
117-214/514

Principles of Software Construction

API Design

Claire Le Goues Bogdan Vasilescu
(Many slides originally from Josh Bloch)

217-214/514

Midterm 2 next Thursday
● Same as last time: 24 hour period. Open everything, but don’t collaborate.
● No lecture that day, you can come to lecture to work or ask us questions.
● All topics nominally in scope, but focus is on topics since Midterm 1.
● Sample questions going out today or tomorrow.

Final: nominally scheduled for Tuesday, May 3, 8:30 am.
● Will be in person, proper 3-hour exam.
● You’ll be able to bring notes (some number of pages).

Final homework (#6) will be released next week (possibly after midterm).
● Milestones: (1) Design framework, (2) implement framework, (3) implement plugins.

○ Note on the deadlines.
● Work in groups of 2–3. You can set your own groups, and there’s a pinned post on Piazza to help

if you need it. Reach out if you’re stuck.

Upcoming

317-214/514

Homework 6
Data Analytics Framework

Framework
Defines UI,

abstractions,
some data processing,

lifecycle

Visualization Plugin

Visualization Plugin

Visualization Plugin

Data Plugin

Data Plugin

Data Plugin

417-214/514

HW6: Map-Based
Data Visualizations?

State, county, or country
data

Data from many sources

Visualization as map
image, table, google
maps

Animations for time
series data

517-214/514

617-214/514

717-214/514

817-214/514

HW6: Consider plotting libraries
(for web frontends)

to brainstorm ideas

917-214/514

Libraries and Frameworks, continued

1017-214/514

The use vs. reuse dilemma
● Large rich components are very useful, but rarely fit

a specific need
● Small or extremely generic components often fit a

specific need, but provide little benefit

“maximizing reuse minimizes use”
C. Szyperski

1117-214/514

Domain engineering
● Understand users/customers in your domain: What might

they need? What extensions are likely?
● Collect example applications before designing a framework
● Make a conscious decision what to support (scoping)
● e.g., the Eclipse policy:

○ Plugin interfaces are internal at first
■ Unsupported, may change

○ Public stable extension points created when there are at least two
distinct customers

1217-214/514

public class Application extends JFrame {
private JTextField textfield;
private Plugin plugin;
public Application(Plugin p) { this.plugin=p; p.setApplication(this); init(); }
protected void init() {

JPanel contentPane = new JPanel(new BorderLayout());
contentPane.setBorder(new BevelBorder(BevelBorder.LOWERED));
JButton button = new JButton();
if (plugin != null)

button.setText(plugin.getButtonText());
else

button.setText("ok");
contentPane.add(button, BorderLayout.EAST);
textfield = new JTextField("");
if (plugin != null)

textfield.setText(plugin.getInititalText());
textfield.setPreferredSize(new Dimension(200, 20));
contentPane.add(textfield, BorderLayout.WEST);
if (plugin != null)

button.addActionListener(/* … plugin.buttonClicked();… */);
this.setContentPane(contentPane);
…

}
 public String getInput() { return textfield.getText();}

}

The cost of changing a framework

public class CalcPlugin implements Plugin {
private Application application;
public void setApplication(Application app) { this.application = app; }
public String getButtonText() { return "calculate"; }
public String getInititalText() { return "10 / 2 + 6"; }
public void buttonClicked() {
JOptionPane.showMessageDialog(null, "The result of "

+ application.getInput() + " is "
+ calculate(application.getText())); }

public String getApplicationTitle() { return "My Great Calculator"; }
}

public interface Plugin {
 String getApplicationTitle();
 String getButtonText();
 String getInititalText();
 void buttonClicked() ;
 void setApplication(Application app);
}

class CalcStarter { public static void main(String[] args) {
new Application(new CalcPlugin()).setVisible(true); }}

1317-214/514

public class Application extends JFrame {
private JTextField textfield;
private Plugin plugin;
public Application(Plugin p) { this.plugin=p; p.setApplication(this); init(); }
protected void init() {

JPanel contentPane = new JPanel(new BorderLayout());
contentPane.setBorder(new BevelBorder(BevelBorder.LOWERED));
JButton button = new JButton();
if (plugin != null)

button.setText(plugin.getButtonText());
else

button.setText("ok");
contentPane.add(button, BorderLayout.EAST);
textfield = new JTextField("");
if (plugin != null)

textfield.setText(plugin.getInititalText());
textfield.setPreferredSize(new Dimension(200, 20));
contentPane.add(textfield, BorderLayout.WEST);
if (plugin != null)

button.addActionListener(/* … plugin.buttonClicked();… */);
this.setContentPane(contentPane);
…

}
 public String getInput() { return textfield.getText();}

}

The cost of changing a framework

public class CalcPlugin implements Plugin {
private Application application;
public void setApplication(Application app) { this.application = app; }
public String getButtonText() { return "calculate"; }
public String getInititalText() { return "10 / 2 + 6"; }
public void buttonClicked() {
JOptionPane.showMessageDialog(null, "The result of "

+ application.getInput() + " is "
+ calculate(application.getText())); }

public String getApplicationTitle() { return "My Great Calculator"; }
}

public interface Plugin {
 String getApplicationTitle();
 String getButtonText();
 String getInititalText();
 void buttonClicked() ;
 void setApplication(Application app);
}

class CalcStarter { public static void main(String[] args) {
new Application(new CalcPlugin()).setVisible(true); }}

Consider adding an extra method.
Requires changes to all plugins!

1417-214/514

Learning a framework
● Documentation
● Tutorials, wizards, and

examples
● Communities, email lists

and forums
● Other client applications

and plugins
effort

re
w

ar
d

Library

Framework

1517-214/514

Typical framework design and implementation
Define your domain

Identify potential common parts and variable parts

Design and write sample plugins/applications

Factor out & implement common parts as framework

Provide plugin interface & callback mechanisms for variable parts

Use well-known design principles and patterns where appropriate…

Get lots of feedback, and iterate

1617-214/514

FRAMEWORK MECHANICS

16

1717-214/514

Running a framework

● Some frameworks are runnable by themselves

○ e.g. Eclipse, VSCode, IntelliJ

● Other frameworks must be extended to be run

○ MapReduce, Swing, JUnit, NanoHttpd, Express

1817-214/514

Methods to load plugins
1. Client writes main function, creates a plugin object, and passes it to framework

(see blackbox example above)
2. Framework has main function, client passes name of plugin as a command line
argument or environment variable

(see next slide)
3. Framework looks in a magic location

Config files or .jar/.js files in a plugins/ directory are automatically loaded and
processed

4. GUI for plugin management
E.g., web browser extensions

1917-214/514

An example plugin loader using Java Reflection

public static void main(String[] args) {
if (args.length != 1)

System.out.println("Plugin name not specified");
else {

String pluginName = args[0];
try {

Class<?> pluginClass = Class.forName(pluginName);
new Application((Plugin) pluginClass.newInstance()).setVisible(true);

} catch (Exception e) {
System.out.println("Cannot load plugin " + pluginName

+ ", reason: " + e);
}

}
}

2017-214/514

An example plugin loader in Node.js

const args = process.argv
if (args.length < 3)

console.log("Plugin name not specified");
else {

const plugin = require("plugins/"+args[2]+".js")()
startApplication(plugin)

}

2117-214/514

Another plugin loader using Java Reflection
public static void main(String[] args) {

File config = new File(".config");
BufferedReader reader = new BufferedReader(new FileReader(config));
Application = new Application();
Line line = null;
while ((line = reader.readLine()) != null) {

try {
Class<?> pluginClass = Class.forName(line);
application.addPlugin((Plugin) pluginClass.newInstance());

} catch (Exception e) {
System.out.println("Cannot load plugin " + line

+ ", reason: " + e);
}

}
reader.close();
application.setVisible(true);

}

2217-214/514

GUI-based plugin management

2317-214/514

Supporting multiple plugins
● Observer design pattern is

commonly used

● Load and initialize multiple plugins

● Plugins can register for events

● Multiple plugins can react to same
events

● Different interfaces for different
events possible

public class Application {
private List<Plugin> plugins;
public Application(List<Plugin> plugins) {

this.plugins=plugins;
for (Plugin plugin: plugins)

plugin.setApplication(this);
}
public Message processMsg (Message msg) {

for (Plugin plugin: plugins)
msg = plugin.process(msg);

...
return msg;

}
}

2417-214/514

Example: An Eclipse plugin
● A popular Java IDE
● More generally, a framework for

tools that facilitate “building,
deploying and managing software
across the lifecycle.”

● Plugin framework based on OSGI
standard

● Starting point: Manifest file
○ Plugin name
○ Activator class
○ Meta-data

Manifest-Version: 1.0
Bundle-ManifestVersion: 2
Bundle-Name: MyEditor Plug-in
Bundle-SymbolicName: MyEditor;
singleton:=true
Bundle-Version: 1.0.0
Bundle-Activator:
 myeditor.Activator
Require-Bundle:
 org.eclipse.ui,
 org.eclipse.core.runtime,
 org.eclipse.jface.text,
 org.eclipse.ui.editors
Bundle-ActivationPolicy: lazy
Bundle-RequiredExecutionEnvironment:
JavaSE-1.6

2517-214/514

Example: An Eclipse plugin
● plugin.xml

○ Main configuration file
○ XML format
○ Lists extension points

● Editor extension
○ extension point: org.eclipse.ui.editors
○ file extension
○ icon used in corner of editor
○ class name
○ unique id

■ refer to this editor
■ other plugins can extend with new menu

items, etc.!

<?xml version="1.0" encoding="UTF-8"?>
<?eclipse version="3.2"?>
<plugin>

 <extension
 point="org.eclipse.ui.editors">
 <editor
 name="Sample XML Editor"
 extensions="xml"
 icon="icons/sample.gif“
contributorClass="org.eclipse.ui.texteditor.BasicText
EditorActionContributor"
 class="myeditor.editors.XMLEditor"
 id="myeditor.editors.XMLEditor">
 </editor>
 </extension>

</plugin>

2617-214/514

Example: An Eclipse plugin
● At last, code!
● XMLEditor.java

○ Inherits TextEditor behavior
■ open, close, save, display, select,

cut/copy/paste, search/replace, …
■ REALLY NICE not to have to

implement this
■ But could have used ITextEditor

interface if we wanted to
○ Extends with syntax highlighting

■ XMLDocumentProvider partitions into
tags and comments

■ XMLConfiguration shows how to color
partitions

package myeditor.editors;

import org.eclipse.ui.editors.text.TextEditor;

public class XMLEditor extends TextEditor {
private ColorManager colorManager;

public XMLEditor() {
super();
colorManager = new

ColorManager();
setSourceViewerConfiguration(

new XMLConfiguration(colorManager));
setDocumentProvider(

new XMLDocumentProvider());
}

public void dispose() {
colorManager.dispose();
super.dispose();

}
}

2717-214/514

Example: A JUnit Plugin
public class SampleTest {
 private List<String> emptyList;

 @Before
 public void setUp() {
 emptyList = new ArrayList<String>();
 }

 @After
 public void tearDown() {
 emptyList = null;
 }

 @Test
 public void testEmptyList() {
 assertEquals("Empty list should have 0 elements",
 0, emptyList.size());
 }
}

Here the important plugin
mechanism is Java
annotations

2817-214/514

Summary
● Reuse and variation essential

○ Libraries and frameworks

● Whitebox frameworks vs. blackbox frameworks
● Design for reuse with domain analysis

○ Find common and variable parts
○ Write client applications to find common parts

● Various mechanics.

2917-214/514

API Design

3017-214/514

Where we are

Subtype
Polymorphism

Information Hiding,
Contracts

Immutability

Types

Unit Testing

Domain Analysis

Inheritance & Deleg.

Responsibility
Assignment,

Design Patterns,
Antipattern

Promises/Reactive P.

Integration Testing

GUI vs Core

Frameworks and
Libraries, APIs

Module systems,
microservices

Testing for
Robustness

CI, DevOps, Teams

Design for

understanding

change/ext.

reuse

robustness

...

Small scale:
One/few objects

Mid scale:
Many objects

Large scale:
Subsystems

3117-214/514

Where we are

Subtype
Polymorphism ✓

Information Hiding,
Contracts ✓

Immutability ✓

Types

Unit Testing ✓

Domain Analysis ✓

Inheritance & Del. ✓

Responsibility
Assignment,

Design Patterns,
Antipattern ✓

Promises/
Reactive P. ✓

Integration Testing ✓

GUI vs Core ✓

Frameworks and
Libraries ✓, APIs

Module systems,
microservices

Testing for
Robustness

CI ✓, DevOps,
Teams

Design for

understanding

change/ext.

reuse

robustness

...

Small scale:
One/few objects

Mid scale:
Many objects

Large scale:
Subsystems

3217-214/514

Introduction to API Design

3317-214/514

API relative to libraries, frameworks

Library

Framework

public MyWidget extends JContainer {

ublic MyWidget(int param) {/ setup internals,
without rendering
}

/ render component on first view and resizing
protected void paintComponent(Graphics g) {
// draw a red box on his componentDimension d =
getSize();
g.setColor(Color.red);
g.drawRect(0, 0, d.getWidth(), d.getHeight());

}
}

public MyWidget extends JContainer {

ublic MyWidget(int param) {/ setup internals,
without rendering
}

/ render component on first view and resizing
protected void paintComponent(Graphics g) {
// draw a red box on his componentDimension d =
getSize();
g.setColor(Color.red);
g.drawRect(0, 0, d.getWidth(), d.getHeight());

}
}

your code

your code

API

API

3417-214/514

What’s an API?
● Short for Application Programming Interface

○ = Contract for a Subsystem/Library

● Component specification in terms of operations, inputs, & outputs
○ Defines a set of functionalities independent of implementation

● Allows implementation to vary without compromising clients
● Defines component boundaries in a programmatic system
● A public API is one designed for use by others

○ Related to Java’s public modifier, but not identical
○ protected members are part of the public api

3517-214/514

API: Application Programming Interface
● An API defines the boundary between

components/modules in a programmatic system

3617-214/514

3717-214/514

API: Application Programming Interface
● An API defines the boundary between

components/modules in a programmatic system

3817-214/514

API: Application Programming Interface
● An API defines the boundary between

components/modules in a programmatic system

3917-214/514

API: Application Programming Interface
● An API defines the boundary between

components/modules in a programmatic system

4017-214/514

Libraries and frameworks both define APIs

Library

Framework

public MyWidget extends JContainer {

ublic MyWidget(int param) {/ setup
internals, without rendering
}

/ render component on first view and
resizing
protected void
paintComponent(Graphics g) {
// draw a red box on his
componentDimension d = getSize();
g.setColor(Color.red);
g.drawRect(0, 0, d.getWidth(),
d.getHeight());}
}

public MyWidget extends JContainer {

ublic MyWidget(int param) {/ setup
internals, without rendering
}

/ render component on first view and
resizing
protected void
paintComponent(Graphics g) {
// draw a red box on his
componentDimension d = getSize();
g.setColor(Color.red);
g.drawRect(0, 0, d.getWidth(),
d.getHeight());}
}

your code

your code

API

API

4117-214/514

Exponential growth in the power of APIs
This list is approximate and incomplete, but it tells a story

’50s-’60s – Arithmetic. Entire library was 10-20 functions!
’70s – malloc, bsearch, qsort, rnd, I/O, system calls,

formatting, early databases
’80s – GUIs, desktop publishing, relational databases
’90s – Networking, multithreading
’00s – Data structures(!), higher-level abstractions,

Web APIs: social media, cloud infrastructure
’10s – Machine learning, IOT, pretty much everything

4217-214/514

What the dramatic growth in APIs has done for us

● Enabled code reuse on a grand scale
● Increased the level of abstraction dramatically
● A single programmer can quickly do things that would

have taken months for a team
● What was previously impossible is now routine
● APIs have given us super-powers

4317-214/514

Why is API design important?
● A good API is a joy to use; a bad API is a nightmare
● APIs can be among your greatest assets

○ Users invest heavily: learning, using
○ Cost to stop using an API can be prohibitive
○ Successful public APIs capture users

● APIs can also be among your greatest liabilities
○ Bad API can cause unending stream of support requests
○ Can inhibit ability to move forward

● Public APIs are forever – one chance to get it right

4417-214/514

Positive and Negative Experiences with
APIs?

4517-214/514

Public APIs are forever

Your code

Your
colleague

Another
colleague

Somebody on
the webSomebody on

the webSomebody on
the webSomebody on

the webSomebody on
the webSomebody on

the webSomebody on
the webSomebody on

the web

4617-214/514

Public APIs are forever

Eclipse
(IBM)

JDT Plugin (IBM)

CDT Plugin (IBM)

UML Plugin (third
party)Somebody on the

webSomebody on the
webSomebody on the

webSomebody on the
webSomebody on the

webSomebody on the
webthird party plugin

4717-214/514

Evolutionary problems: Public (used) APIs
are forever
● "One chance to get it right"

● Can only add features to library

● Cannot:
○ remove method from library

○ change contract in library

○ change plugin interface of framework

● Deprecation of APIs as weak workaround awt.Component,
deprecated since Java 1.1
still included in 7.0

4817-214/514

Hyrum’s Law
“With a sufficient number of users of
an API, it does not matter what you
promise in the contract: all
observable behaviors of your
system will be depended on by
somebody.”

https://xkcd.com/1172/

https://www.hyrumslaw.com/

https://xkcd.com/1172/
https://www.hyrumslaw.com/

4917-214/514

Why is API design important to you?
● If you program, you are an API designer

○ Good code is modular – each object/class/module has an
API

● Useful modules tend to get reused
○ Once a module has users, you can’t change its API at will

● Thinking in terms of APIs improves code quality

5017-214/514

Characteristics of a good API
● Easy to learn
● Easy to use, even without documentation
● Hard to misuse
● Easy to read and maintain code that uses it
● Sufficiently powerful to satisfy requirements
● Easy to evolve
● Appropriate to audience

Design for ...

5117-214/514

The Process of API Design

5217-214/514

An API design process
● Define the scope of the API

○ Collect use-case stories, define requirements

○ Be skeptical: Distinguish true requirements from so-called solutions,
"When in doubt, leave it out."

● Draft a specification, gather feedback, revise, and repeat
○ Keep it simple, short

● Code early, code often
○ Write client code before you implement the API

5317-214/514

Plan with Use Cases
● Think about how the API might be used?

○ e.g., get the current time, compute the difference between
two times, get the current time in Tokyo, get next week's date
using a Maya calendar, …

● What tasks should it accomplish?
● Should all the tasks be supported?

○ If in doubt, leave it out!
● How would you solve the tasks with the API?

5417-214/514

Respect the rule of three

● Via Will Tracz, Confessions of a Used Program
Salesman:
Write 3 implementations of each abstract class
or interface before release
○ "If you write one, it probably won't support another."

○ "If you write two, it will support more with difficulty."

○ "If you write three, it will work fine."

5517-214/514

The process of API design – 1-slide version
Not sequential; if you discover shortcomings, iterate!

1. Gather requirements skeptically, including use cases
2. Choose an abstraction (model) that appears to address use

cases
3. Compose a short API sketch for abstraction
4. Apply API sketch to use cases to see if it works

○ If not, go back to step 3, 2, or even 1
5. Show API to anyone who will look at it
6. Write prototype implementation of API
7. Flesh out the documentation & harden implementation
8. Keep refining it as long as you can

5617-214/514

Requirements gathering
● Key question: what problems should this API solve?

○ Goals - Define scope of effort
● Also important: what problems shouldn’t API solve?

○ Explicit non-goals - Bound effort
● Requirements can include performance, scalability

○ These factors can (but don’t usually) constrain API
● Maintain a requirements doc

○ Helps focus effort, fight scope creep
○ Provides defense against cranks
○ Saves rationale for posterity

5717-214/514

Start with short spec – one page is ideal!
● At this stage, comprehensibility and agility are more

important than completeness
● Bounce spec off as many people as possible

○ Start with a small, select group and enlarge over time
○ Listen to their input and take it seriously
○ API Design is not a solitary activity!

● If you keep the spec short, it’s easy to read, modify, or
scrap it and start from scratch

● Don’t fall in love with your spec too soon!
● Flesh it out (only) as you gain confidence in it

5817-214/514

Sample Early API Draft
// A collection of elements (root of the collection hierarchy)
public interface Collection<E> {

 // Ensures that collection contains o
 boolean add(E o);

 // Removes an instance of o from collection, if present
 boolean remove(Object o);

 // Returns true iff collection contains o
 boolean contains(Object o);

 // Returns number of elements in collection
 int size();

 // Returns true if collection is empty
 boolean isEmpty();

 ... // Remainder omitted
}

5917-214/514

Write to the API, early and often
● Start before you’ve implemented the API

○ Saves you from doing implementation you’ll throw away
● Start before you’ve even specified it properly

○ Saves you from writing specs you’ll throw away
● Continue writing to API as you flesh it out

○ Prevents nasty surprises right before you ship
○ If you haven’t written code to it, it probably doesn’t work

● Code lives on as examples, unit tests
○ Among the most important code you’ll ever write

6017-214/514

Then flesh out documentation so it’s usable
by people who didn’t help you write the API
● You’ll likely find more problems as you flesh out the docs

○ Fix them

● Then you’ll have an artifact you can share more widely
● Do so, but be sure people know it’s subject to change
● If you’re lucky, you’ll get bug reports & feature requests
● Use the API feedback while you can!

○ Read it all…
○ But be selective: act only on the good feedback

6117-214/514

Maintain realistic expectations
● Most API designs are over-constrained

○ You won’t be able to please everyone…
○ So aim to displease everyone equally*

○ But maintain a unified, coherent, simple design!

● Expect to make mistakes
○ A few years of real-world use will flush them out
○ Expect to evolve API

* Well, not equally – I said that back in 2004 because I thought it sounded funny, and it stuck;
actually you should decide which uses are most important and favor them.

6217-214/514

Information Hiding

6317-214/514

Which one do you prefer?
public class Point {

 public double x;

 public double y;

}

// vs.

public class Point {

 private double x;

 private double y;

 public double getX() { /* … */ }

 public double getY() { /* … */ }

}

6417-214/514

Information hiding also for APIs
● Make classes, members as private as possible

○ You can add features, but never remove or change the
behavioral contract for an existing feature

● Public classes should have no public fields
(with the exception of constants)

● Minimize coupling
○ Allows modules to be, understood, used, built, tested,

debugged, and optimized independently

6517-214/514

Key design principle: Information hiding

● "When in doubt, leave it out.”

● Implementation details in APIs are harmful
○ Confuse users
○ Inhibit freedom to change implementation

6617-214/514

Which one do you prefer?

public class Rectangle {

public Rectangle(Point e, Point f) …

}

// vs.

public class Rectangle {

public Rectangle(PolarPoint e, PolarPoint f) …

}

6717-214/514

public class Rectangle {

public Rectangle(Point e, Point f) …

}

// …

Point p1 = PointFactory.Construct(…);

// new PolarPoint(…); inside

Point p2 = PointFactory.Construct(…);

// new PolarPoint(…); inside

Rectangle r = new Rectangle(p1, p2);

Applying Information hiding: Factories

6817-214/514

Aside: The Factory Method Design Pattern

From: https://refactoring.guru/design-patterns/factory-method

https://refactoring.guru/design-patterns/factory-method

6917-214/514

Aside: The Factory Method Design Pattern

From: https://refactoring.guru/design-patterns/factory-method

+ Object creation separated from object
+ Able to hide constructor from clients,

control object creation
+ Able to entirely hide implementation

objects, only expose interfaces + factory
+ Can swap out concrete class later
+ Can add caching (e.g. Integer.from())
+ Descriptive method name possible

- Extra complexity
- Harder to learn API and write code

https://refactoring.guru/design-patterns/factory-method

7017-214/514

● Subtle leaks of implementation details through
○ Documentation: e.g., do not specify hashCode() return

○ Implementation-specific return types / exceptions: e.g., Phone
number API that throws SQL exceptions

○ Output formats: e.g., implements Serializable

● Lack of documentation → Implementation/Stack Overflow
becomes specification → no hiding

Be Aware: Unintentionally Leaking
Implementation Details

7117-214/514

But: Don’t overspecify method behavior
● Don’t specify internal details

○ It’s not always obvious what’s an internal detail

● All tuning parameters are suspect
○ Let client specify intended use, not internal detail
○ Bad: number of buckets in table; Good: intended size
○ Bad: number of shards; Good: intended concurrency level

7217-214/514

Be Aware: Unintentionally Leaking
Implementation Details
● Subtle leaks of implementation details through

○ Documentation: e.g., do not specify hash functions
○ Implementation-specific return types / exceptions: e.g., Phone

number API that throws SQL exceptions

○ Output formats: e.g., implements Serializable

● Lack of documentation → Implementation/Stack Overflow
becomes specification → no hiding

