Principles of Software Construction:
Objects, Design, and Concurrency

Basic GUI concepts, HTML

Claire Le Goues Bogdan Vasilescu

Carnegie Mellon University
School of Computer Science

institute for
I S SOFTWARE
RESEARCH

17-214/514 1 [s

Today
e GUI Design

o Concepts, strategies
o Practical application in HTML, CSS, JS

e Dynamic Web Pages
o Client/Server communication
o Backend architecture

17-214/514 4 Sf 2?;“5*}{1{%

How To Make
This Happen?

17-214/514

17-214 Spring 2022 Course calendar Schedule Syllabus Piazza
« Be comfortable with object-oriented concepts and with programming in the Java or JavaScript language
* Have experience designing medium-scale systems with patterns
* Have experience testing and analyzing your software
* Understand principles of concurrency and distributed systems

See a more detailed list of learning goals describing what we want students to know or be able to do by the end of the semester. We evaluate whether
learning goals have been achieved through assignments and exams.

Coordinates

Tu/Th 8:05 - 4:25 p.m. in PH 100

As an IPE class, we will be teaching remotely for the first two weeks of the semester. Zoom links are available via Canvas. We will share those links with
the waitlisted students for the first week or so while the waitlist is sorted out.

Claire Le Goues, clegoues@cs.cmu.edu, TCS 363, office hours TBA (see calendar)
Bogdan Vasilescu, TCS 326, office hours TBA (see calendar)
Our TAs also provide an additional 18h of office hours each week, usually in TCS 310, see details in the calendar.

The instructors have an open door policy: If the instructors' office doors are open and no-one else is meeting with us, we are happy to answer any
course-related questions. Feel free to email us for appointments; we are also available over Zoom.

Course Calendar

» Week | Month | Agenda ~
Mon 2/28 Tue 3/1 Wed 3/2 Thu 3/3 Fri 3/4 Sat3/5 Sun 3/6

12:10p - 2:10p
Deyuan's OH
TCS 310, 4665
Forbes Ave,
Pittsburgh, PA
15213, USA

3:05p - 4:25p
17214 Lecture
https://cmu.zoom.u
5//945133412687

4:45p - 6:45p

Jessica OH TCS 310 L 5:05p - 7:05p

TCS 310 Haoran OH
https://cmu.zoom.u

TCS432, TCS Hall,
6pm QLT s -zoom.u [</my/bhr1723
Pittsburgh, PA

5 [

institute for
SOFTWARE
RESEARCH

GUI Design: what do we want?

e Nested Elements
e Style Vocabulary
e |Interactivity

17-214/514 8 Sf Zéﬁ{{%

GUI Design: what do we want?

e Nested Elements
o HTML

e Style Vocabulary
o CSS

e |Interactivity
o JavaScript

17-214/514 9 [

RRRRRRRR

Anatomy of an HTML Page

Predefined elements

17-214/514

17-244—cauanns =

*
Root
are Construction

Qhiacte Nacian and Concurrency

Header

Overview

Software engineers t
and algorithms from systems from
library and frameworl - - tudents engage
with concepts related to the construction of software systems at
scale, building on their understanding of the basic building blocks of
data structures, algorithms, program structures, and computer
structures. The course covers technical topics in four areas: (1)
concepts of design for complex systems, (2) object oriented
programming, (3) static and dynamic analysis for programs, and (4)
concurrent and distributed software. Student assignments involve
engagement with complex software such as distributed massively
multi-player game systems and frameworks for graphical user
interaction.

B O d y ta structures

Update for Fall 2021: We are planning several changes to the
course for the fall 2021 semester. A key change is that we will teach
the course with multiple programming languages. We will cover

Console Sources Network »

(x ﬂ Elements

. <html lang="en">

» <head>..</head>
«=¥<body> == $0
» <nav id="navigation" class="hidden">..</nav>

» <header id="top" class="container":

» <div id="main" class="container">..<
</body>
</html>

html body

Styles Computed Layout Event Listeners DOM Breakpoi

Filter

element.style {

multiple languages in the lecture, but will expect students to focus)
on one language in assignments. When signing up, please chose a body {
section for Java or JavaScript/TypeScript. y : . X X
font-family: 'Helvetica Neue', Helvetica, sans-serif
After completing this course, students will: font-size: .9em:
SIS i
« Be comfortable with object-oriented concepts and with padding: » 50px 0;
programming in the Java or JavaScript language }
« Have experience designing medium-scale systems with Y
» _bodv {

Technically, ‘document’ is the root with HTML as its only child 10 insttyte for

RESEARCH

Anatomy of an HTML Page

Nested elements

e Sizing
e Attributes
o Jext

17-214/514

17-214 Fall 2021

header#top.container 355.2x 1416

Principles of Software
Construction
Objects, Design, and Concurrency

Overview

Software engineers today are less likely to design
data structures and algorithms from scratch and
more likely to build systems from library and
framework components. In this course, students
engage with concepts related to the construction
of software systems at scale, building on their
understanding of the basic building blocks of data
structures, algorithms, program structures, and
computer structures. The course covers technical
topics in four areas: (1) concepts of design for
complex systems, (2) object oriented
programming, (3) static and dynamic analysis for

[—]
—

x 4]

Elements Console Sources Network

"'V'\'bOdy> — $@
» <nav id="navigation” class="hidden">..</nav>

» <header id="top" class="container">..</header>
v<div id="main"

class="container">
: :before
<h2 id="overview">Overview</h2>

> <p>.</p>

v

<p style="color: red">..</p>

<p>After completing this course, students will:</p

»..
P<n> </n>
html body
Styles Computed Layout Event Listeners

»

DOM Breakpoints|

border -

r
Il
Il
i

padding 50

e

—1355.200x14052.300 | -

i

RESEARCH

Anatomy of an HTML Page

Root element:

<html>

Many GUIs are trees

Element:

<head>

e Nested elements, recursively
e Some fixed positions (html, body)

Element:
<title>
Text:

"My title"
Element:
<hl>

Text:
"A heading"

Element:

Element:

<body>

Document Object Model

Attribute:
<a> href

Text:
"Link text"
1

17-214/514 https://en.wikipedia.org/wiki/Document_Object_Model

o
...........
2 [H] s
RRRRRRR H

Anatomy of an HTML Page

Root element:

<html>

Many GUIs are trees

Element:

<head>

e Nested elements, recursively
e Some fixed positions (html, body)

Element:
<title>
Text:

"My title"
Element:
<hl>

Text:
"A heading"

Element:

How to implement this?

Element:

<body>

Document Object Model

Attribute:
<a> href

Text:
"Link text"
1

17-214/514 https://en.wikipedia.org/wiki/Document_Object_Model

o
...........
I | S B
RRRRRRR H

The composite pattern

e Problem: Collection of objects has behavior similar to the
iIndividual objects

e Solution: Have collection of objects and individual objects
implement the same interface

e Consequences:
o Client code can treat collection as if it were an individual object
o Easier to add new object types
o Design might become too general, interface insufficiently useful

17-214/514 14 [

Composite

e Elements can contain elements

o With restrictions
o Need to deal with style, interaction

e InJS: HTMLElement

o With child-classes e.g. HTMLDivElement, HTMLBodyElement

o Navigation:
m getElement*: locate by tag name, id, class, etc.
m next/prev(Element)Sibling
m childNodes, parent

17-214/514 16 Lo

A few Tags

o <html>
o The root of the visible page
e <head>
o Stores metadata, imports
o <p>
o Aparagraph
e <button>
o Attributes include "'name’, ‘type’, 'value
o <div>
o Generic section -- very useful
e <table>
o The obvious
e Many more; dig into a real page!
17-214/514

LJ
institute for
17 SorTasE

https://www.w3schools.com/tags/tag_button.asp

Style

Not only leaf-nodes have an appearance
T xd

17-214/514

Course Calendar

17214 F21
0 0 october 2021+
Sun Mon
14:00 Ye OH (Online 15:00 Kevin OH 09
1"
3 4
14:00 Ye OH (Online 13:30 Christian OH 09
15:00 Kevin OH 11
tr 784 x 18
= 10 1
14:00 Ye OH (Online 13:30 Christian OH 09
15:00 Kevin OH 11

Elements

. 2.mv-event-container

Console Network — » B1 e X

» <div class="month-row" style="top:16.666666666666668%;heig 1
ht:17.666666666666668%" >..</div>
v<div class="month-row"” style="top:33.333333333333336%;heig
ht:17.666666666666668%" >
> <table cellpadding="0" cellspacing="0" class="st-bg-tabl
e">.</table>
v<table cellpadding="0" cellspacing="0" class="st-grid">
v <tbody>
vtr>
P <td class="st-dtitle st-dtitle-fc">..</td>
> <td class="st-dtitle st-dtitle-today">..</td> == $6
> <td class="st-dtitle st-dtitle-next">..</td>
> <td class="st-dtitle">..</td>
> <td class="st-dtitle">..</td>
» <td class="st-dtitle">..</td>
» <td class="st-dtitle">..</td>
gjtr>
K <Er>. </t
S L o
P<tr>.clbe>
> <tr>..</tr> 1

Sources

div.month-row tablest-grid tbody tr td.st-dtitle.st-dtitle-today

Style

Tags come with inherent & customizable style

e Inherent:
o <div>is a block™ (full-width, with margin)
o is in-line
o <h1>islarge

e Customizable: add and override styles
o Change font-styles, margins, widths
o Modify groups of elements

17-214/514

Style: CSS

e (Cascading Style Sheets

o Reuse: styling rules for tags, classes, types
o Reuse: not just at the leafs!

Hello again!
VS.

<style type="text/css">
span {
font-family: arial
}
</style>

17'2 14/5 14 20 gét%}ei%

Style: CSS

e (Cascading Style Sheets

o Reuse: styling rules for tags, classes, types
o Reuse: not just at the leafs!

e \What if there are conflicts?

<div style="font-weight:normal">
Hello again!
</div>

o Lowest element wins*

*Technically, there’s a whole scoring system
17-2 14/5 14 21 Sf gégi{%

Style: CSS

What is happening here?

17-214/514

gl::}e;:;in, = 4l Elements Console Sources Network > B 1

oy

Hi there!

v<div style="font-weight:normal”>
== Hello again! == %0
</div>
</body>
</html>

html body div span

Styles Computed Layout Event Listeners DOM Breakpoints Properties

thov
~
div > span {
font-family: 'Times New Roman', Times, serif;
¥
span {
font—famiby—arials
}
span {
font—famiby—arials
.l J

Inherited from div

style attribute {

Accessibility

-cls + [« .

main.css:13

index.html:6

main.css:9

Style: CSS

e (Cascading Style Sheets

o Reuse: styling rules for tags, classes, types
o Reuse: not just at the leafs!

e \What if there are no conflicts?
<div style="font-family:arial">
Hello again!

</div>

o How would you implement this?

17-2 14/5 14 23 Sf gégi{%

Decorator
What is happening here?

e To compute the style of an element:

o Apply its tag-default style

o Wrap in added style rules (tag-specific or general)
m Text: font-family, weight, etc.

o Inherit parents’ style
m Conflicts lead to overrides

e Makes themes really powerful

Technically, HTML is streamed top-to-bottom; CSS works bottom-up

17-214/514 24 |Ij o

CSS: classes

Let’s not repeat custom style

e Use any nr. of class label(s)
e (lass styles get added
e Facilitates reuse

How would you implement this?

17-214/514

nts

ainer

Console Sources Network — » B 1 Q : X

» <div class="month-row" style="top:16.666666666666668%;heig 1
ht:17.666666666666668%" >..</div>
v<div class="month-row" style="top:33.333333333333336%;heig
ht:17.666666666666668%" >
» <table cellpadding="0"
e">..</table>
v<table cellpadding="0"
v <tbody>
v<tpe
(b ctd class-"st-dtitle st-dtitle-fc'>.</tH>
P <td class="st-dtitle st-dtitle-today">.k/td> == %6
> <td class="st-dtitle st-dtitle-next">..<ftd>
P <td class="st-dtitle">..</td>
» <td class="st-dtitle">..</td>
> <td class="st-dtitle">..</td>
\r<td class="st-dtitle">..</td>

JGT

cellspacing="0" class="st-bg-tabl

cellspacing="0" class="st-grid">

b LRSS ERD
P <tr>.</tr>
»<ctr>.</tr>
P ZEPSTERS

div.month-row table.st-grid tbody tr td.st-dtitle.st-dtitle-today

c 3 S s

- .y ege
st T

25 SOFTWARE
RESEARCH

Strategy or Observer?
Either could apply

e Both involve callback
e Strategy:

o Typically single

o Often involves a return

e Observer:
o Arbitrarily many
o Involves external updates

17-214/514

nts

ainer

Network — » B 1 e : X

» <div class="month-row" style="top:16.666666666666668%;heig 1
ht:17.666666666666668%" >..</div>
v<div class="month-row" style="top:33.333333333333336%;heig
ht:17.666666666666668%" >

» <table cellpadding="0" cellspacing="0" class="st-bg-tabl

e">..</table>

v<table cellpadding="0" cellspacing="0" class="st-grid">

v <tbody>
\ S

r;<td class="st-dtitle st-dtitle—fc”>m</¥d>
P <td class="st-dtitle st-dtitle-today">.k/td> == %0
> <td class="st-dtitle st-dtitle-next">..<ftd>
P <td class="st-dtitle">..</td>
» <td class="st-dtitle">..</td>
»<td class="st-dtitle">..</td>
> <td class="st-dtitle">..</td>
L/ Cr
P <EPS it
P <tr>.</tr>
»<ctr>.</tr>
P RS T ERS

Console Sources

div.month-row table.st-grid tbody tr td.st-dtitle.st-dtitle-today

c 3 S s

a T
st T

27 SOFTWARE

RESEARCH

Interactivity

A GUI is more than a document

e How do we make it “work”™?

(x ﬂ Elements Console Sources Network > = o ! X
o B e s e e I e L
Hi there!
. ' v<div style="font-weight:normal”>
Hell() agaln. Hello again! == %6
. </div>
C||Ck me <button>Click me</button>
</body>
</html>
html body div span
Styles Computed Layout Event Listeners DOM Breakpoints Properties Accessibility
Filter thov .cls + [{] i
17-214/514 28

institute for
SOFTWARE
RESEARCH

Actions: JavaScript

e Key: event listeners (what's that pattern?)
e (frontend) JS is highly event-driven

o Respond to window ‘onLoad" event, content loads (e.g., ads)

o Respond to clicks, moves

Hi there!
Hello again!

‘ Click me

This page says
You did it! s Network > a1

<sparn-styre=-Tunt-styresrtarre »>di therel

v<div style="font-weight:normal"”>
Hello again!
</div>
<button onclick="buttonClicked()">Click me</button> == %0

1its Console Sources Network »

< mainjs x

1 function buttonClicked() {
2 alert('You did it!")

3Y

tttttttttttt

Observer Pattern

e Manages publishers and subscribers

o Here, button publishes its ‘click’ events
o buttonClicked™ subscribes to 1+ updates

e Flexibility and Reuse
o Multiple observers per element
o Shared observers across elements

17-2 14/5 14 30 Sf g\é}}:i{%

Step Back

e \What is our website now?

o Layout, style, interaction
o What is missing?

17'214/514 31 Sf géﬁi{%

Static Web Pages

e Delivered as-is, final

o Consistent, often fast
o Cheap, only storage needed
e “Static” a tad murky with JavaScript

o We can still have buttons, interaction
o Butitwon’t “go” anywhere -- the server is mum

Files

Server-side

Pre-created:
HTML

CSS
Javascript
other files

>

Web Server

Client-side
T T ATTPRequest
Browser
[HTTP Response
L

17-214/5 1Ettps://developer.m02|IIa.org/en-US/docs/Learn/Server-S|de/F|rst_steps/CI|ent—Server_overwew#anatomy_of_a_dynamlc_requgsi it for

SOFTWARE
RESEARCH

Static Web Pages

e Delivered as-is, final
o Consistent, often fast
o Cheap, only storage needed
e Maintain with static website generators

o Or you’ll be doing a lot of copying
o Coupled with themes => rapid development, deployment
o Quite popular, e.g. hosting on GH Pages

17-2 14/5 14 33 Sf g\é}}:i{%

Static Web Pages
e But...

No persistence (at least, not obviously)
No customizability (e.g., accounts)

No communication (payment, chat, etc)
Realistically, no intensive jobs

O O O O

17-214/514 34 Sf §?§§f’.€{’i§

Dynamic Web Pages

e C(Client/Server

o Someone needs to answer the website’s calls
m Doesn’t need to be us!

o Host a webserver

m Serves pages, handles calls
m For static pages too!

e We’'ll show you more in recitation tomorrow (Wednesday)

17-2 14/5 14 35 Sf gé;{"ui{%

Web Servers

e Communicate via HyperText Transfer Protocol

o URL (the address)
o Method:

m GET: retrieve data. Parameters in URL "...?key=value&key2=value2' and message body
m POST: store/create data. Parameters in request body
m Several more, rarely used
o Responses:
m Status Code:
e We probably all know 404.

e 2XX family is OK.
m And possible data. E.g., entire HTML page.

17-214/514 36 sl

RESEARCH

Web Servers

e Communicate via HyperText Transfer Protocol

o URL (the address)
o Method:

m GET: retrieve data. Parameters in URL "...?key=value&key2=value2' and message body
m POST: store/create data. Parameters in request body
m Several more, rarely used
o Responses:
m Status Code. We all know 404. 2XX family is OK.
m And possible data. E.g., entire HTML page.
o POST makes no sense for static sites!

o As do GETs with parameters

17-214/514 37 Lo

Web Servers

Dynamic sites can do more work

Files

HTM
Templates

Database

17-214/514

Server-side

r

T ©

I
v

Static resources:

+ CSS

« Javascript
Images

+ other files

Request data:

URL encoding
GET/POST data
Cookies

Web

HTML

Web Server

Client-side

HTTP GET Request
Browser

Application :

HTTP Response

@ HTML

CSs
JavaScript

https://developer.mozilla.org/en-US/docs/Learn/Server-side/First_steps/Client-Server_overview#anatomy of a_dynamic_request

institute for
I S SOFTWARE
RESEARCH

AJAX

e Originally: “Asynchronous JavaScript and XML"

©)

©)
©)
©)

17-214/514

Updates parts of a page dynamically
Sends XMLHttpRequests with a callback

On return, check the code; handle success and failure.

Asynchronous, naturally decouples backend from Ul

AJAX

e Originally: “Asynchronous JavaScript and XML"

o Updates parts of a page dynamically

o Sends XMLHttpRequests with a callback

O

o Asynchronous, naturally decouples backend from Ul

e Slowly being phased out

o Replace with “fetch’, which uses... Promises
m More next week

17-214/514

On return, check the code; handle success and failure.

How to Web App?

e Let's avoid generating HTML from scratch on every call

o Map requests to handler code
m Fetch data, process

o Generate and return HTML

e Historically: PHP

17-

o Modifies HTML pages server-side on request; strong ties to SQL

<?php
// The global $ POST variable allows you to access the data sent with the POST method by name
// To access the data sent with the GET method, you can use $ GET
$say = htmlspecialchars($_POST['say']);
$to = htmlspecialchars($ _POST['to']);

echo $say, ' ', $to;
?>

institute for
SOFTWARE
RESEARCH

How to Web App?

e Let's avoid generating HTML from scratch on every call

o Map requests to handler code
m Fetch data, process

o Generate and return HTML

e Or use a framework

Python: Flask, Django

NodedS: Express

Spring for Java

Many others, differences in weight, features

O O O O

17-214/514 42 iy

https://developer.mozilla.org/en-US/docs/Learn/Server-side/First_steps/Web_frameworks

Model-View-Controller (MVC)

17-214/514

View

Model \
3
\ 2
_4 Controller
, 6
-
-

https://overiq.com/django-1-10/mvc-pattern-and-django/

43

MVC is ubiquitous

Separates:

e Model: data organization
o Interface to the database

e \iew: data representation (typically HTML)

o Often called templates in web-dev; “view” is a bit overloaded

e Controller: intermediary between client and model/view
o Typically asks model for data, view for HTML

17-2 14/5 14 44 Sf g\é}}:i{%

Core implementation vs. GUI

e Core implementation: application logic
o Computing some result, updating data

o GUI

o Graphical representation of data

o Source of user interactions

e Design guideline: avoid coupling the GUI with core application
o Multiple Uls with single core implementation
o Test core without Ul

17'2 14/5 14 45 Sf :Es:t::iior

SSSSSSSS
H

Separating application core and GUI

e Reduce coupling: do not allow core to depend on Ul

e Create and test the core without a GUI

o Use the Observer pattern to communicate information from the core
(Model) to the GUI (View)

GUI Tests

CoreTests

17-214/514

Summary

e GUIs are full of design patterns
o Helpful for reuse, delegation in complex environments

e (Covered the basics of HTML, CSS, JS, servers

o Needed for dynamic web pages
o Decouple the GUI; architect your backend
o Alot more to learn (security, performance, privacy), but this will do

e You will build this

o At asmall scale

17-214/514 47 ek

