
117-214/514

Principles of Software Construction:
Objects, Design, and Concurrency

Asynchrony and Concurrency

Claire Le Goues Bogdan Vasilescu

217-214/514

Scanner input = new Scanner(System.in);
while (questions.hasNext()) {
 Question q = question.next();
 System.out.println(q.toString());
 String answer = input.nextLine();
 q.respond(answer);
}

Interaction with CLI

317-214/514

A backend with no interaction

417-214/514

What have we not yet seen?

517-214/514

How do you wait?

while (true) {
if (isKeyDown(“Alt+Q”)

break;
if (isKeyDown(“F1”)

openHelp();
if (isMouseDown(10 …)

startMovingWindow();
...

}

617-214/514

How do you multi-player?

https://www.cloudsavvyit.com/2586/how-to-build-your-multiplayer-games-server-architecture/

while (true) {
if (player === “player1”) {

hasWon = play(“player1”);
if (hasWon) break;
player = “player2”;

} else (player === “player2”) {
hasWon = play(“player2”)
if (hasWon) break;
player = “player1”;

}
}

717-214/514

Potential issue: Blocking interactions with users

blocking execution

817-214/514

Today
Beyond serial execution

● Intro to Concurrency
● Event-based Programming
● I/O, GUIs
● Observer Pattern

917-214/514

Event-based programming

● Style of programming where control-flow is driven by (usually
external) events

public void performAction(ActionEvent e) {
 List<String> lst = Arrays.asList(bar);
 foo.peek(42)
}

public void performAction(ActionEvent e) {
 bigBloatedPowerPointFunction(e);
 withANameSoLongIMadeItTwoMethods(e);
 yesIKnowJavaDoesntWorkLikeThat(e);
}

public void performAction(ActionEvent e) {
 List<String> lst = Arrays.asList(bar);
 foo.peek(40)
}

1017-214/514

Interactions with users through events
● Do not block waiting for user response

● Instead, react to user events

1117-214/514

An event-based GUI with a GUI framework

● Setup phase
○ Describe how the GUI window should look
○ Register observers to handle events

● Execution
○ Framework gets events from OS, processes

events
■ Your code is mostly just event handlers

GUI
Framework

OS

Application

get
event

drawing
commands

next
event

event—
mouse, key,
redraw, …

1217-214/514

Event-based GUIs
//static public void main…
JFrame window = …
window.setDefaultCloseOperation(
 WindowConstants.EXIT_ON_CLOSE);
window.setVisible(true);

//on add-button click:
String email = emailField.getText();
emaillist.add(email);

//on remove-button click:
int pos = emaillist.getSelectedItem();
if (pos>=0) emaillist.delete(pos);

1317-214/514

● Thread: instructions executed in sequence
○ Within a thread, everything happens in order.
○ A thread can start, sleep, and die.
○ You often work on the “main” thread.

Three Concepts of Importance

1417-214/514

● Thread: instructions executed in sequence
○ Within a thread, everything happens in order.
○ A thread can start, sleep, and die.
○ You often work on the “main” thread.

● Concurrency: multiple threads running at the same time
○ Not necessarily executing in parallel

Three Concepts of Importance

1517-214/514

● Thread: instructions executed in sequence
○ Within a thread, everything happens in order.
○ A thread can start, sleep, and die.
○ You often work on the “main” thread.

● Concurrency: multiple threads running at the same time
○ Not necessarily executing in parallel

● Asynchrony: computation happening outside the main flow

Three Concepts of Importance

1617-214/514

Where do we want concurrency?
● User interfaces

○ Events can arrive any time
● File I/O

○ Offload work to disk/network/... handler
● Background work

○ Periodically run garbage collection, check health of service
● High-performance computing

○ Facilitate parallelism and distributed computing

1717-214/514

Concurrency with file I/O
Key chart:

https://formulusblack.com/blog/compute-performance-distance-of-data-as-a-measure-of-latency/

1817-214/514

Aside: Concurrency vs. parallelism
● Concurrency without parallelism:

● Concurrency with parallelism:
Thread1
Thread2
Thread3

Thread1
Thread2
Thread3

2017-214/514

What is a thread?

● Short for thread of execution
● Multiple threads can run in the same program concurrently
● Threads share the same address space

○ Changes made by one thread may be read by others

● Multi-threaded programming
○ Also known as shared-memory multiprocessing

2117-214/514

Basic concurrency in Java
● An interface representing a task

● A class to execute a task in a thread

makes sure that thread is terminated
before the next instruction is executed
by the program

public interface Runnable {
 void run();
}

public class Thread {
 public Thread(Runnable task);
 public void start();
 public void join();
 …
}

2217-214/514

A simple threads example
public interface Runnable { // java.lang.Runnable
 public void run();
}

public static void main(String[] args) {
 int n = Integer.parseInt(args[0]); // Number of threads;

 Runnable greeter = new Runnable() {
 public void run() {
 System.out.println("Hi mom!");
 }
 };
 for (int i = 0; i < n; i++) {
 new Thread(greeter).start();
 }
}

2317-214/514

A simple threads example
public interface Runnable { // java.lang.Runnable
 public void run();
}

public static void main(String[] args) {
 int n = Integer.parseInt(args[0]); // Number of threads;

 Runnable greeter = () -> System.out.println("Hi mom!");
 for (int i = 0; i < n; i++) {
 new Thread(greeter).start();
 }
}

2417-214/514

A simple threads example
public interface Runnable { // java.lang.Runnable
 public void run();
}

public static void main(String[] args) {
 int n = Integer.parseInt(args[0]); // Number of threads;

 for (int i = 0; i < n; i++) {
 new Thread(() -> System.out.println("Hi mom!")).start();
 }
}

2617-214/514

Another example: Money-grab (1)
public class BankAccount {
 private long balance;

 public BankAccount(long balance) {
 this.balance = balance;
 }
 static void transferFrom(BankAccount source,
 BankAccount dest, long amount) {
 source.balance -= amount;
 dest.balance += amount;
 }
 public long balance() {
 return balance;
 }
}

2717-214/514

public static void main(String[] args) throws InterruptedException {
 BankAccount bugs = new BankAccount(1_000_000);
 BankAccount daffy = new BankAccount(1_000_000);

 Thread bugsThread = new Thread(()-> {
 for (int i = 0; i < 1_000_000; i++)
 transferFrom(daffy, bugs, 1);
 });

 Thread daffyThread = new Thread(()-> {
 for (int i = 0; i < 1_000_000; i++)
 transferFrom(bugs, daffy, 1);
 });

 bugsThread.start(); daffyThread.start();
 bugsThread.join(); daffyThread.join();
 System.out.println(bugs.balance() - daffy.balance());
}

Another example: Money-grab (2)

2817-214/514

What went wrong?

● Daffy & Bugs threads had a race condition for shared data
○ Transfers did not happen in sequence

● Reads and writes interleaved randomly
○ Random results ensued

2917-214/514

CONCURRENCY HAZARDS
Safety, Liveness, Performance

3017-214/514

1. Safety Hazard
● The ordering of operations in multiple threads is unpredictable.

● Unlucky execution of UnsafeSequence.getNext
value→9 9+1→10 value→10

value→9 9+1→10 value→10

A
B

Not atomic

@NotThreadSafe
public class UnsafeSequence {
 private int value;

 public int getNext() {
 return value++;
 }
}

3117-214/514

Aside: Atomicity

● An action is atomic if it is indivisible
○ Effectively, it happens all at once

■ No effects of the action are visible until it is complete
■ No other actions have an effect during the action

● In Java, integer increment is not atomic

i++;
1. Load data from variable i

2. Increment data by 1

3. Store data to variable i

is actually

3217-214/514

Thread Safety

A class is thread safe if it behaves correctly when accessed from
multiple threads, regardless of the scheduling or interleaving of the
execution of those threads by the runtime environment, and with no
additional synchronization or other coordination on the part of the
calling code.

3317-214/514

2. Liveness Hazard
● Safety: “nothing bad ever happens”
● Liveness: “something good eventually happens”

● Deadlock
○ Infinite loop in sequential programs
○ Thread A waits for a resource that thread B holds exclusively, and B never

releases it → A will wait forever
■ E.g., Dining philosophers

● Elusive: depend on relative timing of events in different threads

3417-214/514

Deadlock example
Two threads:

A does transfer(a, b, 10) B does transfer(b, a, 10)

Execution trace:
A: lock a (v)
B: lock b (v)
A: lock b (x)
B: lock a (x)
A: wait
B: wait

Deadlock!

class Account {
 double balance;

 void withdraw(double amount){ balance -= amount; }

 void deposit(double amount){ balance += amount; }

 void transfer(Account from, Account to, double amount){
 synchronized(from) {
 from.withdraw(amount);
 synchronized(to) {
 to.deposit(amount);
 }
 }
 }
}

3517-214/514

3. Performance Hazard
● Liveness: “something good eventually happens”
● Performance: we want something good to happen quickly

● Multi-threading involves runtime overhead:
○ Coordinating between threads (locking, signaling, memory sync)
○ Context switches
○ Thread creation & teardown
○ Scheduling

● Not all problems can be solved faster with more resources
○ One mother delivers a baby in 9 months

3617-214/514

Amdahl’s law
● The speedup is

limited by the
serial part of the
program.

3717-214/514

How fast can this run?
● N threads fetch independent tasks from a shared work queue

public class WorkerThread extends Thread {
 ...

 public void run() {
 while (true) {
 try {
 Runnable task = queue.take();
 task.run();
 } catch (InterruptedException e) {
 break; /* Allow thread to exit */
 }
 }
 }
}

3817-214/514

DECOUPLING THE GUI
A design challenge

3917-214/514

A GUI design challenge
● Consider a blackjack game, implemented by a Game class:

○ Player clicks “hit” and expects a new card
○ When should the GUI update the screen?

4017-214/514

A GUI design challenge, extended

● What if we want to show the points won?

4117-214/514

Game updates GUI?
● What if points change for reasons not started by the GUI?

(or computations take a long time and should not block)

4217-214/514

Game updates GUI?
● Let the Game tell the GUI that something happened

4317-214/514

Game updates GUI?
● Let the Game tell the GUI that something happened

Problem: This couples the World to the GUI implementation.

4417-214/514

Core implementation vs. GUI
● Core implementation: Application logic

○ Computing some result, updating data
● GUI

○ Graphical representation of data
○ Source of user interactions

● Design guideline: Avoid coupling the GUI with core application
○ Multiple UIs with single core implementation
○ Test core without UI
○ Design for change, design for reuse, design for division of labor; low coupling,

high cohesion

4517-214/514

… to be continued

4617-214/514

Designing for Asynchrony & Concurrency
● We are in a new paradigm now

○ We need standardized ways to handle asynchronous and/or concurrent
interactions

○ This is how design patterns are born
● A lot of powerful syntax for managing concurrency

○ To be discussed in future classes

4917-214/514

Summary
● Thinking past the main loop

○ The world is asynchronous
○ Concurrency helps, in a lot of ways
○ Requires revisiting programming patterns

● Start considering UI design
○ Discussed in more detail next week

