
117-214/514

Principles of Software Construction:
Objects, Design, and Concurrency

Events Everywhere!

Claire Le Goues Bogdan Vasilescu

217-214/514

Administrivia
Reminder: HW5

A comment on midsemester grades
● (including participation)

There was a reading quiz today! It’s on
Canvas, or:

There is also a reading for Thursday!

317-214/514

Outline
● Revisiting Core vs. GUI
● Model-View-Controller
● Client server programming, and TicTacToe
● ReactJS UI
● Event-Based Programming, Reactive Programming

417-214/514

Core vs GUI

Backend vs Frontend

517-214/514

Recall: Core implementation vs. GUI
● Core implementation: application logic

○ Computing some result, updating data

● GUI
○ Graphical representation of data
○ Source of user interactions

● Design guideline: avoid coupling the GUI with core application
○ Multiple UIs with single core implementation
○ Test core without UI

617-214/514

Recall: Separating application core and GUI
● Reduce coupling: do not allow core to depend on UI

● Create and test the core without a GUI
○ Use the Observer pattern to communicate information from the core

(Model) to the GUI (View)

Core

GUI

Core Tests

GUI Tests

717-214/514

Recall: Separating application core and GUI
● Reduce coupling: do not allow core to depend on UI

● Create and test the core without a GUI
○ Use the Observer pattern to communicate information from the core

(Model) to the GUI (View)

Core

GUI

Core Tests

GUI TestsWhat design goals does this further?

817-214/514

Model View Controller

https://overiq.com/django-1-10/mvc-pattern-and-django/

917-214/514

Model View Controller in Santorini?

https://overiq.com/django-1-10/mvc-pattern-and-django/

1017-214/514

Model View Controller in Santorini?

https://overiq.com/django-1-10/mvc-pattern-and-django/

Game
(God
Cards)

Board,
Tower,
Player

HTML
Template
Engine

1117-214/514

Model View Controller Dependencies

1217-214/514

Client-Server Programming forces
Frontend-Backend Separation

Backend
(Java/Node):
Data, logic,
rendering

Frontend
(Browser, HTML,
JavaScript):
Text, buttons

http calls

Browser can call web server, but not the other way around
Browser needs to pull for updates
Browser can request entire page, or just additional content (ajax,
REST api calls, …)

information

1317-214/514

TicTacToe

Backend
(Java/Node):
Data, logic,
rendering

Frontend
(Browser, HTML,
JavaScript):
Text, buttons

http calls

JSON

NanoHTTPd

/newgame

1417-214/514

1517-214/514

TicTacToe

Backend
(Java/Node):
Data, logic,
rendering

Frontend
(Browser, HTML,
JavaScript):
Text, buttons

http calls

JSON

NanoHTTPd

/newgame

???

1617-214/514

Some alternatives

1717-214/514

Client-Server Programming forces
Frontend-Backend Separation

Backend
(Java/Node):
Data, logic,
rendering

Frontend
(Browser, HTML,
JavaScript):
Text, buttons

http calls

Trick to let backend push information to frontend: Keep http
request open, append to page (compare to stream)
Alternative: regular pulling

keep open
connection

1817-214/514

Core & Gui in same environment
JavaScript frontend and backend together in browser

(e.g. using browserify) -- single threaded!

Java Swing GUI running in same VM as core logic -- multi threaded

Core logic could directly modify GUI

Backend (Java):
Data, logic,
rendering

Frontend (Swing):
Text, buttons

call method, update state

update text,
deactivate buttons

1917-214/514

Avoid Core to Gui coupling NOTE: WE
FORCE YOU TO NOT DO THISNever call the GUI from the Core

Update GUI after action (pull) or use observer pattern instead to
inform GUI of updates (push)

Backend (Java):
Data, logic,
rendering

Frontend (Swing):
Text, buttons

call method, update state

update text,
deactivate buttons

2017-214/514

GUI Code in the Backend

Backend
(Java/Node):
Data, logic,
rendering

Frontend
(Browser, HTML,
JavaScript):
Text, buttons

http calls

Typically there is some GUI code in Backend (rendering/view)
Could also send entire program state to frontend (e.g, json) and
render there with JavaScript

2117-214/514

Where to put GUI Logic?
Example: Deactivate undo button in first round of TicTacToe,
deactivate game buttons after game won

Backend
(Java/Node):
Data, logic,
rendering

Frontend
(Browser, HTML,
JavaScript):
Text, buttons

Option 1: All rendering in backend, update/refresh the entire page after every action -- simpler
Option 2: Handle some logic in frontend, use backend for checking -- fewer calls, more responsive

2217-214/514

Core Logic in Frontend?
Could move core logic largely to client, minimize backend interaction

Can frontend be trusted? Need to replicate core in front and backend?

Backend
(Java/Node):
shared state only

Frontend
(Browser, HTML,
JavaScript):
data, logic,
rendering

(React and other frameworks make it easy to introduce logic in the frontend; avoid tangling all core logic
with GUI)

2317-214/514

TicTacToe

Backend
(Java/Node):
Data, logic,
rendering

Frontend
(Browser, HTML,
JavaScript):
Text, buttons

http calls

JSON

NanoHTTPd

/newgame

???

2417-214/514

TicTacToe

Backend
(Java/Node):
Data, logic,
rendering

Frontend
(Browser, HTML,
JavaScript):
Text, buttons

http calls

JSON

NanoHTTPd

/newgame

ReactJS (+ HandleBars)

2517-214/514

ReactJS

2617-214/514

ReactJS
Popular frontend library by Facebook

Template library and state management

(Not a reactive programming library, though it adopts some similar
ideas – we’ll get back to reactive programming)

2717-214/514

Templates with
ReactJS
(Similar ideas to Handlebars in
HW4 and Rec7)

Describe rendering of HTML,
inputs given as objects

JSX language extension to
embed HTML in JS

function formatName(user) {
 return user.firstName + ' ' +
 user.lastName;
}

const user = {
 firstName: 'Harper',
 lastName: 'Perez'
};

const element = (
 <h1>Hello, {formatName(user)}!</h1>
);

ReactDOM.render(
 element,
 document.getElementById('root')
);

Try it:
https://reactjs.org/redirect-to-codepen/introducing-jsx

https://reactjs.org/redirect-to-codepen/introducing-jsx

2817-214/514

Composing
Templates
(Corresponds to Fragments in
Handlebars)

Nest templates

Pass arguments (properties)
between templates

function Welcome(props) {

 return <h1>Hello, {props.name}</h1>;

}

function App() { return (

 <div>

 <Welcome name="Sara" />

 <Welcome name="Edite" />

 </div>

);}

ReactDOM.render(

 <App />,

 document.getElementById('root')

);

Try it:
https://reactjs.org/redirect-to-codep
en/components-and-props/composi
ng-components

https://reactjs.org/redirect-to-codepen/components-and-props/composing-components
https://reactjs.org/redirect-to-codepen/components-and-props/composing-components
https://reactjs.org/redirect-to-codepen/components-and-props/composing-components

2917-214/514

Templates with
State
Class notation instead of
function

If state changes, page is
re-rendered

class Toggle extends React.Component {

 constructor(props) {

 super(props);

 this.state = {isToggleOn: true};

 this.handleClick = this.handleClick.bind(this);

 }

 handleClick() {

 this.setState(prevState => ({

 isToggleOn: !prevState.isToggleOn

 }));

 }

 render() { return (

 <button onClick={this.handleClick}>

 {this.state.isToggleOn ? 'ON' : 'OFF'}

 </button>

); }

}

ReactDOM.render(

 <Toggle />,

 document.getElementById('root')

);

Try it:
https://codepen.io/gaearon/pen/xE
mzGg?editors=0010

https://codepen.io/gaearon/pen/xEmzGg?editors=0010
https://codepen.io/gaearon/pen/xEmzGg?editors=0010

3017-214/514

ReactJS Templates
Can use arbitrary JavaScript code (Handlebars can only access
object properties)

Properties are read-only

State is mutable and observed for re-rendering (state updates are
asynchronous)

Re-rendering is optimized and asynchronous, will rerender inner
components too if their properties change

3117-214/514

ReactJS and Core Logic
React makes it easy to add functionality in GUI

This really tangles GUI and logic (violating separation argued for previously)

Suggestion: Use React state primarily for UI-related logic (e.g.,
selecting workers) and keep the core logic in the backend or as a
separate library -- be very explicit about what information is shared

3217-214/514

Connecting React
to Some Core
Use observer pattern to let
react component observe
changes

Encapsulate in useEffect()
hook

function App() {

 const [data, setData] =

React.useState(null);

 React.useEffect(() => {

 function handleStatChange(e) {

 setData(e.updatedData);

 }

 CoreAPI.subscribe(handleStatChange);

 return () => {

 CoreAPI.unsubscribe(handleStatChange);

 };

 });

 return (

 <div>/* using state in data */</div>

);

}

Further discussion:
https://reactjs.org/docs/hooks-custo
m.html

https://reactjs.org/docs/hooks-custom.html
https://reactjs.org/docs/hooks-custom.html

3317-214/514

Connecting React
to backend
Return json from server
backend and store as
component state

function App() {

 const [data, setData] =

React.useState(null);

 React.useEffect(() => {

 fetch("/api")

 .then((res) => res.json())

 .then((data) =>

setData(data.message));

 }, []);

 return (

 <div>/* using state in data */</div>

);

}

Full example:
https://www.freecodecamp.org/new
s/how-to-create-a-react-app-with-a-
node-backend-the-complete-guide/

https://www.freecodecamp.org/news/how-to-create-a-react-app-with-a-node-backend-the-complete-guide/
https://www.freecodecamp.org/news/how-to-create-a-react-app-with-a-node-backend-the-complete-guide/
https://www.freecodecamp.org/news/how-to-create-a-react-app-with-a-node-backend-the-complete-guide/

3417-214/514

React and Homework 5/6
Using React is entirely optional

We showed you how to use Handlebars + React in Rec07

Many other template engines and frontend frameworks exists (e.g.,
Vue, Angular, …)

React adds complexity but also easy updates reacting to state
changes

3517-214/514

Reactive Programming

3617-214/514

Reactive Programming
Programming strategy or patterns, where programs react to data

Embraces concurrency, focuses on data flows

Takes event-based programming to an extreme

Decouples programs around data

3717-214/514

Useful analogy: Spreadsheets
Cells contain data or
formulas

Formula cells are computed
automatically whenever
input data changes

3817-214/514

Implementing Spreadsheet-Like
Computations?

3917-214/514

Implementing Spreadsheet-Like
Computations?

x = 3

y = 5

z = x + y

print(z) // prints 8

x = 5

print(z) // expect 10, prints 8

in imperative computations,
no update when inputs change

4017-214/514

Implementing Spreadsheet-Like
Computations?

x = 3

y = 5

z = () => x + y

print(z()) // prints 8

x = 5

print(z()) // prints 10

Does not easily work in Java, since Java requires variables in closure to be final. Need object with mutable
internal state

computation performed on demand (pull)
caching possible

4117-214/514

Implementing Spreadsheet-Like
Computations?

x = new Cell(3)

y = new Cell(5)

z = new DerivedCell(x, y, (a,b)=>a+b)

print(z.get()) // prints 8

x.set(5)

print(z.get()) // prints 10

Cell implements observer pattern,
informs observers of changes (push)

DerivedCell listens to changes from Cell,
updates internal state on changes,
informs own observers of changes

4217-214/514

Complications
Single change in cell can trigger many computations (push)

Possibly put in queue, compute asynchronously

Perform some computations lazily when needed

Cyclic dependencies can result in infinite loops
Detect, special ways to handle

Observers can hinder garbage collection

4317-214/514

Reactive Programming and GUIs
Store state in observable cells, possibly derived

Have GUI update automatically on state changes

Have buttons perform state changes on cells

Mirrors active model-view-controller
pattern, discussed later
(model is observable cell)

4417-214/514

From Pull to Push
Instead of clients to look for state (pull)

observers react to state changes with actions (push)

Commonly observables indicate that something has changed,
triggering observers to get updated state (push-pull)

4517-214/514

Beyond Spreadsheet Cells

https://rxjs.dev/guide/observable

4617-214/514

Reactive Programming Libraries
RxJava, RxJS, many others

Provide Stream-like interfaces for event handling, with many
convenience functions (similar to promises)

Observables typically allow pushing multiple values in sequence

Cells can be implemented by considering only the latest value of
observables

4717-214/514

Previous Example with RxJava

PublishSubject<Integer> x = PublishSubject.create();
PublishSubject<Integer> y = PublishSubject.create();
Observable<Integer> z = Observable.combineLatest(x, y,
(a,b)->a+b);
z.subscribe(System.out::println);
x.onNext(3);
y.onNext(5);
x.onNext(5);

4817-214/514

Chaining Computations along Data

awk '{print $7}' < /var/log/nginx/access.log |
 sort |
 uniq -c |
 sort -r -n |
 head -n 5 > out

Multiple programs executed in sequence each read lines and produce lines;
can start reading lines before previous program is finished

4917-214/514

Streams / Reactive Programming / Events
Instead of calling methods in sequence,
set up pipelines for data processing

Let data control the execution
var lines = IOHelper.readLinesFromFile(file);
var linesObs = Observable.fromIterable(lines);
linesObs.
 map(Parser::getURLColumn).
 groupBy(...).
 sorted(comparator).
 subscribe(IOHelper.writeToFile(outFile));

5017-214/514

Many more Features in
Reactive Programming Libraries

Backpressure (see last lecture)

5117-214/514

Aside: The Adapter Pattern

5217-214/514

The Adapter Design Pattern

https://refactoring.guru/design-patterns/adapter

5317-214/514

https://refactoring.guru/design-patterns/adapter

5417-214/514

The Adapter
Design Pattern

Applicability
● You want to use an existing class,

and its interface does not match the
one you need

● You want to create a reusable class
that cooperates with unrelated
classes that don’t necessarily have
compatible interfaces

● You need to use several subclasses,
but it’s impractical to adapt their
interface by subclassing each one

Consequences
• Exposes the functionality of an object in

another form
• Unifies the interfaces of multiple

incompatible adaptee objects
• Lets a single adapter work with multiple

adaptees in a hierarchy
• -> Low coupling, high cohesion

5517-214/514

Adapters for Collections/Streams/Observables

Any others?

var lines = IOHelper.readLinesFromFile(file);
var linesObs = Observable.fromIterable(lines);
linesObs.
 map(Parser::getURLColumn).
 groupBy(...).
 sorted(comparator).
 subscribe(IOHelper.writeToFile(outFile));

5617-214/514

Façade/Controller vs. Adapter
● Motivation

○ Façade: simplify the interface
○ Adapter: match an existing interface

● Adapter: interface is given
○ Not typically true in Façade

● Adapter: polymorphic
○ Dispatch dynamically to multiple implementations
○ Façade: typically choose the implementation statically

5717-214/514

Summary
Reactive programming decouples programs along data

Observer pattern on steroids

New Design Pattern: Adapter

Decompose GUI from Core with Model View Controller Pattern

Brief intro to ReactJS

