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DECOUPLING THE GUI
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A GUI design challenge

e Consider a blackjack game, implemented by a Game class:

o Player clicks “hit” and expects a new card
o When should the GUI update the screen?
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A GUI design challenge, extended

e \What if we want to show the points won?

Game GUI PointsPanel
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Game updates GUI?

e \What if points change for reasons not started by the GUI?
(or computations take a long time and should not block)

Game GUI PointsPanel
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Game updates GUI?

e Letthe Game tell the GUI that something happened

Game GUI PointsPanel
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Game updates GUI?

e Letthe Game tell the GUI that something happened
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Problem: This couples the World to the GUI implementation.

17-214/514 7 Sf Zéﬁ;{i%



Core implementation vs. GUI

e Core implementation: Application logic
o Computing some result, updating data

o GUI

o Graphical representation of data
o Source of user interactions

e Design guideline: Avoid coupling the GUI with core application
o Multiple Uls with single core implementation
o Test core without Ul

o Design for change, design for reuse, design for division of labor; low coupling,
high cohesion
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Decoupling with the Observer pattern

e Letthe Game tell all interested components about updates

Game GUI PointsPanel
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Recall the Observer

Publisher :
«interface»
- subscribers: Subscriber(] <>—>>|  Subscriber
foreach (s in subscribers) - MainState + update(context)
s.update(this) + subscribe(s: Subscriber) A
+ unsubscribe(s: Subscriber) ]
tfsusaers) ||+ mainBusinesstogi coneree. N
Subscribers

)

s = new ConcreteSubscriber()
publisher.subscribe(s)

-
-
-
-
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+ update(context) [T

[~ l
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https://refactoring.guru/design-patterns/observer
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Separating application core and GUI, a summary

e Reduce coupling: do not allow core to depend on Ul

e Create and test the core without a GUI

o Use the Observer pattern to communicate information from the core
(Model) to the GUI (View)
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An architectural pattern:
Model-View-Controller (MVC)

Manage inputs from user: }

= m e —————— Controller \\mouse, keyt)Oard, menu, etc.
\'%

:
]
]
V
View r -
Manage display of
Linformation on the screen

Manage data related to the
application domain
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Model-View-Controller (MVC)

H :Controll Model Vi
Passive model = : -
handleEvent s ' '
R G e S i Controller : :
v : service 1 :
Model : :
1
A v updé'lte :
b T i T Do b 0 View T >
|i| = getData
N ;
Active model ___ o L
________ Controller T T
] '
: v " handleEvent g ' :
A 4 . | <<interface>> : - i o s
Model - Observer ! update -
+update() ' >
? A Q getData
I lerceccecce- View Data.

http:ﬁ/_}?iirhygirzsoft.com/en-us/Iibrary/ff649643.aspx




Asynchrony
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Asynchrony

e \WVe use an asynchronous method call:

o normally, when we need to do work away from the current application;
o and we don't want to wait and block our application awaiting the
response
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Asynchrony

Usually, managing asynchronous events involves concurrency

e Do something while we wait
e Multiple events can overlap
e \We will focus on constructs for handling both
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User Interfaces
What happens here:

document.addEventListener('click', () => console.log('Clicked!"))
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User Interfaces

Callback functions

e Perhaps the building blocks of the internet’s Ul.

e \Work that should be done once something happens
o Called asynchronously from the literal flow of the code
o Not concurrent: JS is single-threaded

document.addEventListener('click', () => {
console.log('Clicked!"'); console.log('Clicked again!'); })
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Concurrency with file 1/0

Mostly used synchronous IO so far

e Works fine if ‘fetch’ is synchronous
o But if other work is waiting...

let image: Image = fetch('myImage.png');
display(image);
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Concurrency with file 1/0

Mostly used synchronous IO so far

e Works fine if ‘fetch’ is synchronous
o But if other work is waiting...

let image: Image = fetch('myImage.png');
display(image);

e It'd be nice if we could continue other work
o How to make it work if ‘fetch’ is asynchronous?
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Concurrency with file 1/0

Asynchronous code requires Promises

e C(Captures an intermediate state
Neither fetched, nor failed; we’ll find out eventually

©)
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imageToBe.then((image) => display(image))
.catch((err) => console.log( aw:

let imageToBe: Promise<Image> = fetch('myImage.png');

'+ err));




Concurrency with file 1/0

Asynchronous code requires Promises

e C(Captures an intermediate state
Neither fetched, nor failed; we’ll find out eventually

©)

imageToBe.then((image) => display(image))
.catch((err) => console.log( aw:

let imageToBe: Promise<Image> = fetch('myImage.png');

'+ err));

e A bitlike a callback

©)
@)

©)
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But better designed
Also related to async/await
“Future” in Java



https://developer.mozilla.org/en-US/docs/Learn/JavaScript/Asynchronous/Introducing#promises_versus_callbacks
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Statements/async_function

Concurrency with file I/O

Can save you a lot of time

e An example from Machine Learning

e The usual process:

o Read data from a filesystem or network
o Batch samples, send to GPU/TPU/XPU memory
o Train on-device
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Concurrency with file I/O

An example from Machine Learning

Naive

ttttttt
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Aside: Threads vs. Processes

e Threads are lightweight; processes heavyweight
e Threads share address space; processes have own

e Threads require synchronization; processes don't

o Threads hold locks while mutating objects

e |t's unsafe to kill threads; safe to kill processes
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Designing for Asynchrony & Concurrency

e We are in a new paradigm now

o We need standardized ways to handle asynchronous and/or concurrent
interactions
o This is how design patterns are born

e A lot of powerful syntax for managing concurrency
o To be discussed in future classes
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Summary

e Thinking past the main loop

o The world is asynchronous
o Concurrency helps, in a lot of ways
o Requires revisiting programming patterns

e Start considering Ul design
o Discussed in more detail next week
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