
117-214/514

Principles of Software Construction:
Objects, Design, and Concurrency

Basic GUI concepts, HTML

Claire Le Goues Bogdan Vasilescu

417-214/514

Today
● GUI Design

○ Concepts, strategies
○ Practical application in HTML, CSS, JS

● Dynamic Web Pages
○ Client/Server communication
○ Backend architecture

517-214/514

How To Make
This Happen?

817-214/514

GUI Design: what do we want?
● Nested Elements
● Style Vocabulary
● Interactivity

917-214/514

GUI Design: what do we want?
● Nested Elements

○ HTML
● Style Vocabulary

○ CSS
● Interactivity

○ JavaScript

1017-214/514

Anatomy of an HTML Page
Predefined elements Root*

Header

Body

Technically, ‘document’ is the root with HTML as its only child

1117-214/514

Anatomy of an HTML Page
Nested elements

● Sizing
● Attributes
● Text

1217-214/514

Anatomy of an HTML Page
Many GUIs are trees

● Nested elements, recursively
● Some fixed positions (html, body)

https://en.wikipedia.org/wiki/Document_Object_Model

1317-214/514

Anatomy of an HTML Page
Many GUIs are trees

● Nested elements, recursively
● Some fixed positions (html, body)

How to implement this?

https://en.wikipedia.org/wiki/Document_Object_Model

1417-214/514

The composite pattern
● Problem: Collection of objects has behavior similar to the

individual objects
● Solution: Have collection of objects and individual objects

implement the same interface
● Consequences:

○ Client code can treat collection as if it were an individual object
○ Easier to add new object types
○ Design might become too general, interface insufficiently useful

1617-214/514

Composite
● Elements can contain elements

○ With restrictions
○ Need to deal with style, interaction

● In JS: HTMLElement
○ With child-classes e.g. HTMLDivElement, HTMLBodyElement
○ Navigation:

■ getElement*: locate by tag name, id, class, etc.
■ next/prev(Element)Sibling
■ childNodes, parent

1717-214/514

A few Tags
● <html>

○ The root of the visible page
● <head>

○ Stores metadata, imports
● <p>

○ A paragraph
● <button>

○ Attributes include `name`, `type`, `value`
● <div>

○ Generic section -- very useful
● <table>

○ The obvious
● Many more; dig into a real page!

https://www.w3schools.com/tags/tag_button.asp

1817-214/514

Style
Not only leaf-nodes have an appearance

1917-214/514

Style
Tags come with inherent & customizable style

● Inherent:
○ <div> is a `block` (full-width, with margin)
○ is in-line
○ <h1> is large

● Customizable: add and override styles
○ Change font-styles, margins, widths
○ Modify groups of elements

2017-214/514

Style: CSS
● Cascading Style Sheets

○ Reuse: styling rules for tags, classes, types
○ Reuse: not just at the leafs!

Hello again!

vs.

<style type="text/css">
 span {
 font-family: arial
 }

</style>

2117-214/514

Style: CSS
● Cascading Style Sheets

○ Reuse: styling rules for tags, classes, types
○ Reuse: not just at the leafs!

● What if there are conflicts?
<div style="font-weight:normal">
 Hello again!
</div>

○ Lowest element wins*

*Technically, there’s a whole scoring system

2217-214/514

Style: CSS
What is happening here?

2317-214/514

Style: CSS
● Cascading Style Sheets

○ Reuse: styling rules for tags, classes, types
○ Reuse: not just at the leafs!

● What if there are no conflicts?
<div style="font-family:arial">
 Hello again!
</div>

○ How would you implement this?

2417-214/514

Decorator
What is happening here?

● To compute the style of an element:
○ Apply its tag-default style
○ Wrap in added style rules (tag-specific or general)

■ Text: font-family, weight, etc.
○ Inherit parents’ style

■ Conflicts lead to overrides

● Makes themes really powerful
Technically, HTML is streamed top-to-bottom; CSS works bottom-up

2517-214/514

CSS: classes
Let’s not repeat custom style

● Use any nr. of class label(s)
● Class styles get added
● Facilitates reuse

How would you implement this?

2717-214/514

Strategy or Observer?
Either could apply

● Both involve callback
● Strategy:

○ Typically single
○ Often involves a return

● Observer:
○ Arbitrarily many
○ Involves external updates

2817-214/514

Interactivity
A GUI is more than a document

● How do we make it “work”?

2917-214/514

Actions: JavaScript
● Key: event listeners (what’s that pattern?)
● (frontend) JS is highly event-driven

○ Respond to window `onLoad` event, content loads (e.g., ads)
○ Respond to clicks, moves

3017-214/514

Observer Pattern
● Manages publishers and subscribers

○ Here, button publishes its ‘click’ events
○ `buttonClicked` subscribes to 1+ updates

● Flexibility and Reuse
○ Multiple observers per element
○ Shared observers across elements

3117-214/514

Step Back
● What is our website now?

○ Layout, style, interaction
○ What is missing?

3217-214/514

Static Web Pages
● Delivered as-is, final

○ Consistent, often fast
○ Cheap, only storage needed

● “Static” a tad murky with JavaScript
○ We can still have buttons, interaction
○ But it won’t “go” anywhere -- the server is mum

https://developer.mozilla.org/en-US/docs/Learn/Server-side/First_steps/Client-Server_overview#anatomy_of_a_dynamic_request

3317-214/514

Static Web Pages
● Delivered as-is, final

○ Consistent, often fast
○ Cheap, only storage needed

● Maintain with static website generators
○ Or you’ll be doing a lot of copying
○ Coupled with themes => rapid development, deployment
○ Quite popular, e.g. hosting on GH Pages

3417-214/514

Static Web Pages
● But …

○ No persistence (at least, not obviously)
○ No customizability (e.g., accounts)
○ No communication (payment, chat, etc)
○ Realistically, no intensive jobs

3517-214/514

Dynamic Web Pages
● Client/Server

○ Someone needs to answer the website’s calls
■ Doesn’t need to be us!

○ Host a webserver
■ Serves pages, handles calls
■ For static pages too!

● We’ll show you more in recitation tomorrow (Wednesday)

3617-214/514

Web Servers
● Communicate via HyperText Transfer Protocol

○ URL (the address)
○ Method:

■ GET: retrieve data. Parameters in URL `...?key=value&key2=value2` and message body
■ POST: store/create data. Parameters in request body
■ Several more, rarely used

○ Responses:
■ Status Code:

● We probably all know 404.
● 2XX family is OK.

■ And possible data. E.g., entire HTML page.

3717-214/514

Web Servers
● Communicate via HyperText Transfer Protocol

○ URL (the address)
○ Method:

■ GET: retrieve data. Parameters in URL `...?key=value&key2=value2` and message body
■ POST: store/create data. Parameters in request body
■ Several more, rarely used

○ Responses:
■ Status Code. We all know 404. 2XX family is OK.
■ And possible data. E.g., entire HTML page.

○ POST makes no sense for static sites!
○ As do GETs with parameters

3817-214/514

Web Servers
Dynamic sites can do more work

https://developer.mozilla.org/en-US/docs/Learn/Server-side/First_steps/Client-Server_overview#anatomy_of_a_dynamic_request

3917-214/514

AJAX
● Originally: “Asynchronous JavaScript and XML”

○ Updates parts of a page dynamically
○ Sends XMLHttpRequests with a callback
○ On return, check the code; handle success and failure.
○ Asynchronous, naturally decouples backend from UI

4017-214/514

AJAX
● Originally: “Asynchronous JavaScript and XML”

○ Updates parts of a page dynamically
○ Sends XMLHttpRequests with a callback
○ On return, check the code; handle success and failure.
○ Asynchronous, naturally decouples backend from UI

● Slowly being phased out
○ Replace with `fetch`, which uses… Promises

■ More next week

4117-214/514

How to Web App?
● Let’s avoid generating HTML from scratch on every call

○ Map requests to handler code
■ Fetch data, process

○ Generate and return HTML
● Historically: PHP

○ Modifies HTML pages server-side on request; strong ties to SQL

4217-214/514

How to Web App?
● Let’s avoid generating HTML from scratch on every call

○ Map requests to handler code
■ Fetch data, process

○ Generate and return HTML
● Or use a framework

○ Python: Flask, Django
○ NodeJS: Express
○ Spring for Java
○ Many others, differences in weight, features

https://developer.mozilla.org/en-US/docs/Learn/Server-side/First_steps/Web_frameworks

4317-214/514

Model-View-Controller (MVC)

https://overiq.com/django-1-10/mvc-pattern-and-django/

4417-214/514

MVC is ubiquitous
Separates:

● Model: data organization
○ Interface to the database

● View: data representation (typically HTML)
○ Often called templates in web-dev; “view” is a bit overloaded

● Controller: intermediary between client and model/view
○ Typically asks model for data, view for HTML

4517-214/514

Core implementation vs. GUI
● Core implementation: application logic

○ Computing some result, updating data

● GUI
○ Graphical representation of data
○ Source of user interactions

● Design guideline: avoid coupling the GUI with core application
○ Multiple UIs with single core implementation
○ Test core without UI

4617-214/514

Separating application core and GUI
● Reduce coupling: do not allow core to depend on UI

● Create and test the core without a GUI
○ Use the Observer pattern to communicate information from the core

(Model) to the GUI (View)

Core

GUI

Core Tests

GUI Tests

4717-214/514

Summary
● GUIs are full of design patterns

○ Helpful for reuse, delegation in complex environments
● Covered the basics of HTML, CSS, JS, servers

○ Needed for dynamic web pages
○ Decouple the GUI; architect your backend
○ A lot more to learn (security, performance, privacy), but this will do

● You will build this
○ At a small scale

