Principles of Software Construction:
Objects, Design, and Concurrency

Asynchrony and Concurrency

Claire Le Goues Bogdan Vasilescu

Carnegie Mellon University
School of Computer Science

institute for
I S SOFTWARE
RESEARCH

17-214/514 1 [s

Interaction with CLI

Terminal — 0

File Edit View Search Terminal Help

scripts/kconfig/conf arch/x86/Kconfig
*

Linux Kernel Configuration

*
*
*
*

General setup

*

Prompt for developr

Pestapepeaaaees Scanner input = new Scanner(System.in);

Automatically appen : :
S while (questions.hasNext()) {

Kernel compression Question q = question.next();

i Sitﬁz‘?iizﬁtzf System.out.println(qg.toString());

3. LZMA (KERNEL_L - _ - .
4. LZO (KERNEL_LZ String answer = input.nextlLine();

choice[1-47]: 3 q.respond(answer) ;
Support for paging
System V IPC (SYSVI

POSIX Message QUEUES \rwvoain_itigurviry iy
BSD Process Accounting (BSD_PROCESS_ACCT) [Y/n/?2] n

Export task/process statistics through netlink (EXPERIMENTAL) (TASKSTATS) [Y/n/?
11

2 9

institute for
SOFTWARE
RESEARCH

A backend with no interaction

. .“\g
ence WO

NoE O Ce%(i whak & dowman wmodel

looks \\ke

17-214/514 3 o

tig 1%
an examP\e

What have we not yet seen?

17-214/514 4 s

How do you wait?

»Eile Edit Uieu‘ Search Run Debug Uption;» Uindou

ndex
ontents

You have a royalty-free right to use, modify, repr
and distribute the sample applications and toolkit eyboard
Uisual Basic for MS-DOS (and/or any modified versi
in any way you find useful, provided that you agre| USRS F1
Microsoft has no warranty, obligations or liabilit]EIESR\T/EeE=30"] Shift+F1
any of the sample applications or toolkits. T torial

:nnf, o
' Include file containing declaration :
* SINCLUDE : while (true) {

‘clock.bi’
if (isKeyDown(“Alt+Q")
ONST FALSE = 0

ONST TRUE = NOT FALSE break;
ONST ALARMSOUND = “MBT255L1606C04GED if (isKeyDown(“F1")

IM SHARED AlarmTime AS STRING openHelp();
if (isMouseDown(10 ..)
startMovingWindow()

IM SHARED TimeFmt AS STRING

’

17-214/514

5 [Hi

institute for
SOFTWARE
RESEARCH

How do you multi-player?

'll"—;:ji‘—i"'
. A

while (true) {
if (player === “player1”) {
hasWon = play(“player1”);
if (hasWon) break;
player = “player2”;

} else (player === “player2”) {
hasWon = play(“player2”)
if (hasWon) break;
player = “playeri1”;

https://www.cloudsavvyit.com/2586/how-to-build-your-multiplayer-games-server-architecture/
17-214/514 6 i

RESEARCH

Potential issue: Blocking interactions with users

>0

o
3
[0
L

Game Dealer

addCards |

| AR

addCards
|

getAction
|

) blocking execution
action

[actio n::H'rt] addCard
|

—_——em e e e e @ e e

17-214/514 7 e

Today

Beyond serial execution

Intro to Concurrency
Event-based Programming

/0, GUIs
Observer Pattern

17-214/514 8 Sf 2?;“5*}{1{%

Event-based programming

e Style of programming where control-flow is driven by (usually
external) events

public void performAction (ActionEvent e) {
List<String> lst = Arrays.asList (bar);
foo.peek (42)

public void performAction (ActionEvent e) {
bigBloatedPowerPointFunction (e) ;
withANameSoLongIMadeItTwoMethods (e) ;
yesIKnowJavaDoesntWorkLikeThat (e) ;

public void performAction (ActionEvent e) {
List<String> lst = Arrays.aslist (bar);
foo.peek (40)

17-214/514 9 el

RESEARCH

Interactions with users through events

e Do not block waiting for user response

e |nstead, react to user events

Game Dealer Player
newGame J : :
| addCards l |
|) |
| addCards |
| [>I
hit ' I I	
ﬁ addCard I	
' >I	

17-214/514 10 [o

RRRRRRRR

An event-based GUI with a GUI framework

o Setup phase

o Describe how the GUI window should look
o Register observers to handle events

e EXxecution

o Framework gets events from OS, processes

events

s Your code is mostly just event handlers

17-214/514

Application

event—
mouse, key,
redraw, ...

GUI
Framework

drawing
commands

Event-based GUIs

Saform ey Contactidior] //static public void main...
AT | | JFrame window = ...
o = | window.setDefaultCloseOperation(
bispy Format: [T 1 ’ WindowConstants.EXIT_ON_CLOSE);
window.setVisible(true);
E-mail I
e “1//on add-button click:
em 1 String email = emailField.getText();
Ttem 3 [Remo 2 N
e = emaillist.add(email);
= //on remove-button click:
e oeh int pos =emaillist.getSelectedItem(
—_— if (pos>=0) emaillist.delete(pos);

17-21 e

Three Concepts of Importance

e Thread: instructions executed in sequence

o Within a thread, everything happens in order.
o Athread can start, sleep, and die.
o You often work on the “main” thread.

17'214/514 13 Sf gég?ﬁ%

Three Concepts of Importance

e Thread: instructions executed in sequence

o Within a thread, everything happens in order.
o Athread can start, sleep, and die.
o You often work on the “main” thread.

e Concurrency: multiple threads running at the same time
o Not necessarily executing in parallel

17-2 14/5 14 14 Sf gé;{"ui{%

Three Concepts of Importance

e Thread: instructions executed in sequence

o Within a thread, everything happens in order.
o Athread can start, sleep, and die.
o You often work on the “main” thread.

e Concurrency: multiple threads running at the same time
o Not necessarily executing in parallel

e Asynchrony: computation happening outside the main flow

17-214/514 15 Sf 2?3%%

Where do we want concurrency?

e User interfaces
o Events can arrive any time

e Filel/O

o Offload work to disk/network/... handler

e Background work
o Periodically run garbage collection, check health of service

e High-performance computing
o Facilitate parallelism and distributed computing

17-214/514 16 Lo

Concurrency with file 1/0

Key chart:

17-214/514

Computer Action Avg Latency Normalized Human Time
3GhzCPU Clock cycle 3Ghz 0.3ns 1s

Level 1 cache access 0.9ns 3s

Level 2 cache access 2.8ns 9s

Level 3 cache access 12.9 ns 43 s

RAM access 70 - 100ns 3.5t0 5.5 min
NVMe SSD I/O 7-150 ps 2 hrs to 2 days
Rotational disk I/0 1-10 ms 11 days to 4 mos
Internet: SF to NYC 40 ms 1.2 years
Internet: SF to Australia 183 ms 6 years

OS virtualization reboot 4s 127 years
Virtualization reboot 40 s 1200 years
Physical system reboot 90 s 3 Millenia

Table 1: Computer Time in Human Terms '

https://formulusblack.com/blog/compute-performance-distance-of-data-as-a-measure-of-latency/

17 [

institute for
SOFTWARE
RESEARCH

Aside: Concurrency vs. parallelism

e Concurrency without parallelism:

Thread1 R T
Threaqz N I
Thread3

e Concurrency with parallelism:

Thread1 NG
Thread2 [

L
Thread3

17-214/514 18 [s

RRRRRRRR

What is a thread?

o Short for thread of execution
Multiple threads can run in the same program concurrently

o [hreads share the same address space

- Changes made by one thread may be read by others

o Multi-threaded programming

o Also known as shared-memory multiprocessing

17-2 14/5 14 20 Sf g\é}}:i{%

Basic concurrency in Java

- An interface representing a task

public interface Runnable {
void run();

}

. A class to execute a task in a thread

public class Thread {
public Thread(Runnable task);
public void start(); makes sure that thread is terminated
public void join(); -g— before the next instruction is executed
by the program

17-214/514 21 [

A simple threads example

public interface Runnable { // java.lang.Runnable
public void run();

}

public static void main(String[] args) {

Runnable greeter = new Runnable() {

public void run() {
System.out.println("Hi mom!");

}

=

for (int 1 = 0; 1 < n; i1++) {
new Thread(greeter).start();

}

int n = Integer.parseInt(args[0]); // Number of threads;

17-214/514

o
institute for
22 [H]f o

A simple threads example

public interface Runnable { // java.lang.Runnable
public void run();

}

public static void main(String[] args) {

Runnable greeter = () -> System.out.println("Hi mom!");
for (int 1 = 0; 1 < n; i1++) {

new Thread(greeter).start();
}

int n = Integer.parseInt(args[0]); // Number of threads;

-

17-214/514

23 [Hi

institute for
SOFTWARE
RESEARCH

A simple threads example

public interface Runnable { // java.lang.Runnable
public void run();

}

public static void main(String[] args) {
int n = Integer.parseInt(args[0]); // Number of threads;

for (int 1 = 0; 1 < n; i1++) {
new Thread(() -> System.out.println("Hi mom!")).start(); -«

}

17-214/514 24 ek

Another example: Money-grab (1)

public class BankAccount {
private long balance;

public BankAccount(long balance) {
this.balance = balance;
}
static void transferFrom(BankAccount source,
BankAccount dest, long amount) {
source.balance -= amount;
dest.balance += amount;
}
public long balance() {
return balance;

}

17-214/514 26 sl

RESEARCH

Another example: Money-grab (2)

public static void main(String[] args) throws InterruptedException {
BankAccount bugs = new BankAccount(1 000 000);
BankAccount daffy = new BankAccount(1 000 000);

Thread bugsThread = new Thread(()-> {
for (int 1 = 0; 1 < 1_000_000; i++)
transferFrom(daffy, bugs, 1);
});

Thread daffyThread = new Thread(()-> {
for (int 1 = 0; 1 < 1_000_000; i++)
transferFrom(bugs, daffy, 1);
1)

bugsThread.start(); daffyThread.start();
bugsThread. join(); daffyThread. join();
System.out.println(bugs.balance() - daffy.balance());

17-214/514 27 sl

RESEARCH

What went wrong?

o Daffy & Bugs threads had a race condition for shared data

> Transfers did not happen in sequence

« Reads and writes interleaved randomly

- Random results ensued

17-214/514 28 Lo

Safety, Liveness, Performance

CONCURRENCY HAZARDS

17-214/514 29 [Ij i

RRRRRRRR

1. Safety Hazard

e The ordering of operations in multiple threads is unpredictable.

@NotThreadSafe

public class UnsafeSequence {

private int value;

public int getNext() {

return

}
}

value++;

o

Not atomic

e Unlucky execution of UnsafeSequence.getNext

A
B

17-214/514

value—9

\ 4

9+1-10

value—9

\ 4

\ 4

value—10

9+1-10

\ 4

value—10

Aside: Atomicity

e An action is atomic if it is indivisible

o Effectively, it happens all at once

m No effects of the action are visible until it is complete
» No other actions have an effect during the action

o In Java, integer increment is not atomic

1. Load data from variable i
14t is actually 5 1ncrement data by 1

3. Store data to variable i

17-2 14/5 14 31 Sf g\é}}:i{%

Thread Safety

A class is thread safe if it behaves correctly when accessed from
multiple threads, regardless of the scheduling or interleaving of the
execution of those threads by the runtime environment, and with no
additional synchronization or other coordination on the part of the
calling code.

17-2 14/5 14 32 Sf g\é}}:i{%

2. Liveness Hazard

Safety: “nothing bad ever happens”
Liveness: “something good eventually happens”

Deadlock

o Infinite loop in sequential programs

o Thread A waits for a resource that thread B holds exclusively, and B never
releases it — A will wait forever

s E.g., Dining philosophers

Elusive: depend on relative timing of events in different threads

17-2 14/5 14 33 Sf g\é}}:i{%

Deadlock example

Two threads:

A does transfer(a, b, 10)

B does transfer(b,

class Account {

synchron
sync
}

}
}

from.

double balance;
void withdraw(double amount){ balance -
void deposit(double amount){ balance += amount; }

void transfer(Account from, Account to, double amount){

ized(from) {
withdraw(amount);

hronized(to) {
to.deposit(amount);

= amount; }

17-214/514

a, 10)

Execution trace:
: lock a (v)
lock b (v)
lock b (x)
lock a (x)

: wait

: wait

S

Deadlock!

34 [Hi

nstitute for
SOFTWARE
RESEARCH

3. Performance Hazard

e Liveness: “something good eventually happens”
e Performance: we want something good to happen quickly

e Multi-threading involves runtime overhead:
o Coordinating between threads (locking, signaling, memory sync)
o Context switches
o Thread creation & teardown
o Scheduling

e Not all problems can be solved faster with more resources
o One mother delivers a baby in 9 months

17-214/514 35 Sf 2?:‘2’&1{‘2%

Amdahl’'s law

e The speedupis
limited by the
serial part of the
program.

17-214/514

Speedup

20

18

16

14

12

10

/// T
// Parallel porton
/ 50%
/| e 75%
e 0%
/ —— %%
/
/
/ o e i
o
o ~N -+ ==} o ~N - ==} o N -+ [==] ©o
- ™ o ~N o - ~N -+ (=2 (=2} o« (=] ™
- ~N wn (=] (=] (=] - ™ N~ [Tx]
- ~N - =] g ﬁ 8

Number of processors

36 [Hi

institute for
SOFTWARE
RESEARCH

How fast can this run?

e N threads fetch independent tasks from a shared work queue

17-214/514

public class WorkerThread extends Thread {

public void run() {
while (true) {
try {
Runnable task = queue.take();
task.run();
} catch (InterruptedException e) {
break; /* Allow thread to exit */

}

DECOUPLING THE GUI

17-214/514 38 [[j i

RRRRRRRR

A GUI design challenge

e Consider a blackjack game, implemented by a Game class:

o Player clicks “hit” and expects a new card
o When should the GUI update the screen?

Ul

0
)
=]
1

hit()

getData

Y A

update

17'214/514 39 Sf gé}?i{%

A GUI design challenge, extended

e \What if we want to show the points won?

Game GUI PointsPanel
I I |
I hit | I
[V
[N | |
I getData | I
K l
: b update :
I | update |
I | |
| getData |
[2
K |]
| | g
I | update

17-214/514 40 [| s

RRRRRRRR

Game updates GUI?

e \What if points change for reasons not started by the GUI?
(or computations take a long time and should not block)

Game GUI PointsPanel
J I |
I hit | I
[
K | |
| getData I |
K |
: b update :
I update |
| ! 3
| getData |
["
N | !
| | 5
I | update

17-214/514 a1 s

Game updates GUI?

e Letthe Game tell the GUI that something happened

Game GUI PointsPanel

|
hit |
update(data) :

update
updatddata)

T

|
K
|

I

|

|

|

I

: update
|

|

17-214/514 42 g s

RRRRRRRR

Game updates GUI?

e Letthe Game tell the GUI that something happened

)
c

Game PointsPanel

hit
update(data)

update
updatddata)

]

|

—
—

update

i
K
!
|
!
!
|
|
1

Problem: This couples the World to the GUI implementation.

17-214/514 43 Sf g

Core implementation vs. GUI

e Core implementation: Application logic
o Computing some result, updating data

o GUI

o Graphical representation of data
o Source of user interactions

e Design guideline: Avoid coupling the GUI with core application
o Multiple Uls with single core implementation
o Test core without Ul

o Design for change, design for reuse, design for division of labor; low coupling,
high cohesion

17-2 14/5 14 44 Sf gégi{%

... to be continued

17-214/514 a5 |Iq s

RRRRRRRR

Designing for Asynchrony & Concurrency

e We are in a new paradigm now

o We need standardized ways to handle asynchronous and/or concurrent
interactions
o This is how design patterns are born

e A lot of powerful syntax for managing concurrency
o To be discussed in future classes

17-214/514 46 Sf ;?;i’f’.;{":

Summary

e Thinking past the main loop

o The world is asynchronous
o Concurrency helps, in a lot of ways
o Requires revisiting programming patterns

e Start considering Ul design
o Discussed in more detail next week

17-214/514 49 Lo

