
117-214/514

Principles of Software Construction:
Objects, Design, and Concurrency

Asynchrony and Concurrency (leftovers)

Claire Le Goues Bogdan Vasilescu

217-214/514

DECOUPLING THE GUI
A design challenge

317-214/514

A GUI design challenge
● Consider a blackjack game, implemented by a Game class:

○ Player clicks “hit” and expects a new card
○ When should the GUI update the screen?

417-214/514

A GUI design challenge, extended

● What if we want to show the points won?

517-214/514

Game updates GUI?
● What if points change for reasons not started by the GUI?

(or computations take a long time and should not block)

617-214/514

Game updates GUI?
● Let the Game tell the GUI that something happened

717-214/514

Game updates GUI?
● Let the Game tell the GUI that something happened

Problem: This couples the World to the GUI implementation.

817-214/514

Core implementation vs. GUI
● Core implementation: Application logic

○ Computing some result, updating data
● GUI

○ Graphical representation of data
○ Source of user interactions

● Design guideline: Avoid coupling the GUI with core application
○ Multiple UIs with single core implementation
○ Test core without UI
○ Design for change, design for reuse, design for division of labor; low coupling,

high cohesion

1017-214/514

Decoupling with the Observer pattern
● Let the Game tell all interested components about updates

1117-214/514

Recall the Observer

https://refactoring.guru/design-patterns/observer

1217-214/514

Separating application core and GUI, a summary

● Reduce coupling: do not allow core to depend on UI

● Create and test the core without a GUI
○ Use the Observer pattern to communicate information from the core

(Model) to the GUI (View)

Core

GUI

Core
Tests

GUI
Tests

1317-214/514

An architectural pattern:
Model-View-Controller (MVC)

Manage inputs from user:
mouse, keyboard, menu, etc.

Manage display of
information on the screen

Manage data related to the
application domain

1417-214/514

Model-View-Controller (MVC)
Passive model

Active model

http://msdn.microsoft.com/en-us/library/ff649643.aspx

1517-214/514

Asynchrony

15

1617-214/514

● We use an asynchronous method call:
○ normally, when we need to do work away from the current application;
○ and we don't want to wait and block our application awaiting the

response

Asynchrony

1717-214/514

Asynchrony
Usually, managing asynchronous events involves concurrency

● Do something while we wait
● Multiple events can overlap
● We will focus on constructs for handling both

1917-214/514

User Interfaces
What happens here:

document.addEventListener('click', () => console.log('Clicked!'))

2017-214/514

User Interfaces
Callback functions

● Perhaps the building blocks of the internet’s UI.
● Work that should be done once something happens

○ Called asynchronously from the literal flow of the code
○ Not concurrent: JS is single-threaded

document.addEventListener('click', () => {
 console.log('Clicked!'); console.log('Clicked again!'); })

2217-214/514

Concurrency with file I/O
Mostly used synchronous IO so far

● Works fine if ‘fetch’ is synchronous
○ But if other work is waiting...

let image: Image = fetch('myImage.png');
display(image);

2317-214/514

Concurrency with file I/O
Mostly used synchronous IO so far

● Works fine if ‘fetch’ is synchronous
○ But if other work is waiting...

● It’d be nice if we could continue other work
○ How to make it work if ‘fetch’ is asynchronous?

let image: Image = fetch('myImage.png');
display(image);

2417-214/514

Concurrency with file I/O
Asynchronous code requires Promises

● Captures an intermediate state
○ Neither fetched, nor failed; we’ll find out eventually

let imageToBe: Promise<Image> = fetch('myImage.png');
imageToBe.then((image) => display(image))
 .catch((err) => console.log('aw: ' + err));

2517-214/514

Concurrency with file I/O
Asynchronous code requires Promises

● Captures an intermediate state
○ Neither fetched, nor failed; we’ll find out eventually

● A bit like a callback
○ But better designed
○ Also related to async/await
○ “Future” in Java

let imageToBe: Promise<Image> = fetch('myImage.png');
imageToBe.then((image) => display(image))
 .catch((err) => console.log('aw: ' + err));

https://developer.mozilla.org/en-US/docs/Learn/JavaScript/Asynchronous/Introducing#promises_versus_callbacks
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Statements/async_function

2617-214/514

Concurrency with file I/O
Can save you a lot of time

● An example from Machine Learning
● The usual process:

○ Read data from a filesystem or network
○ Batch samples, send to GPU/TPU/XPU memory
○ Train on-device

2717-214/514

Concurrency with file I/O
An example from Machine Learning

Different devices:

2817-214/514

Aside: Threads vs. Processes
● Threads are lightweight; processes heavyweight

● Threads share address space; processes have own

● Threads require synchronization; processes don’t
○ Threads hold locks while mutating objects

● It’s unsafe to kill threads; safe to kill processes

2917-214/514

Designing for Asynchrony & Concurrency
● We are in a new paradigm now

○ We need standardized ways to handle asynchronous and/or concurrent
interactions

○ This is how design patterns are born
● A lot of powerful syntax for managing concurrency

○ To be discussed in future classes

3217-214/514

Summary
● Thinking past the main loop

○ The world is asynchronous
○ Concurrency helps, in a lot of ways
○ Requires revisiting programming patterns

● Start considering UI design
○ Discussed in more detail next week

