
117-214/514

Principles of Software Construction:
Objects, Design, and Concurrency

Concurrency: Safety & Immutability

Claire Le Goues Bogdan Vasilescu

217-214/514

Revisiting callbacks

317-214/514

Two main components:

● Memory Heap — this is where the
memory allocation happens

● Call Stack — this is where your
stack frames are as your code
executes

The JavaScript Engine (e.g., V8)

417-214/514

Engine plus:

● Web APIs — provided by
browsers, like the DOM,
AJAX, setTimeout and more.

● Event loop

● Callback queue

The JavaScript Runtime

517-214/514

The Call Stack
Is a data structure that records where in the program
we are. Each entry is called a Stack Frame.

function multiply(x, y) {
 return x * y;
}
function printSquare(x) {
 var s = multiply(x, x);
 console.log(s);
}
printSquare(5);

617-214/514

Aside: The Call Stack can overflow
function foo() {
 foo();
}
foo();

717-214/514

What happens when things are slow?
JavaScript is single threaded
(single Call Stack).

Problem: while the Call Stack has
functions to execute, the browser
can’t actually do anything else —
it’s getting blocked.

817-214/514

What happens when things are slow?
function task(message) {
 // emulate time consuming task
 let n = 10000000000;
 while (n > 0){
 n--;
 }
 console.log(message);
}

console.log('Start script...');
task('Download a file.');
console.log('Done!');

JavaScript is single threaded
(single Call Stack).

Problem: while the Call Stack has
functions to execute, the browser
can’t actually do anything else —
it’s getting blocked.

Start script...
Download a file.
Done!

917-214/514

function task(message) {
 // emulate time consuming task
 let n = 10000000000;
 while (n > 0){
 n--;
 }
 console.log(message);
}

console.log('Start script...');
setTimeout(() => {
 task('Download a file.');
}, 1000);
console.log('Done!');

By far the most common way to
express and manage asynchronicity
in JavaScript programs.

Solution: Callbacks

Start script...
Done!
Download a file.

1117-214/514

The Event Loop

The Event Loop monitors the Call Stack and the Callback Queue.

If the Call Stack is empty, the Event Loop will take the first event from
the queue and will push it to the Call Stack, which effectively runs it.

1217-214/514

The Event Loop
console.log('Hi');
setTimeout(function cb1() {
 console.log('cb1');
}, 5000);
console.log('Bye');

The state is clear.

1317-214/514

The Event Loop
console.log('Hi');
setTimeout(function cb1() {
 console.log('cb1');
}, 5000);
console.log('Bye');

console.log('Hi'); is added to the
Call Stack.

1417-214/514

The Event Loop
console.log('Hi');
setTimeout(function cb1() {
 console.log('cb1');
}, 5000);
console.log('Bye');

console.log('Hi'); is executed.

1517-214/514

The Event Loop
console.log('Hi');
setTimeout(function cb1() {
 console.log('cb1');
}, 5000);
console.log('Bye');

console.log('Hi'); is removed from
the Call Stack.

1617-214/514

The Event Loop
console.log('Hi');
setTimeout(function cb1() {
 console.log('cb1');
}, 5000);
console.log('Bye');

setTimeout(function cb1() {...});
is added to the Call Stack.

1717-214/514

The Event Loop
console.log('Hi');
setTimeout(function cb1() {
 console.log('cb1');
}, 5000);
console.log('Bye');

setTimeout(function cb1() {...});
is executed.

The browser creates a timer as part of
the Web APIs. It will handle the
countdown for you.

1817-214/514

setTimeout(function cb1() {...});
itself is complete and is removed from
the Call Stack

The Event Loop
console.log('Hi');
setTimeout(function cb1() {
 console.log('cb1');
}, 5000);
console.log('Bye');

1917-214/514

The Event Loop
console.log('Hi');
setTimeout(function cb1() {
 console.log('cb1');
}, 5000);
console.log('Bye');

console.log('Bye'); is added to the
Call Stack.

2017-214/514

The Event Loop
console.log('Hi');
setTimeout(function cb1() {
 console.log('cb1');
}, 5000);
console.log('Bye');

console.log('Bye'); is executed.

2117-214/514

The Event Loop
console.log('Hi');
setTimeout(function cb1() {
 console.log('cb1');
}, 5000);
console.log('Bye');

console.log('Bye'); is removed from
the Call Stack.

2217-214/514

The Event Loop
console.log('Hi');
setTimeout(function cb1() {
 console.log('cb1');
}, 5000);
console.log('Bye');

After at least 5000 ms, the timer
completes and it pushes the cb1
callback to the Callback Queue.

2317-214/514

The Event Loop
console.log('Hi');
setTimeout(function cb1() {
 console.log('cb1');
}, 5000);
console.log('Bye');

The Event Loop takes cb1 from the
Callback Queue and pushes it to the
Call Stack.

2417-214/514

The Event Loop
console.log('Hi');
setTimeout(function cb1() {
 console.log('cb1');
}, 5000);
console.log('Bye');

cb1 is executed and adds
console.log('cb1'); to the Call
Stack.

2517-214/514

The Event Loop
console.log('Hi');
setTimeout(function cb1() {
 console.log('cb1');
}, 5000);
console.log('Bye');

console.log('cb1'); is executed

2617-214/514

The Event Loop
console.log('Hi');
setTimeout(function cb1() {
 console.log('cb1');
}, 5000);
console.log('Bye');

console.log('cb1'); is removed from
the Call Stack.

2717-214/514

The Event Loop
console.log('Hi');
setTimeout(function cb1() {
 console.log('cb1');
}, 5000);
console.log('Bye');

cb1 is removed from the Call Stack.

2817-214/514

Aside: setTimeout(...) setTimeout(myCallback, 1000);

Doesn’t mean that myCallback will be executed in 1,000 ms.

Rather, in 1,000 ms, myCallback will be added to the event loop
queue.

The queue, however, might have other events that have been
added earlier — your callback will have to wait.

2917-214/514

Aside: setTimeout(...) console.log('Hi');
setTimeout(function() {
 console.log('callback');
}, 0);
console.log('Bye');

Although the wait time is set to 0 ms, the result in the browser
console will be:
Hi
Bye
callback

3017-214/514

“Callback Hell”?
● Issue caused by coding

with complex nested
callbacks.

● Every callback takes an
argument that is a result of
the previous callbacks.

Let’s imagine we’re trying to make a burger:

1. Get ingredients
2. Cook the beef
3. Get burger buns
4. Put the cooked beef between the buns
5. Serve the burger

3117-214/514

“Callback Hell”?
● Issue caused by coding

with complex nested
callbacks.

● Every callback takes an
argument that is a result of
the previous callbacks.

const makeBurger = () => {
 const beef = getBeef();
 const patty = cookBeef(beef);
 const buns = getBuns();
 const burger = putBeefBetweenBuns(buns, beef);
 return burger;
};

const burger = makeBurger();
serve(burger);

If synchronous:

3217-214/514

“Callback Hell”?
● Issue caused by coding

with complex nested
callbacks.

● Every callback takes an
argument that is a result of
the previous callbacks.

const makeBurger = nextStep => {
 getBeef(function (beef) {
 cookBeef(beef, function (cookedBeef) {
 getBuns(function (buns) {
 putBeefBetweenBuns(buns, beef, function(burger) {
 nextStep(burger)
 })
 })
 })
 })
}

// Make and serve the burger
makeBurger(function (burger) => {
 serve(burger)
})

If asynchronous:

3317-214/514

● Promises
○ a way to write async code that still appears as though it is executing in a

top-down way.
○ handles more types of errors due to encouraged use of try/catch style error

handling.
● Generators

○ let you 'pause' individual functions without pausing the state of the whole
program.

● Async functions
○ since ES7
○ further wrap generators and promises in a higher level syntax

More fancy things if you really want your
async code to read top-to-bottom

3417-214/514

Recall: Concurrency with file I/O
Asynchronous code with Promises

● Captures an intermediate state
○ Neither fetched, nor failed; we’ll find out eventually

let imageToBe: Promise<Image> = fetch('myImage.png');
imageToBe.then((image) => display(image))
 .catch((err) => console.log('aw: ' + err));

3517-214/514

● https://blog.sessionstack.com/how-does-javascript-actually-work-part-1-b0bacc073cf
● https://blog.sessionstack.com/how-javascript-works-event-loop-and-the-rise-of-async-programming-

5-ways-to-better-coding-with-2f077c4438b5
● https://www.javascripttutorial.net/javascript-event-loop/
● https://www.freecodecamp.org/news/how-to-deal-with-nested-callbacks-and-avoid-callback-hell-1bc

8dc4a2012/
●

References

https://blog.sessionstack.com/how-does-javascript-actually-work-part-1-b0bacc073cf
https://blog.sessionstack.com/how-javascript-works-event-loop-and-the-rise-of-async-programming-5-ways-to-better-coding-with-2f077c4438b5
https://blog.sessionstack.com/how-javascript-works-event-loop-and-the-rise-of-async-programming-5-ways-to-better-coding-with-2f077c4438b5
https://www.javascripttutorial.net/javascript-event-loop/
https://www.freecodecamp.org/news/how-to-deal-with-nested-callbacks-and-avoid-callback-hell-1bc8dc4a2012/
https://www.freecodecamp.org/news/how-to-deal-with-nested-callbacks-and-avoid-callback-hell-1bc8dc4a2012/

3617-214/514

Forming Design Patterns
● We’ve seen:

○ Function-based dispatch (callbacks)
○ Using queues to manage asynchronous events

● Some of the most common building blocks of concurrent,
distributed systems

3717-214/514

Today
● Concurrency Primitives
● Concurrency Patterns

○ Immutability
○ Safety, liveness
○ Designing for Concurrency

3817-214/514

What if my Thread isn’t Alone?
● Recall, in JS event loops:

○ Waiting is synchronous
○ Each message is processed fully without interruption

● What if we wanted multiple threads?
○ For parallelism
○ Multiple users on a website

3917-214/514

public static void main(String[] args) throws InterruptedException {
 BankAccount bugs = new BankAccount(1_000_000);
 BankAccount daffy = new BankAccount(1_000_000);

 Thread bugsThread = new Thread(()-> {
 for (int i = 0; i < 1_000_000; i++)
 transferFrom(daffy, bugs, 1);
 });

 Thread daffyThread = new Thread(()-> {
 for (int i = 0; i < 1_000_000; i++)
 transferFrom(bugs, daffy, 1);
 });

 bugsThread.start(); daffyThread.start();
 bugsThread.join(); daffyThread.join();
 System.out.println(bugs.balance() - daffy.balance());
}

Remember the money-grab example?

4017-214

• Concurrency hazards:
– Safety

– Liveness

– Performance

Last week

4117-214

Last week

• Concurrency hazards:
– Safety

– Liveness

– Performance

• Today: Java primitives for ensuring visibility and atomicity
– Synchronized access

– jcip annotations: @ThreadSafe, @NotThreadSafe, @GuardedBy

– Stateless objects are always thread safe

4617-214/514

How to Prevent Competing Access?
● Any ideas?

4717-214/514

How to Prevent Competing Access?
● Any ideas?

○ Don’t have state!
○ Don’t have shared state!
○ Don’t have shared mutable state!

4817-214/514

Today
● Concurrency Patterns

○ Immutability
○ Safety, liveness
○ Designing for Concurrency

4917-214/514

Immutability
● A key principle in design, not just for concurrency

○ Inherently Thread-safe
○ No risks in sharing
○ Can make things very simple

5017-214/514

Making a Class Immutable
public final class Complex {
 private final double re, im;

 public Complex(double re, double im) {
 this.re = re;
 this.im = im;
 }

 // Getters without corresponding setters
 public double getRealPart() { return re; }
 public double getImaginaryPart() { return im; }

 // subtract, multiply, divide similar to add
 public Complex add(Complex c) {
 …
 }

5117-214/514

Ensuring Immutability
● Don’t provide any mutators
● Ensure that no methods may be overridden
● Make all fields final
● Make all fields private
● Ensure security of any mutable components

5217-214/514

Immutability
What if you need to make a change?

5317-214/514

Making a Class Immutable
public final class Complex {
 private final double re, im;

 public Complex(double re, double im) {
 this.re = re;
 this.im = im;
 }

 // Getters without corresponding setters
 public double getRealPart() { return re; }
 public double getImaginaryPart() { return im; }

 // subtract, multiply, divide similar to add
 public Complex add(Complex c) {
 return new Complex(re + c.re, im + c.im);
 }

5417-214/514

Immutability
What if you need to make a change?

5517-214/514

Immutability
What functionality was made really easy by this design?

5617-214/514

Immutability
Any disadvantages?

5717-214/514

Immutability
Any disadvantages?

String x = "It was the best of times, .."; // An entire book.

x += "The end.";

5917-214/514

Designing for Immutability
In short: make things immutable unless you really can’t

● Especially, smaller data-classes
● Not realistic for classes whose state naturally changes

○ BankAccount: return a new account for each transaction?
○ In that case, minimize mutable part

6017-214/514

Today
● Concurrency Patterns

○ Immutability
○ Safety, liveness
○ Designing for Concurrency

6117-214/514

Thread Safety
● Let’s define what we want:

○ Thread safe means no assumptions required to operate correctly with
multiple threads.

○ Why was the earlier example not thread-safe?

6217-214/514

Thread Safety
● Let’s define what we want:

○ Thread safe means no assumptions required to operate correctly with
multiple threads.

○ Why was the earlier example not thread-safe?
● If a program is not thread-safe, it can:

○ Corrupt program state (as before)
○ Fail to properly share state (visibility failure)
○ Get stuck in infinite mutual waiting loop (liveness failure, deadlock)

6417-214

JAVA PRIMITIVES: ENSURING
VISIBILITY AND ATOMICITY

6517-214

Synchronization for Safety

• If multiple threads access the same mutable state variable
without appropriate synchronization, the program is broken.

• There are three ways to fix it:
– Don't share the state variable across threads;

– Make the state variable immutable; or

– Use synchronization whenever accessing the state variable.

6617-214

An easy fix: Synchronized access (visibility)

@ThreadSafe
public class BankAccount {

 @GuardedBy(“this”)
 private long balance;

 public BankAccount(long balance) {
 this.balance = balance;
 }

 static synchronized void transferFrom(BankAccount source,
 BankAccount dest, long amount) {
 source.balance -= amount;
 dest.balance += amount;
 }

 public synchronized long balance() {
 return balance;
 }
}

6717-214

Exclusion

Synchronization allows parallelism while
ensuring that certain segments are
executed in isolation. Threads wait to
acquire lock, may reduce performance.

6817-214

Stateless objects are always thread safe
• Example: stateless factorizer

– No fields

– No references to fields from other classes

– Threads sharing it cannot influence each other

@ThreadSafe
public class StatelessFactorizer implements Servlet {

 public void service(ServletRequest req, ServletResponse resp) {
 BigInteger i = extractFromRequest(req);
 BigInteger[] factors = factor(i);
 encodeIntoResponse(resp, factors);
 }
}

6917-214

Is this thread safe?

public class CountingFactorizer implements Servlet {
 private long count = 0;

 public long getCount() { return count; }

 public void service(ServletRequest req, ServletResponse resp) {
 BigInteger i = extractFromRequest(req);
 BigInteger[] factors = factor(i);
 ++count;
 encodeIntoResponse(resp, factors);
 }
}

7017-214

Is this thread safe?

@NotThreadSafe
public class CountingFactorizer implements Servlet {
 private long count = 0;

 public long getCount() { return count; }

 public void service(ServletRequest req, ServletResponse resp) {
 BigInteger i = extractFromRequest(req);
 BigInteger[] factors = factor(i);
 ++count;
 encodeIntoResponse(resp, factors);
 }
}

7117-214

Non atomicity and thread (un)safety

@NotThreadSafe
public class UnsafeCountingFactorizer implements Servlet {
 private long count = 0;

 public long getCount() { return count; }

 public void service(ServletRequest req, ServletResponse resp) {
 BigInteger i = extractFromRequest(req);
 BigInteger[] factors = factor(i);
 ++count;
 encodeIntoResponse(resp, factors);
 }
}

value->9 9+1->10 value->10

value->9 9+1->10 value->10

A
B

7217-214

Non atomicity and thread (un)safety

• Stateful factorizer
– Susceptible to lost updates
– The ++count operation is not atomic (read-modify-write)

@NotThreadSafe
public class UnsafeCountingFactorizer implements Servlet {
 private long count = 0;

 public long getCount() { return count; }

 public void service(ServletRequest req, ServletResponse resp) {
 BigInteger i = extractFromRequest(req);
 BigInteger[] factors = factor(i);
 ++count;
 encodeIntoResponse(resp, factors);
 }
}

7317-214

Enforcing atomicity: Intrinsic locks
• synchronized(lock) { … } synchronizes entire code block on object

lock; cannot forget to unlock

• The synchronized modifier on a method is equivalent to

synchronized(this) { … } around the entire method body

• Every Java object can serve as a lock

• At most one thread may own the lock (mutual exclusion)

– synchronized blocks guarded by the same lock execute atomically w.r.t. one another

7417-214

Fixing the stateful factorizer

@ThreadSafe
public class SafeCountingFactorizer

implements Servlet {
 @GuardedBy(“this”)
 private long count = 0;

 public long getCount() {
 synchronized(this){

 return count;
}

 }

 public void service(ServletRequest req,
ServletResponse resp) {

 BigInteger i = extractFromRequest(req);
 BigInteger[] factors = factor(i);

synchronized(this) {
 ++count;
}

 encodeIntoResponse(resp, factors);
 }
}

For each mutable
state variable that
may be accessed by
more than one
thread, all accesses
to that variable must
be performed with
the same lock held. In
this case, we say that
the variable is
guarded by that lock.

7517-214

Fixing the stateful factorizer

@ThreadSafe
public class SafeCountingFactorizer

implements Servlet {
 @GuardedBy(“this”)
 private long count = 0;

 public synchronized long getCount() {
 return count;

 }

 public void service(ServletRequest req,
ServletResponse resp) {

 BigInteger i = extractFromRequest(req);
 BigInteger[] factors = factor(i);

synchronized(this) {
 ++count;
}

 encodeIntoResponse(resp, factors);
 }
}

For each mutable
state variable that
may be accessed by
more than one
thread, all accesses
to that variable must
be performed with
the same lock held. In
this case, we say that
the variable is
guarded by that lock.

7617-214

Fixing the stateful factorizer

@ThreadSafe
public class SafeCountingFactorizer

implements Servlet {
 @GuardedBy(“this”)
 private long count = 0;

 public synchronized long getCount() {
 return count;

 }

 public synchronized void service(
ServletRequest req,
ServletResponse resp) {

 BigInteger i = extractFromRequest(req);
 BigInteger[] factors = factor(i);

 ++count;
encodeIntoResponse(resp, factors);

 }
}

For each mutable
state variable that
may be accessed by
more than one
thread, all accesses
to that variable must
be performed with
the same lock held. In
this case, we say that
the variable is
guarded by that lock.

7717-214

What’s the difference?

 public synchronized void service(ServletRequest req,
ServletResponse resp) {

 BigInteger i = extractFromRequest(req);
 BigInteger[] factors = factor(i);

 ++count;
encodeIntoResponse(resp, factors);

 }

 public void service(ServletRequest req,
ServletResponse resp) {

 BigInteger i = extractFromRequest(req);
 BigInteger[] factors = factor(i);

synchronized(this) {
 ++count;
}

 encodeIntoResponse(resp, factors);
 }

7817-214

Private locks

@ThreadSafe
public class SafeCountingFactorizer

implements Servlet {
 private final Object lock = new Object();
 @GuardedBy(“lock”)
 private long count = 0;

 public long getCount() {
synchronized(lock){
 return count;

 }
 }

 public void service(ServletRequest req,
ServletResponse resp) {

 BigInteger i = extractFromRequest(req);
 BigInteger[] factors = factor(i);

synchronized(lock) {
 ++count;
}

 encodeIntoResponse(resp, factors);
 }
}

For each mutable
state variable that
may be accessed by
more than one
thread, all accesses
to that variable must
be performed with
the same lock held. In
this case, we say that
the variable is
guarded by that lock.

7917-214

Could this deadlock?

public class Widget {
 public synchronized void doSomething() {

...
 }
}

public class LoggingWidget extends Widget {
 public synchronized void doSomething() {

System.out.println(toString() + ": calling doSomething");

super.doSomething();
 }
}

8017-214

No: Intrinsic locks are reentrant

• A thread can lock the same object again while already holding
a lock on that object

public class Widget {
 public synchronized void doSomething() {...}
}

public class LoggingWidget extends Widget {
 public synchronized void doSomething() {

System.out.println(toString() + ": calling doSomething");
super.doSomething();

 }
}

8117-214

Cooperative thread termination
How long would you expect this to run?

public class StopThread {
 private static boolean stopRequested;

 public static void main(String[] args) throws Exception {
 Thread backgroundThread = new Thread(() -> {
 while (!stopRequested)
 /* Do something */ ;
 });
 backgroundThread.start();

 TimeUnit.SECONDS.sleep(1);
 stopRequested = true;
 }
}

8217-214

What could have gone wrong?

• In the absence of synchronization, there is no guarantee as to
when, if ever, one thread will see changes made by another!

• VMs can and do perform this optimization (“hoisting”):
 while (!done)

 /* do something */ ;

 becomes:
 if (!done)

 while (true)

 /* do something */ ;

8317-214

How do you fix it?

public class StopThread {
 @GuardedBy(“StopThread.class”)

 private static boolean stopRequested;

 private static synchronized void requestStop() {
 stopRequested = true;
 }

 private static synchronized boolean stopRequested() {
 return stopRequested;
 }

 public static void main(String[] args) throws Exception {
 Thread backgroundThread = new Thread(() -> {
 while (!stopRequested())
 /* Do something */ ;
 });
 backgroundThread.start();

 TimeUnit.SECONDS.sleep(1);
 requestStop();
 }
}

8417-214

You can do better (?)

volatile is synchronization without mutual exclusion
public class StopThread {

 private static volatile boolean stopRequested;

 public static void main(String[] args) throws Exception {

 Thread backgroundThread = new Thread(() -> {

 while (!stopRequested)

 /* Do something */ ;

 });

 backgroundThread.start();

 TimeUnit.SECONDS.sleep(1);

 stopRequested = true;

 }

}

forces all accesses (read or write) to
the volatile variable to occur in main
memory, effectively keeping the volatile
variable out of CPU caches.

https://stackoverflow.com/questions/3519664/difference-between-volatile-and-synchronized-in-java

8517-214

Volatile keyword

• Tells compiler and runtime that variable is shared and
operations on it should not be reordered with other
memory ops
– A read of a volatile variable always returns the most recent

write by any thread

• Volatile is not a substitute for synchronization
– Volatile variables can only guarantee visibility

– Locking can guarantee both visibility and atomicity

8617-214

Summary: Synchronization

• Ideally, avoid shared mutable state

• If you can’t avoid it, synchronize properly

– Failure to do so causes safety and liveness failures

– If you don’t sync properly, your program won’t work

• Even atomic operations require synchronization

– e.g., stopRequested = true

– And some things that look atomic aren’t (e.g., val++)

8717-214

JAVA PRIMITIVES:
WAIT, NOTIFY, AND TERMINATION

8817-214

Guarded methods

• What to do on a method if the precondition is not fulfilled (e.g.,
transfer money from bank account with insufficient funds)

• throw exception (balking)

• wait until precondition is fulfilled (guarded suspension)

• wait and timeout (combination of balking and guarded
suspension)

8917-214

Example: Balking

• If there are multiple calls to the job method, only one will
proceed while the other calls will return with nothing.

public class BalkingExample {
 private boolean jobInProgress = false;

 public void job() {
 synchronized (this) {
 if (jobInProgress) { return; }
 jobInProgress = true;
 }
 // Code to execute job goes here
}

 void jobCompleted() {
 synchronized (this) {
 jobInProgress = false;
 }
 }
}

9017-214

Guarded suspension

• Block execution until a given condition is true

• For example,
– pull element from queue, but wait on an empty queue

– transfer money from bank account as soon sufficient funds are there

• Blocking as (sometimes simpler) alternative to callback

9117-214

Monitor Mechanics in Java

• Object.wait() – suspends the current thread’s execution,
releasing locks

• Object.wait(timeout) – suspends the current thread’s execution
for up to timeout milliseconds

• Object.notify() – resumes one of the waiting threads

• See documentation for exact semantics

9217-214

Example: Guarded Suspension

public void guardedJoy() {
 // Simple loop guard. Wastes
 // processor time. Don't do this!
 while (!joy) {
 }
 System.out.println("Joy has been achieved!");
}

• Loop until condition is satisfied
– wasteful, since it executes continuously while waiting

9317-214

public synchronized guardedJoy() {
 while(!joy) {
 try {
 wait();
 } catch (InterruptedException e) {}
 }
 System.out.println("Joy and efficiency have been achieved!");
}

public synchronized notifyJoy() {
 joy = true;
 notifyAll();
}

Example: Guarded Suspension

• More efficient: invoke Object.wait to suspend current thread

• When wait is invoked, the thread releases the lock and suspends execution. The
invocation of wait does not return until another thread has issued a notification

9417-214

Never invoke wait outside a loop!

• Loop tests condition before and after waiting

• Test before skips wait if condition already holds

– Necessary to ensure liveness
– Without it, thread can wait forever!

• Testing after wait ensures safety
– Condition may not be true when thread wakens
– If thread proceeds with action, it can destroy invariants!

9517-214

All of your waits should look like this

synchronized (obj) {
 while (<condition does not hold>) {
 obj.wait();
 }

 ... // Perform action appropriate to condition
}

9717-214

Guarded Suspension vs Balking Design Decisions

• Guarded suspension:
– Typically only when you know that a method call will be suspended for

a finite and reasonable period of time

– If suspended for too long, the overall program will slow down

• Balking:
– Typically only when you know that the method call suspension will be

indefinite or for an unacceptably long period

9817-214

Monitor Example
class SimpleBoundedCounter {
 protected long count = MIN;
 public synchronized long count() { return count; }
 public synchronized void inc() throws InterruptedException {

awaitUnderMax(); setCount(count + 1);
 }
 public synchronized void dec() throws InterruptedException {

awaitOverMin(); setCount(count - 1);
 }
 protected void setCount(long newValue) { // PRE: lock held

count = newValue;
notifyAll(); // wake up any thread depending on new value

 }
 protected void awaitUnderMax() throws InterruptedException {

while (count == MAX) wait();
 }
 protected void awaitOverMin() throws InterruptedException {

while (count == MIN) wait();
 }
}

9917-214

Interruption

• Difficult to kill threads once started, but may politely ask to stop
(thread.interrupt())

• Long-running threads should regularly check whether they have been
interrupted

• Threads waiting with wait() throw exceptions if interrupted

• Read documentation

public class Thread {
public void interrupt() { ... }
public boolean isInterrupted() { ... }
...

}

10017-214

Interruption Example

For details, see Java Concurrency In Practice, Chapter 7

class PrimeProducer extends Thread {
 private final BlockingQueue<BigInteger> queue;
 PrimeProducer(BlockingQueue<BigInteger> queue) {
 this.queue = queue;
 }
 public void run() {
 try {
 BigInteger p = BigInteger.ONE;
 while (!Thread.currentThread().isInterrupted())
 queue.put(p = p.nextProbablePrime());
 } catch (InterruptedException consumed) {

 /* Allow thread to exit */
 }
 }
 public void cancel() { interrupt(); }
}

10817-214

THREAD SAFETY:
DESIGN TRADEOFFS

10917-214

Recall: Synchronization for Safety

• If multiple threads access the same mutable state
variable without appropriate synchronization, the
program is broken.

• There are three ways to fix it:
– Don't share the state variable across threads;

– Make the state variable immutable; or

– Use synchronization whenever accessing the state variable.

11417-214

Recall: Immutable Objects

• Immutable objects can be shared freely

• Remember:
– Fields initialized in constructor

– Fields final

– Defensive copying if mutable objects used internally

11517-214

Synchronization

• Thread-safe objects vs guarded:
– Thread-safe objects perform synchronization internally (clients can

always call safely)

– Guarded objects require clients to acquire lock for safe calls

• Thread-safe objects are easier to use (harder to misuse), but
guarded objects can be more flexible

11717-214

What would you change here?

@ThreadSafe
public class PersonSet {
 @GuardedBy("this")
 private final Set<Person> mySet = new HashSet<Person>();

 @GuardedBy("this")
 private Person last = null;

 public synchronized void addPerson(Person p) {
 mySet.add(p);
 }

 public synchronized boolean containsPerson(Person p) {
 return mySet.contains(p);
 }

 public synchronized void setLast(Person p) {
 this.last = p;
 }
}

11817-214

Coarse-Grained Thread-Safety

• Synchronize all access to all state with the object
@ThreadSafe
public class PersonSet {
 @GuardedBy("this")
 private final Set<Person> mySet = new HashSet<Person>();

 @GuardedBy("this")
 private Person last = null;

 public synchronized void addPerson(Person p) {
 mySet.add(p);
 }

 public synchronized boolean containsPerson(Person p) {
 return mySet.contains(p);
 }

 public synchronized void setLast(Person p) {
 this.last = p;
 }
}

11917-214

Fine-Grained Thread-Safety

• “Lock splitting”: Separate state into independent regions with different locks

@ThreadSafe
public class PersonSet {
 @GuardedBy(“myset")
 private final Set<Person> mySet = new HashSet<Person>();

 @GuardedBy("this")
 private Person last = null;

 public void addPerson(Person p) {
 synchronized (mySet) {
 mySet.add(p);
 }
 }

 public boolean containsPerson(Person p) {
 synchronized (mySet) {
 return mySet.contains(p);
 }
 }

 public synchronized void setLast(Person p) {
 this.last = p;
 }
}

12017-214

Private Locks: Any object can serve as lock
@ThreadSafe
public class PersonSet {
 @GuardedBy(“myset")
 private final Set<Person> mySet = new HashSet<Person>();

 private final Object myLock = new Object();
 @GuardedBy(“myLock")
 private Person last = null;

 public void addPerson(Person p) {
 synchronized (mySet) {
 mySet.add(p);
 }
 }

 public synchronized boolean containsPerson(Person p) {
 synchronized (mySet) {
 return mySet.contains(p);
 }
 }

 public void setLast(Person p) {
 synchronized (myLock) {
 this.last = p;
 }
 }
}

12117-214

Delegating thread-safety to well designed classes

• Recall previous CountingFactorizer

@NotThreadSafe
public class CountingFactorizer implements Servlet {
 private long count = 0;

 public long getCount() { return count; }

 public void service(ServletRequest req, ServletResponse resp) {
 BigInteger i = extractFromRequest(req);
 BigInteger[] factors = factor(i);
 ++count;
 encodeIntoResponse(resp, factors);
 }
}

12217-214

Delegating thread-safety to well designed classes

• Replace long counter with an AtomicLong

@ThreadSafe
public class CountingFactorizer implements Servlet {
 private final AtomicLong count = new AtomicLong(0);

 public long getCount() { return count.get(); }

 public void service(ServletRequest req, ServletResponse resp) {
 BigInteger i = extractFromRequest(req);
 BigInteger[] factors = factor(i);
 count.incrementAndGet();
 encodeIntoResponse(resp, factors);
 }
}

12617-214

Fine-Grained vs Coarse-Grained Tradeoffs

• Coarse-Grained is simpler

• Fine-Grained allows concurrent access to different parts of the
state

• When invariants span multiple variants, fine-grained locking
needs to ensure that all relevant parts are using the same lock or
are locked together

• Acquiring multiple locks requires care to avoid deadlocks

12717-214

Over vs Undersynchronization

• Undersynchronization -> safety hazard

• Oversynchronization -> liveness hazard and reduced
performance

13217-214

Tradeoffs - Summary

• Strategies:
– Don't share the state variable across threads;

– Make the state variable immutable; or

– Use synchronization whenever accessing the state variable.

• Thread-safe vs guarded

• Coarse-grained vs fine-grained synchronization

• When to choose which strategy?
– Avoid synchronization if possible

– Choose simplicity over performance where possible

13317-214

Documentation

• Document a class's thread safety guarantees for its clients

• Document its synchronization policy for its maintainers.

• @ThreadSafe, @GuardedBy annotations not standard but useful

13417-214

Recommended Readings

• Goetz et al. Java Concurrency In Practice. Pearson Education,
2006, Chapters 2-5, 11

• Lea, Douglas. Concurrent programming in Java: design principles
and patterns. Addison-Wesley Professional, 2000.

13517-214/514

Back to “Blocking”
● Why does JS not have these issues?

○ Atomicity? Shared Reality? Safety?

13617-214/514

Back to “Blocking”
● Why does JS not have these issues?

○ Atomicity: no thread can interrupt an action
■ The event loop completely finishes each task

○ Shared reality: no concurrent reads possible
■ Single-threaded by design

○ Safety: obvious.
● But, more burden on developers!

13717-214/514

Is Threading all Bad?
● Not at all!

○ Obviously useful for parallelism and asynchronous I/O
○ But also, we can have good design.

● Threads map to tasks
○ Commonly assign one thread per task
○ Convenient abstract for handling large workloads

● Help manage complex event loops
○ Message passed from one handle to another in single-threaded envs.

