
117-214/514

Principles of Software Construction:
Objects, Design, and Concurrency

Immutability, Promises, Patterns

Claire Le Goues Bogdan Vasilescu

217-214/514

Today
● Revisiting Immutability
● Design for Concurrency

○ How to: design for extension, reuse, readability, robustness?
○ The promise (future) pattern
○ Connections to streams, React

317-214/514

Revisiting Immutability

417-214/514

Reading Quiz:
Immutability

On Canvas!
Go find it!

517-214/514

Design & Concurrency
● So far, we’ve introduced a number of low-level idioms/primitives

for parallelism and concurrency.
● What are the tradeoffs between them?
● What (design) challenges do we face?

617-214/514

Let’s revisit: Why Immutability?

717-214/514

Let’s revisit: Ensuring Immutability
● Don’t provide any mutators
● Ensure that no methods may be overridden
● Make all fields final
● Make all fields private
● Ensure security of any mutable components

817-214/514

Immutable?
class Stack {
 readonly #inner: any[]
 constructor (inner: any[]) {
 this.#inner=inner
 }
 push(o: any): Stack {
 const newInner = this.#inner.slice()
 newInner.push(o)
 return new Stack(newInner)
 }
 peek(): any {
 return this.#inner[this.#inner.length-1]
 }
 getInner(): any[] {
 return this.#inner
 }
}

917-214/514

Immutable?
class Stack {
 readonly #inner: any[]
 constructor (inner: any[]) {
 this.#inner=inner
 }
 push(o: any): Stack {
 const newInner = this.#inner.slice()
 newInner.push(o)
 return new Stack(newInner)
 }
 peek(): any {
 return this.#inner[this.#inner.length-1]
 }
 getInner(): any[] {
 return this.#inner
 }
}

Inner mutable state
(List in Java)

Create copy of
mutable object
(new ArrayList(old)
in Java)

Return new
immutable object

1017-214/514

Aliasing is what makes Mutable State risky
Many variables may point to same object

Any reference to the object can modify the object, effect seen by all
other users

const x = [1, 2, 3]
const y = x
function foo(z: number[]): void { /*...*/ }
foo(y)x, y, and z all point to

the same mutable
array

1117-214/514

Immutable?
class Stack {
 readonly #inner: any[]
 constructor (inner: any[]) {
 this.#inner=inner
 }
 push(o: any): Stack {
 const newInner = this.#inner.slice()
 newInner.push(o)
 return new Stack(newInner)
 }
 peek(): any {
 return this.#inner[this.#inner.length-1]
 }
 getInner(): any[] {
 return this.#inner
 }
}

Inner mutable state
(List in Java)

Create copy of
mutable object
(new ArrayList(old)
in Java)

Return new
immutable object

Leak mutable state
Accept mutable state

1217-214/514

Fixed
class Stack {
 readonly #inner: any[]
 constructor (inner: any[]) {
 this.#inner=inner.slice()
 }
 push(o: any): Stack {
 const newInner = this.#inner.slice()
 newInner.push(o)
 return new Stack(newInner)
 }
 peek(): any {
 return this.#inner[this.#inner.length-1]
 }
 getInner(): any[] {
 return this.#inner.slice()
 // Java: return new ArrayList(inner)
 }
}

1317-214/514

(The original in
Java)

1417-214/514

Recall: Ensuring Immutability
● Don’t provide any mutators
● Ensure that no methods may be overridden
● Make all fields final
● Make all fields private
● Ensure security of any mutable components

1517-214/514

Writing Immutable Data Structures
Any “set” operation returns a new copy of an object

(can point to old object to save memory, e.g. linked lists)

Final fields of immutable objects are save (e.g., strings, numbers)

Fields of mutable objects must be protected
(encapsulation, making copies)

Careful with mutable constructor/method arguments (make copies)

Easy to make mistakes when mixing mutable and immutable data
structures, only academic tools for checking

1617-214/514

Trend toward immutable data structures
Immutable data structures common in functional programming

Many recent languages and libraries embrace immutability
Scala, Rust, stream, React, Java Records

Simplifies building concurrent and distributed systems

Requires some practice when used to imperative programming with
mutable state, but will become natural

1717-214/514

Circular
references &
Caching
Immutable data
structures often from a
directed acyclic graph

Cycles challenging

Cycles often useful for
performance (caching)

class TreeNode {
 readonly #parent: TreeNode
 readonly #children: TreeNode[]
 constructor(parent: TreeNode,
 children: TreeNode[]) {
 this.#parent = parent
 this.#children = children
 }
 addChild(child: TreeNode) {
 const newChildren = this.#children.slice()
 //const newChild = child.setParent(this) ??
 newChildren.push(child)
 const newNode = new TreeNode(this.#parent,
 newChildren)
 //child.setParent(newNode) ??
 return newNode
 }
}

1817-214/514

Design Discussion
Design for Understandability / Maintainability
● Immutable objects are easy to reason about, they won’t change
● Mutable objects have more complicated contracts, function and

client both can modify state
● Do not need to think about corner cases of concurrent

modification

Design for Reuse
● Easy to reuse even in concurrent settings

1917-214/514

Java 16 Records
Records are (shallowly) immutable

No setters

But also no defensive copying of mutable fields

2017-214/514

Design Goals: Concurrency
● What are we looking for in design?

○ Reuse
○ Readability
○ Robustness
○ Extensibility
○ Performance
○ ...

2117-214/514

A simple function
...in sync world

2217-214/514

(Code example)
A simple function...in sync world

How to make this asynchronous?

● What needs to “happen first”?
● What is the control-flow in callback world?

2317-214/514

Event Handling in JS: Callback Hell
What if our callbacks need callbacks?

2417-214/514

Promises
● Are immutable
● And available repeatedly to observers
● Compare ‘Future’ in Java

○ ‘CompletableFuture’ is probably closest
● Downsides:

○ Still heavy syntax
○ Hard to trace errors
○ Doesn’t quite solve complex callbacks

■ E.g., if X, call this, else that

2517-214/514

Next Step: Async/Await
● Async functions return a promise

○ May wrap concrete values
○ May return rejected promises on exceptions

● Allowed to ‘await’ synchronously

2617-214/514

Design Goals
● What are we looking for in design?

○ Reuse
○ Readability
○ Robustness
○ Extensibility
○ Performance
○ ...

2717-214/514

The Promise Pattern
● Problem: one or more values we will need will arrive later

○ At some point we must wait
● Solution: an abstraction for expected values
● Consequences:

○ Declarative behavior for when results become available (conf. callbacks)
○ Need to provide paths for normal and abnormal execution

■ E.g., then() and catch()
○ May want to allow combinators
○ Debugging requires some rethinking

2817-214/514

Promises: Guarantees
● Callbacks are never invoked before the current run of the event

loop completes
● Callbacks are always invoked, even if (chronologically) added

after asynchronous operation completes
● Multiple callbacks are called in order

2917-214/514

Design for Concurrency
Let’s squint at a few similar developments

3017-214/514

Generator Pattern
● Problem: process a collection of indeterminate size
● Solution: provide data points on request when available
● Consequences:

○ Each call to ‘next’ is like awaiting a promise
○ A generator can be infinite, and can announce if it is complete.
○ Generators can be lazy, only producing values on demand

■ Or producing promises

3117-214/514

(quick code example)
Note that Generators also exist in Java!

3217-214/514
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Guide/Iterators_and_Generators#generator_functions

3317-214/514

3417-214/514

3517-214/514

Tradeoffs?

3617-214/514

Generator Pattern
● Problem: process a collection of indeterminate size
● Solution: provide data points on request when available
● Consequences:

○ Each call to ‘next’ is like awaiting a promise
○ A generator can be infinite, and can announce if it is complete.
○ Generators can be lazy, only producing values on demand

■ Or producing promises

● Where might this be useful?

3717-214/514

Observer Pattern
Recall: let objects observe behavior of others

What is the difference?

https://refactoring.guru/design-patterns/observer

3817-214/514

Observer vs. Generator
Push vs. Pull

● In Observer, the publisher controls information flow
○ When it pushes, everyone must listen

● In generators, the listener “pulls” elements
○ Generator may only prepare the next element upon/after pull

● Which is better?
○ Generators are in a sense ‘observers’ to their clients.
○ This inversion of control can make flow management easier

3917-214/514

Manipulating Data
Problem: processing sequential data without assuming its presence

● Let’s assume a list of future ints
● Apply a series of transformations

○ E.g., map/update, filter
● Use the result in some operation

○ E.g., collect, foreach

4017-214/514

Manipulating Data
Easy solution: collect it all

● Downsides?

4117-214/514

Design Goals
● What are we looking for in design?

○ Reuse
○ Readability
○ Robustness
○ Extensibility
○ Performance
○ ...

4217-214/514

Manipulating Data
How about:

4317-214/514

Design Goals
● What are we looking for in design?

○ Reuse
○ Readability
○ Robustness
○ Extensibility
○ Performance
○ ...

4417-214/514

Manipulating Data
How about:

4517-214/514

Design Goals
● What are we looking for in design?

○ Reuse
○ Readability
○ Robustness
○ Extensibility
○ Performance
○ ...

4617-214/514

Remember Iterators and Streams?
Iterate over elements in arbitrary data structures (lists, sets, trees)
without having to know internals

Typical interface:

public interface Iterator<E> {

 boolean hasNext();

 E next();

}

(in Java also remove)

4717-214/514

Iterator design pattern
● Problem: Clients need uniform strategy to access all elements in

a container, independent of the container type
○ Order is unspecified, but access every element once

● Solution: A strategy pattern for iteration
● Consequences:

○ Hides internal implementation of underlying container
○ Easy to change container type
○ Facilitates communication between parts of the program

4817-214/514

Streams
● Stream: generators for Java!

○ stream.generate() → infinite stream
○ A sequence of objects
○ Not interested in accessing specific addresses

● Typically provide operations
○ To translate stream: map, flatMap, filter
○ Operations on all elements (fold, sum) with higher-order functions
○ Often provide efficient/parallel implementations (subtype polymorphism)

● Built-in in Java since Java 8; basics in Node libraries in JS

4917-214/514

Summary
● Concurrency brings unique design problems

○ And patterns
○ Promises are a key one
○ Worth understanding relations to (async) generators, streams

