Principles of Software Construction:
Objects, Design, and Concurrency

Asynchrony and Concurrency (leftovers)

Claire Le Goues Bogdan Vasilescu

Carnegie Mellon University
School of Computer Science

institute for
I S SOFTWARE
RESEARCH

17-214/514 1 [s

RRRRRRRR

DECOUPLING THE GUI

17-214/514 2 [|g s

RRRRRRRR

A GUI design challenge

e Consider a blackjack game, implemented by a Game class:

o Player clicks “hit” and expects a new card
o When should the GUI update the screen?

Ul

0
)
=]
1

hit()

getData

Y A

update

17-214/514 3 o

A GUI design challenge, extended

e \What if we want to show the points won?

Game GUI PointsPanel
I I |
I hit | I
[V
[N | |
I getData | I
K l
: b update :
I | update |
I | |
| getData |
[2
K |]
| | g
I | update

17-214/514 a4 [

RRRRRRRR

Game updates GUI?

e \What if points change for reasons not started by the GUI?
(or computations take a long time and should not block)

Game GUI PointsPanel
J I |
I hit | I
[
K | |
| getData I |
K |
: b update :
I update |
| ! 3
| getData |
["
N | !
| | 5
I | update

17-214/514 5 [o

Game updates GUI?

e Letthe Game tell the GUI that something happened

Game GUI PointsPanel

|
hit |
update(data) :

update
updatddata)

T

|
K
|

I

|

|

|

I

: update
|

|

17-214/514 6 [i

RRRRRRRR

Game updates GUI?

e Letthe Game tell the GUI that something happened

)
c

Game PointsPanel

hit
update(data)

update
updatddata)

]

|

—
—

update

i
K
!
|
!
!
|
|
1

Problem: This couples the World to the GUI implementation.

17-214/514 7 Sf Zéﬁ;{i%

Core implementation vs. GUI

e Core implementation: Application logic
o Computing some result, updating data

o GUI

o Graphical representation of data
o Source of user interactions

e Design guideline: Avoid coupling the GUI with core application
o Multiple Uls with single core implementation
o Test core without Ul

o Design for change, design for reuse, design for division of labor; low coupling,
high cohesion

17-2 14/5 14 8 Sf gégi{%

Decoupling with the Observer pattern

e Letthe Game tell all interested components about updates

Game GUI PointsPanel
I l |
| register | |
[V
[N] |
I register |
= a
K] [
I hit | |
[Ve
KN . [|
I notify I
’ |
! |
| b update [
| notify |
| l J
l | |> update

17-214/514 10 [&

RRRRRRRR

Recall the Observer

Publisher :
«interface»
- subscribers: Subscriber(] <>—>>| Subscriber
foreach (s in subscribers) - MainState + update(context)
s.update(this) + subscribe(s: Subscriber) A
+ unsubscribe(s: Subscriber)]
tfsusaers) ||+ mainBusinesstogi coneree. N
Subscribers

)

s = new ConcreteSubscriber()
publisher.subscribe(s)

-
-
-
-
-

+ update(context) [T

[~ l
Client

https://refactoring.guru/design-patterns/observer

17-214/514

11 [

institute for
SOFTWARE
RESEARCH

Separating application core and GUI, a summary

e Reduce coupling: do not allow core to depend on Ul

e Create and test the core without a GUI

o Use the Observer pattern to communicate information from the core
(Model) to the GUI (View)

17-2 14/5 14 12 S r g‘é&:ﬁi{%

An architectural pattern:
Model-View-Controller (MVC)

Manage inputs from user: }

= m e —————— Controller \\mouse, keyt)Oard, menu, etc.
\'%

:
]
]
V
View r -
Manage display of
Linformation on the screen

Manage data related to the
application domain

17-214/514 13 [s

RRRRRRRR

Model-View-Controller (MVC)

H :Controll Model Vi
Passive model = : -
handleEvent s ' '
R G e S i Controller : :
v : service 1 :
Model : :
1
A v updé'lte :
b T i T Do b 0 View T >
|i| = getData
N ;
Active model ___ o L
________ Controller T T
] '
: v " handleEvent g ' :
A 4 . | <<interface>> : - i o s
Model - Observer ! update -
+update() ' >
? A Q getData
I lerceccecce- View Data.

http:ﬁ/_}?iirhygirzsoft.com/en-us/Iibrary/ff649643.aspx

Asynchrony

17-214/514 15 [Hi Ll

RRRRRRRR

Asynchrony

e \WVe use an asynchronous method call:

o normally, when we need to do work away from the current application;
o and we don't want to wait and block our application awaiting the
response

17-2 14/5 14 16 gé%i’f%

Asynchrony

Usually, managing asynchronous events involves concurrency

e Do something while we wait
e Multiple events can overlap
e \We will focus on constructs for handling both

17-214/514 17 [s

User Interfaces
What happens here:

document.addEventListener('click', () => console.log('Clicked!"))

17-214/514 19 [v

User Interfaces

Callback functions

e Perhaps the building blocks of the internet’s Ul.

e \Work that should be done once something happens
o Called asynchronously from the literal flow of the code
o Not concurrent: JS is single-threaded

document.addEventListener('click', () => {
console.log('Clicked!"'); console.log('Clicked again!'); })

17-214/514

Concurrency with file 1/0

Mostly used synchronous IO so far

e Works fine if ‘fetch’ is synchronous
o But if other work is waiting...

let image: Image = fetch('myImage.png');
display(image);

17-214/514 22 [|{ i

RRRRRRRR

Concurrency with file 1/0

Mostly used synchronous IO so far

e Works fine if ‘fetch’ is synchronous
o But if other work is waiting...

let image: Image = fetch('myImage.png');
display(image);

e It'd be nice if we could continue other work
o How to make it work if ‘fetch’ is asynchronous?

17-214/514

Concurrency with file 1/0

Asynchronous code requires Promises

e C(Captures an intermediate state
Neither fetched, nor failed; we’ll find out eventually

©)

17-214/514

imageToBe.then((image) => display(image))
.catch((err) => console.log(aw:

let imageToBe: Promise<Image> = fetch('myImage.png');

'+ err));

Concurrency with file 1/0

Asynchronous code requires Promises

e C(Captures an intermediate state
Neither fetched, nor failed; we’ll find out eventually

©)

imageToBe.then((image) => display(image))
.catch((err) => console.log(aw:

let imageToBe: Promise<Image> = fetch('myImage.png');

'+ err));

e A bitlike a callback

©)
@)

©)

17-214/514

But better designed
Also related to async/await
“Future” in Java

https://developer.mozilla.org/en-US/docs/Learn/JavaScript/Asynchronous/Introducing#promises_versus_callbacks
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Statements/async_function

Concurrency with file I/O

Can save you a lot of time

e An example from Machine Learning

e The usual process:

o Read data from a filesystem or network
o Batch samples, send to GPU/TPU/XPU memory
o Train on-device

17-214/514 26 Lo

Concurrency with file I/O

An example from Machine Learning

Naive

ttttttt

17-2 14/5 14 27 S r g‘é&:ﬁi{%

Aside: Threads vs. Processes

e Threads are lightweight; processes heavyweight
e Threads share address space; processes have own

e Threads require synchronization; processes don't

o Threads hold locks while mutating objects

e |t's unsafe to kill threads; safe to kill processes

17-214/514 28 Lo

Designing for Asynchrony & Concurrency

e We are in a new paradigm now

o We need standardized ways to handle asynchronous and/or concurrent
interactions
o This is how design patterns are born

e A lot of powerful syntax for managing concurrency
o To be discussed in future classes

17-2 14/5 14 29 Sf géﬁi{%

Summary

e Thinking past the main loop

o The world is asynchronous
o Concurrency helps, in a lot of ways
o Requires revisiting programming patterns

e Start considering Ul design
o Discussed in more detail next week

17-2 14/5 14 32 Sf g\é}}:i{%

