lineNumber);

 }

}

Number jenny = ...;

System.out.println(jenny);

Prints: (707) 867-5309

4417-214/514

Typescript notes.
There is also a toString.

Equality is a funny thing: == (equality) vs === (strict equality)

● Typescript requires that you compare things that are the same type,
so this distinction is SLIGHTLY less important.

● Javascript lets you do 10 == ‘10’ // true

Equivalent behavior for, say, presence of an object in a Collection, is a bit
trickier (no off-the-shelf equivalent of equals, but many ways to get it).

4517-214/514

Audience Q&A Session

ⓘ Start presenting to display the audience questions on this slide.

https://www.sli.do/features-google-slides?interaction-type=UUE%3D
https://www.sli.do/features-google-slides?payload=eyJwcmVzZW50YXRpb25JZCI6IjF5VHFhNXo5WHpqTi1zbVF2ZUxkV0UwRU5iMVp0UTB6OUowN28yYmlpRVhrIiwic2xpZGVJZCI6IlNMSURFU19BUEk2NjIwOTYwMThfMCJ9

4617-214/514

Back to antipatterns/refactoring

4717-214/514

Anti-patterns
● Common system-level anti-patterns

○ Bad encapsulation, violates information hiding
■ public fields should be private; interface leaks implementation details; lack of interface

○ Bad modularization, violates coupling
■ related methods in different places, or vice versa; very large interface; “god” class

○ Bad abstraction, violates cohesion
■ Not exposing relevant functionality; near-identical classes; too many responsibilities

○ Bad inheritance/hierarchy
■ Violating behavioral subtyping; unnecessary inheritance; very large hierarchies (too wide

or too deep)

4817-214/514

Anti-patterns
● Zooming in: common code smells

○ Not necessarily bad, but worthwhile indicators to check
■ When problematic, often point to design problems

○ Long methods, large classes, and the likes. Suggests bad abstraction
■ Tend to evolve over time; requires restructuring

○ Inheritance despite low coupling (“refused bequest”)
■ Replace with delegation, or rebalance hierarchy

○ ‘instanceof’ (or ‘switch’) instead of polymorphism
○ Overly similar classes, hierarchies
○ Any change requires lots of edits

■ High coupling across classes (“shotgun surgery”), or heavily entangled implementation
(intra-class)

4917-214/514

Anti-patterns
● Zooming in: common code smells

○ Not necessarily bad, but worthwhile indicators to check
■ When problematic, often point to design problems

○ Excessive, unused hierarchies
○ Operations posing as classes
○ Data classes

■ Tricky: not always bad, but ideally distinguish from regular classes (e.g., ‘record’), and
assign responsibilities if any exist (think: FlashCard did equality checking)

○ Heavy usage of one class’ data from another (“feature envy”,
“inappropriate intimacy”; poor coupling)

○ Long chains of calls needed to do anything (law of demeter)
○ A class that only delegates work

5017-214/514

Anti-patterns
● You can detect them from either side

○ Pick a design principle, look for violations
○ Identify “weird” code and isolate design flaw

5117-214/514

Anti-patterns
● You can detect them from either side

○ Pick a design principle, look for violations
○ Identify “weird” code and isolate design flaw

● All fairly easy to spot on their own
○ But in HW4, there are multiple, tangled up

■ We actually provide way more guidance than you’ll get in the wild!
○ How do you approach that?

5217-214/514

Refactoring and Anti-patterns
● Identifying multiple design problems

○ Make a list
■ Read the code, record anything that stands out

● Pay attention to class names and their (apparent) interfaces
● Make note of repetitive code (esp. across methods)

■ Draw a diagram, using a tool or by hand
● Spot duplication, (lack of) interfaces, strange inheritance

■ This takes practice
○ Don’t solve every problem

■ Many issues are orthogonal
● Or, at least, you can improve things somewhat

■ When issues intersect, prioritize fixing interfaces

5317-214/514

Refactoring
● So where is “refactoring” in all this?

○ It’s what comes next.
○ Most design issues can be resolved with functionality-preserving

transformation(s)
■ Too many parameters? Merge relevant ones into object, and/or replace with method

calls.
■ Two near-identical classes? Merge their signatures using renamings, parameterization,

then delete one or extract super-class

5417-214/514

Audience Q&A Session

ⓘ Start presenting to display the audience questions on this slide.

https://www.sli.do/features-google-slides?interaction-type=UUE%3D
https://www.sli.do/features-google-slides?payload=eyJwcmVzZW50YXRpb25JZCI6IjF5VHFhNXo5WHpqTi1zbVF2ZUxkV0UwRU5iMVp0UTB6OUowN28yYmlpRVhrIiwic2xpZGVJZCI6IlNMSURFU19BUEkxMTM3NjczNjk0XzAifQ%3D%3D

5517-214/514

More useful patterns! Remember
that long parameter list?

5617-214/514

Fluent APIs / Cascade Pattern

5717-214/514

Setting up Complex Objects
Long constructors, lots of optional parameters, long lists of
statements

client.getItem('user-table')
 .setHashKey('userId', 'userA')
 .setRangeKey('column', '@')
 .execute()
 .then(function(data) {
 ...
 })

Option find = OptionBuilder
.withArgName("file")
.hasArg()
.withDescription("search...")
.create("find");

5817-214/514

Liquid APIs
Each method changes
state,
then returns this

(Immutable version:
Return modified copy)

class OptBuilder {
private String argName = "";
private boolean hasArg = false;
...
OptBuilder withArgName(String n) {

this.argName = n;
return this;

}
OptBuilder hasArg() {

this.hasArg = true;
return this;

}
...
Option create() {

return new Option(argName,
 hasArgs, ...)

}
}

5917-214/514

Python: Named parameters

parser = argparse.ArgumentParser(description='Process some integers.')
parser.add_argument('integers', metavar='N', type=int, nargs='+',
 help='an integer for the accumulator')
parser.add_argument('--sum', dest='accumulate', action='store_const',
 const=sum, default=max,
 help='sum the integers (default: find the max)')

6017-214/514

JavaScript: JSON Objects
var argv = require('yargs/yargs')(process.argv.slice(2))

 .option('size', {

 alias: 's',

 describe: 'choose a size',

 choices: ['xs', 's', 'm', 'l', 'xl']

 })

 .argv

Notice the combination of cascading and complex JSON parameters

6117-214/514

Fluent APIs: Discussion and Tradeoffs
Problem: Complex initialization and configuration

Advantages:

● Fairly readable code
● Can check individual arguments
● Avoid untyped complex arguments

Disadvantages:

● Runtime error checking of constraints and mandatory arguments
● Extra complexity in implementation
● Not always obvious how to terminate
● Possibly harder to debug

6217-214/514

Iterator Pattern & Streams
(what’s up with for(Person p : this.records)?)

6317-214/514

Traversing a collection
● Since Java 1.0:

 Vector arguments = …;

 for (int i = 0; i < arguments.size(); ++i) {

 System.out.println(arguments.get(i));

 }

● Java 1.5: enhanced for loop
List<String> arguments = …;

for (String s : arguments) {

 System.out.println(s);

}

● Works for every implementation of Iterable
public interface Iterable<E> {

 public Iterator<E> iterator();

}

public interface Iterator<E> {

 boolean hasNext();

 E next();

 void remove();

}

● In JavaScript (ES6)
let arguments = …

for (const s of arguments) {

 console.log(s)

}

● Works for every implementation with a “magic”
function [Symbol.iterator] providing an iterator
interface Iterator<T> {

 next(value?: any): IteratorResult<T>;

 return?(value?: any): IteratorResult<T>;

 throw?(e?: any): IteratorResult<T>;

}

interface IteratorReturnResult<TReturn> {

 done: true;

 value: TReturn;

}

6417-214/514

The Iterator Idea
Iterate over elements in arbitrary data structures (lists, sets, trees)
without having to know internals

Typical interface:

public interface Iterator<E> {

 boolean hasNext();

 E next();

}

(in Java also remove)

6517-214/514

Using an iterator
Can be used explicitly

List<String> arguments = …;

for (Iterator<String> it = arguments.iterator(); it.hasNext();) {

 String s = it.next();

 System.out.println(s);

}

Often used with magic syntax:
for (String s : arguments)
for (const s of arguments)

6617-214/514

Java: Getting an Iterator
public interface Collection<E> extends Iterable<E> {
 boolean add(E e);
 boolean addAll(Collection<? extends E> c);
 boolean remove(Object e);
 boolean removeAll(Collection<?> c);
 boolean retainAll(Collection<?> c);
 boolean contains(Object e);
 boolean containsAll(Collection<?> c);
 void clear();
 int size();
 boolean isEmpty();
 Iterator<E> iterator();
 Object[] toArray()
 <T> T[] toArray(T[] a);
 …
}

Defines an interface for creating an
Iterator,
but allows Collection
implementation to decide
which Iterator to create.

6717-214/514

Iterators for everything
public class Pair<E> {
 private final E first, second;
 public Pair(E f, E s) { first = f; second = s; }

}

Pair<String> pair = new Pair<String>("foo", "bar");
for (String s : pair) { … }

6817-214/514

public class Pair<E> implements Iterable<E> {
 private final E first, second;
 public Pair(E f, E s) { first = f; second = s; }
 public Iterator<E> iterator() {
 return new PairIterator();
 }
 private class PairIterator implements Iterator<E> {
 private boolean seenFirst = false, seenSecond = false;
 public boolean hasNext() { return !seenSecond; }
 public E next() {
 if (!seenFirst) { seenFirst = true; return first; }
 if (!seenSecond) { seenSecond = true; return second; }
 throw new NoSuchElementException();
 }
 public void remove() {
 throw new UnsupportedOperationException();
 }
 }
}

An Iterator implementation for Pairs

Pair<String> pair = new Pair<String>("foo", "bar");
for (String s : pair) { … }

6917-214/514

Iterator design pattern
● Problem: Clients need uniform strategy to access all elements

in a container, independent of the container type
○ Order is unspecified, but access every element once

● Solution: A strategy pattern for iteration
● Consequences:

○ Hides internal implementation of underlying container
○ Easy to change container type
○ Facilitates communication between parts of the program

7017-214/514

Iterator and FlashCards?

7117-214/514

Streams
Stream ~ Iterator -- a sequence of objects

Typically provide operations to produce new stream from old
stream (map, flatMap, filter) and operations on all elements (fold,
sum) -- using higher-order functions/strategy

Often provide efficient/parallel implementations
(subtype polymorphism)

Built-in in Java since Java 8; basics in Node libraries in JavaScript

7217-214/514

List<String>results = stream.map(Object::toString)
.filter(s -> pattern.matcher(s).matches())

 .collect(Collectors.toList());

int sum = numbers.parallelStream().reduce(0, Integer::sum);

Stream(people).filter({age: 23}).flatMap("children").map("firstName")
 .distinct().filter(/a.*/i).join(", ");

for (let [odd, even] in numbers.split(n => n % 2, n => !(n % 2)).zip()) {
 console.log(`odd = ${odd}, even = ${even}`); // [1, 2], [3, 4], ...
}

7317-214/514

Summary
● Practice applying design patterns, recognizing anti-patterns

○ Create scenarios and try to write code
○ Find examples in public projects
○ Use this time to gain experience
○ Read lots of code, think about alternatives, like in HW4
○ Learn a vocabulary of anti-patterns (even if imperfect)

7417-214/514

Audience Q&A Session

ⓘ Start presenting to display the audience questions on this slide.

https://www.sli.do/features-google-slides?interaction-type=UUE%3D
https://www.sli.do/features-google-slides?payload=eyJwcmVzZW50YXRpb25JZCI6IjF5VHFhNXo5WHpqTi1zbVF2ZUxkV0UwRU5iMVp0UTB6OUowN28yYmlpRVhrIiwic2xpZGVJZCI6IlNMSURFU19BUEk1NTQ3ODk2OTlfMCJ9

