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Scanner input = new Scanner(System.in);
while (questions.hasNext()) {
   Question q = question.next();
   System.out.println(q.toString());
   String answer = input.nextLine();
   q.respond(answer);
}

Interaction with CLI
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A backend with no interaction
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What have we not yet seen?



517-214/514

How do you wait?

while (true) {
if (isKeyDown(“Alt+Q”)

break;
if (isKeyDown(“F1”)

openHelp();
if (isMouseDown(10 …)

startMovingWindow();
...

}
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How do you multi-player?

https://www.cloudsavvyit.com/2586/how-to-build-your-multiplayer-games-server-architecture/

while (true) {
if (player === “player1”) {

hasWon = play(“player1”);
if (hasWon) break;
player = “player2”;

} else (player === “player2”) {
hasWon = play(“player2”)
if (hasWon) break;
player = “player1”;

}
}



717-214/514

Potential issue: Blocking interactions with users

blocking execution
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Today
Beyond serial execution

● Intro to Concurrency
● Event-based Programming
● I/O, GUIs
● Observer Pattern
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Event-based programming

● Style of programming where control-flow is driven by (usually 
external) events

public void performAction(ActionEvent e) {
    List<String> lst = Arrays.asList(bar);
    foo.peek(42)
}

public void performAction(ActionEvent e) {
    bigBloatedPowerPointFunction(e);
    withANameSoLongIMadeItTwoMethods(e);
    yesIKnowJavaDoesntWorkLikeThat(e);
}

public void performAction(ActionEvent e) {
    List<String> lst = Arrays.asList(bar);
    foo.peek(40)
}
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Interactions with users through events
● Do not block waiting for user response

● Instead, react to user events
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An event-based GUI with a GUI framework

● Setup phase
○ Describe how the GUI window should look
○ Register observers to handle events

● Execution
○ Framework gets events from OS, processes 

events
■ Your code is mostly just event handlers

GUI
Framework

OS

Application

get
event

drawing
commands

next
event

event—
mouse, key,
redraw, … 
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Event-based GUIs
//static public void main…
JFrame window = …
window.setDefaultCloseOperation(
      WindowConstants.EXIT_ON_CLOSE);
window.setVisible(true);

//on add-button click:
String email = emailField.getText();
emaillist.add(email);

//on remove-button click:
int pos = emaillist.getSelectedItem();
if (pos>=0) emaillist.delete(pos);
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● Thread: instructions executed in sequence
○ Within a thread, everything happens in order.
○ A thread can start, sleep, and die.
○ You often work on the “main” thread.

Three Concepts of Importance
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● Thread: instructions executed in sequence
○ Within a thread, everything happens in order.
○ A thread can start, sleep, and die.
○ You often work on the “main” thread.

● Concurrency: multiple threads running at the same time
○ Not necessarily executing in parallel

Three Concepts of Importance
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● Thread: instructions executed in sequence
○ Within a thread, everything happens in order.
○ A thread can start, sleep, and die.
○ You often work on the “main” thread.

● Concurrency: multiple threads running at the same time
○ Not necessarily executing in parallel

● Asynchrony: computation happening outside the main flow

Three Concepts of Importance
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Where do we want concurrency?
● User interfaces

○ Events can arrive any time
● File I/O

○ Offload work to disk/network/... handler
● Background work

○ Periodically run garbage collection, check health of service
● High-performance computing

○ Facilitate parallelism and distributed computing
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Concurrency with file I/O
Key chart:

https://formulusblack.com/blog/compute-performance-distance-of-data-as-a-measure-of-latency/
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Aside: Concurrency vs. parallelism
● Concurrency without parallelism:

● Concurrency with parallelism:
Thread1
Thread2
Thread3

Thread1
Thread2
Thread3
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What is a thread?

● Short for thread of execution
● Multiple threads can run in the same program concurrently
● Threads share the same address space

○ Changes made by one thread may be read by others

● Multi-threaded programming
○ Also known as shared-memory multiprocessing



2117-214/514

Basic concurrency in Java
● An interface representing a task

● A class to execute a task in a thread

makes sure that thread is terminated 
before the next instruction is executed 
by the program

public interface Runnable {
    void run();
}

public class Thread {
    public Thread(Runnable task);
    public void start();
    public void join();  
    …
}
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A simple threads example
public interface Runnable {  // java.lang.Runnable
    public void run();
}

public static void main(String[] args) {
    int n = Integer.parseInt(args[0]);  // Number of threads;

    Runnable greeter = new Runnable() {
        public void run() {
            System.out.println("Hi mom!");
        }
    };
    for (int i = 0; i < n; i++) {
        new Thread(greeter).start();
    }
}
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A simple threads example
public interface Runnable {  // java.lang.Runnable
    public void run();
}

public static void main(String[] args) {
    int n = Integer.parseInt(args[0]);  // Number of threads;

    Runnable greeter = () -> System.out.println("Hi mom!");
    for (int i = 0; i < n; i++) {
        new Thread(greeter).start();
    }
}
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A simple threads example
public interface Runnable {  // java.lang.Runnable
    public void run();
}

public static void main(String[] args) {
    int n = Integer.parseInt(args[0]);  // Number of threads;

    for (int i = 0; i < n; i++) {
        new Thread(() -> System.out.println("Hi mom!")).start();
    }
}
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Another example: Money-grab (1)
public class BankAccount {
    private long balance;

    public BankAccount(long balance) {
        this.balance = balance;
    }
    static void transferFrom(BankAccount source,
                             BankAccount dest, long amount) {
        source.balance -= amount;
        dest.balance   += amount;
    }
    public long balance() {
        return balance;
    }
}
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public static void main(String[] args) throws InterruptedException {
    BankAccount bugs = new BankAccount(1_000_000);
    BankAccount daffy = new BankAccount(1_000_000);
    
    Thread bugsThread = new Thread(()-> {
        for (int i = 0; i < 1_000_000; i++)
            transferFrom(daffy, bugs, 1);
    });
    
    Thread daffyThread = new Thread(()-> {
        for (int i = 0; i < 1_000_000; i++)
            transferFrom(bugs, daffy, 1);
    });
    
    bugsThread.start(); daffyThread.start();
    bugsThread.join(); daffyThread.join();
    System.out.println(bugs.balance() - daffy.balance());
}

Another example: Money-grab (2)
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What went wrong?

● Daffy & Bugs threads had a race condition for shared data
○ Transfers did not happen in sequence

● Reads and writes interleaved randomly
○ Random results ensued
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CONCURRENCY HAZARDS
Safety, Liveness, Performance
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1. Safety Hazard
● The ordering of operations in multiple threads is unpredictable.

● Unlucky execution of UnsafeSequence.getNext
value→9 9+1→10 value→10

value→9 9+1→10 value→10

A
B

Not atomic

@NotThreadSafe
public class UnsafeSequence {
    private int value;

    public int getNext() {
        return value++;
    }
}
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Aside: Atomicity

● An action is atomic if it is indivisible
○ Effectively, it happens all at once

■ No effects of the action are visible until it is complete
■ No other actions have an effect during the action

● In Java, integer increment is not atomic

i++;
1. Load data from variable i

2. Increment data by 1

3. Store data to variable i

is actually
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Thread Safety

A class is thread safe if it behaves correctly when accessed from 
multiple threads, regardless of the scheduling or interleaving of the 
execution of those threads by the runtime environment, and with no 
additional synchronization or other coordination on the part of the 
calling code. 
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2. Liveness Hazard
● Safety: “nothing bad ever happens”
● Liveness: “something good eventually happens”

● Deadlock
○ Infinite loop in sequential programs
○ Thread A waits for a resource that thread B holds exclusively, and B never 

releases it → A will wait forever
■ E.g., Dining philosophers

● Elusive: depend on relative timing of events in different threads
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Deadlock example
Two threads: 

A does transfer(a, b, 10)  B does transfer(b, a, 10)

Execution trace:
A: lock a (v)
B: lock b (v)
A: lock b (x)
B: lock a (x)
A: wait
B: wait

Deadlock!

class Account {
  double balance;

  void withdraw(double amount){ balance -= amount; }

  void deposit(double amount){ balance += amount; }

  void transfer(Account from, Account to, double amount){
        synchronized(from) {
            from.withdraw(amount);
            synchronized(to) {
                to.deposit(amount);
            }
        }
  }
}
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3. Performance Hazard
● Liveness: “something good eventually happens”
● Performance: we want something good to happen quickly

● Multi-threading involves runtime overhead:
○ Coordinating between threads (locking, signaling, memory sync)
○ Context switches
○ Thread creation & teardown
○ Scheduling

● Not all problems can be solved faster with more resources
○ One mother delivers a baby in 9 months
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Amdahl’s law
● The speedup is 

limited by the 
serial part of the 
program.
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How fast can this run?
● N threads fetch independent tasks from a shared work queue

public class WorkerThread extends Thread {
    ...

    public void run() {
        while (true) {
            try {
                Runnable task = queue.take();
                task.run();
            } catch (InterruptedException e) {
                break; /* Allow thread to exit */
            }
        }
    }
}
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DECOUPLING THE GUI
A design challenge



3917-214/514

A GUI design challenge
● Consider a blackjack game, implemented by a Game class:

○ Player clicks “hit” and expects a new card
○ When should the GUI update the screen?
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A GUI design challenge, extended

● What if we want to show the points won?
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Game updates GUI?
● What if points change for reasons not started by the GUI?

(or computations take a long time and should not block)
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Game updates GUI?
● Let the Game tell the GUI that something happened
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Game updates GUI?
● Let the Game tell the GUI that something happened

Problem:  This couples the World to the GUI implementation.
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Core implementation vs. GUI
● Core implementation:  Application logic

○ Computing some result, updating data
● GUI

○ Graphical representation of data
○ Source of user interactions

● Design guideline:  Avoid coupling the GUI with core application
○ Multiple UIs with single core implementation
○ Test core without UI
○ Design for change, design for reuse, design for division of labor; low coupling, 

high cohesion
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… to be continued
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Designing for Asynchrony & Concurrency
● We are in a new paradigm now

○ We need standardized ways to handle asynchronous and/or concurrent 
interactions

○ This is how design patterns are born
● A lot of powerful syntax for managing concurrency

○ To be discussed in future classes
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Summary
● Thinking past the main loop

○ The world is asynchronous
○ Concurrency helps, in a lot of ways
○ Requires revisiting programming patterns

● Start considering UI design
○ Discussed in more detail next week


