
117-214/514

Principles of Software Construction

API Design (Part 2)

Claire Le Goues Bogdan Vasilescu
(With slides from Josh Bloch & Christian Kästner)

217-214/514

Minimizing Conceptual Weight

317-214/514

Principle: Minimize conceptual weight
● API should be as small as possible but no smaller

○ When in doubt, leave it out

● Conceptual weight: How many concepts must a
programmer learn to use your API?

○ APIs should have a "high power-to-weight ratio"

417-214/514

Conceptual weight (a.k.a. conceptual surface area)

● Conceptual weight more important than “physical size”
● def. The number & difficulty of new concepts in API

○ i.e., the amount of space the API takes up in your brain

● Examples where growth adds little conceptual weight:
○ Adding overload that behaves consistently with existing methods
○ Adding arccos when you already have sin, cos, and arcsin
○ Adding new implementation of an existing interface

● Look for a high power-to-weight ratio
○ In other words, look for API that lets you do a lot with a little

517-214/514

“Perfection is achieved not when there is nothing more to
add, but when there is nothing left to take away.”
 ― Antoine de Saint-Exupéry, Airman’s Odyssey, 1942

617-214/514

Example: generalizing an API can make it smaller

● Not very powerful
○ Supports only search operation, and only over certain ranges

● Hard to use without documentation
○ What are the semantics of index? I don’t remember, and it isn’t obvious.

Subrange operations on Vector – legacy List implementation

public class Vector {

 public int indexOf(Object elem, int index);

 public int lastIndexOf(Object elem, int index);

 ...

}

717-214/514

Example: generalizing an API can make it smaller

● Supports all List operations on all subranges
● Easy to use even without documentation

Subrange operations on List
public interface List<T> {

 List<T> subList(int fromIndex, int toIndex);

 ...

}

817-214/514

Boilerplate Code
 import org.w3c.dom.*;
 import java.io.*;
 import javax.xml.transform.*;
 import javax.xml.transform.dom.*;
 import javax.xml.transform.stream.*;

 /** DOM code to write an XML document to a specified output stream. */
 static final void writeDoc(Document doc, OutputStream out) throws IOException{
 try {
 Transformer t = TransformerFactory.newInstance().newTransformer();
 t.setOutputProperty(OutputKeys.DOCTYPE_SYSTEM, doc.getDoctype().getSystemId());
 t.transform(new DOMSource(doc), new StreamResult(out)); // Does actual writing
 } catch(TransformerException e) {
 throw new AssertionError(e); // Can’t happen!
 }
 }

• Generally done via cut-and-paste
• Ugly, annoying, and error-prone

917-214/514

Boilerplate Code
Generally created via cut-and-paste

Ugly, annoying, and error-prone

Sign of API not supporting common use cases directly

Consider creating APIs for most common use cases,
hiding internals

1017-214/514

Principle: Make it easy to do what’s common,
make it possible to do what’s less so
● If it’s hard to do common tasks, users get upset
● For common use cases

○ Don’t make users think about obscure issues - provide reasonable defaults
○ Don’t make users do multiple calls - provide a few

well-chosen convenience methods
○ Don’t make user consult documentation

● For uncommon cases, it’s OK to make users work more
● Don’t worry too much about truly rare cases

○ It’s OK if your API doesn’t handle them, at least initially

1117-214/514

Tradeoffs
How to balance

● Low conceptual weight
● Avoiding boilerplate code

?

1217-214/514

Naming

1317-214/514

Names Matter – API is a little language

● Primary goals
○ Client code should read like prose (“easy to read”)
○ Client code should mean what it says (“hard to misread”)
○ Client code should flow naturally (“easy to write”)

● To that end, names should:
○ be largely self-explanatory
○ leverage existing knowledge
○ interact harmoniously with language and each other

Naming is perhaps the single most important factor in API usability

1417-214/514

Good and Bad Examples?

1517-214/514

Discuss these names
○ get_x() vs getX()

○ Timer vs timer

○ isEnabled() vs. enabled()

○ computeX() vs. generateX()?

○ deleteX() vs. removeX()?

1617-214/514

Good names drive good design
● Be consistent

○ computeX() vs. generateX()?
○ deleteX() vs. removeX()?

● Avoid cryptic abbreviations
○ Good: Font, Set, PrivateKey, Lock, ThreadFactory,

TimeUnit, Future<T>

○ Bad: DynAnyFactoryOperations, _BindingIteratorImplBase,
ENCODING_CDR_ENCAPS, OMGVMCID

1717-214/514

Choosing names easy to read & write
● Choose key nouns carefully!

○ Related to finding good abstractions, which can be hard
○ If you can’t find a good name, it’s generally a bad sign

● If you get the key nouns right, other nouns, verbs, and
prepositions tend to choose themselves

● Names can be literal or metaphorical
○ Literal names have literal associations: e.g., matrix suggests inverse,

determinant, eigenvalue, etc.
○ Metaphorical names enable reasoning by analogy: e.g., mail suggests

send, cc, bcc, inbox, outbox, folder, etc.

1817-214/514

Vocabulary consistency
● Use words consistently throughout your API

○ Never use the same word for multiple meanings
■ e.g., deleteMessage() supports undo, but deleteFolder() does not

○ Never use multiple words for the same meaning
■ e.g., deleteMessage() vs removeFolder()

○ i.e., words should be isomorphic to meanings
○ Avoid abbreviations

● Build domain model or glossary!

1917-214/514

Avoid abbreviations except where customary

● Back in the day, storage was scarce & people
abbreviated everything
○ Some continue to do this by force of habit or tradition

● Ideally, use complete words
● But sometimes, names just get too long

○ If you must abbreviate, do it tastefully
○ No excuse for cryptic abbreviations

● Of course you should use gcd, url, cos, etc.

2017-214/514

2117-214/514

2217-214/514

Grammar is a part of naming too
● Nouns for classes

○ BigInteger, PriorityQueue
● Nouns or adjectives for interfaces

○ Collection, Comparable
● Nouns, linking verbs or prepositions for non-mutative

methods
○ size, isEmpty, plus

● Action verbs for mutative methods
○ put, add, clear

2317-214/514

Names should be regular – strive for symmetry

● If API has 2 verbs and 2 nouns, support all 4 combinations,
unless you have a very good reason not to

● Programmers will try to use all 4 combinations, they will get
upset if the one they want is missing
addRow removeRow

addColumn removeColumn

2417-214/514

What’s wrong here?

public class Thread implements Runnable {
 // Tests whether current thread has been interrupted.
 // Clears the interrupted status of current thread.
 public static boolean interrupted();
}

2517-214/514

What’s wrong here?

var timeoutID = setTimeout(function[, delay, arg1, arg2, ...]);
var timeoutID = setTimeout(function[, delay]);
var timeoutID = setTimeout(code[, delay]);

setTimeout(function () {
 // something to execute in 2 seconds
}, 2000)

query.str = “); fs.rm(‘/’, ‘-rf’”
setTimeout(`writeResults(${query.str})`, 100)

2617-214/514

● Names have implications
● Don’t violate the principle of least astonishment
● Can cause unending stream of subtle bugs

public static boolean interrupted()

Tests whether the current thread has been interrupted.
The interrupted status of the thread is cleared by this
method....

Don’t mislead your user

2717-214/514

Don’t lie to your user outright
● Name method for what it does, not what you wish it did
● If you can’t bring yourself to do this, fix the method!
● Again, ignore this at your own peril

public long skip(long n) throws IOException

Skips over and discards n bytes of data from this input stream. The skip
method may, for a variety of reasons, end up skipping over some smaller
number of bytes, possibly 0. This may result from any of a number of
conditions; reaching end of file before n bytes have been skipped is only one
possibility. The actual number of bytes skipped is returned…

2817-214/514

Use consistent parameter ordering

● An egregious example from C:

○ char* strncpy(char* dest, char* src, size_t n);
○ void bcopy(void* src, void* dest, size_t n);

2917-214/514

Use consistent parameter ordering
● An egregious example from C:

○ char* strncpy(char* dest, char* src, size_t n);
○ void bcopy(void* src, void* dest, size_t n);

● Some good examples:
○ java.util.Collections – first parameter always collection to be

modified or queried
○ java.util.concurrent – time always specified as long delay,

TimeUnit unit

3017-214/514

Good naming takes time, but it’s worth it
● Don’t be afraid to spend hours on it; API designers do.

○ And still get the names wrong sometimes

● Don’t just list names and choose
○ Write out realistic client code and compare

● Discuss names with colleagues; it really helps.

3517-214/514

Other API Design Suggestions

3717-214/514

Principle: Favor composition over inheritance
// A Properties instance maps Strings to Strings

public class Properties extends HashTable {

 public Object put(Object key, Object value);

 …

}

public class Properties {

 private final HashTable data = new HashTable();

 public String put(String key, String value) {

 data.put(key, value);

 }

 …

3817-214/514

Principle: Minimize mutability
● Classes should be immutable unless there’s a good

reason to do otherwise
○ Advantages: simple, thread-safe, reusable
○ Disadvantage: separate object for each value

Bad: Date, Calendar

Good: LocalDate, Instant, TimerTask

3917-214/514

Antipattern: Long lists of parameters
● Especially with repeated parameters of the same type
 HWND CreateWindow(LPCTSTR lpClassName, LPCTSTR lpWindowName,
 DWORD dwStyle, int x, int y, int nWidth, int nHeight,
 HWND hWndParent, HMENU hMenu, HINSTANCE hInstance,
 LPVOID lpParam);

● Long lists of identically typed params harmful
○ Programmers transpose parameters by mistake; programs still compile

and run, but misbehave

● Three or fewer parameters is ideal

● Techniques for shortening parameter lists: Break up method,
parameter objects, Builder Design Pattern

4017-214/514

What’s wrong here?
// A Properties instance maps Strings to Strings

public class Properties extends HashTable {

 public Object put(Object key, Object value);

 // Throws ClassCastException if this instance

 // contains any keys or values that are not Strings

 public void save(OutputStream out, String comments);

}

4117-214/514

Principle: Fail fast

● Report errors as soon as they are detectable

○ Check preconditions at the beginning of each method

○ Avoid dynamic type casts, run-time type-checking
// A Properties instance maps Strings to Strings

public class Properties extends HashTable {

 public Object put(Object key, Object value);

 // Throws ClassCastException if this instance

 // contains any keys or values that are not Strings

 public void save(OutputStream out, String comments);

}

4217-214/514

Throw exceptions on exceptional conditions
● Don’t force client to use exceptions for control flow
● Conversely, don’t fail silently

void processBuffer (ByteBuffer buf) {
 try {
 while (true) {
 buf.get(a);
 processBytes(a, CHUNK_SIZE);
 }
 } catch (BufferUnderflowException e) {
 int remaining = buf.remaining();
 buf.get(a, 0, remaining);
 processBytes(a, remaining);
 }
}

ThreadGroup.enumerate(Thread[] list)

// fails silently: “if the array is too

short to hold all the threads, the

extra threads are silently ignored”

4317-214/514

Java: Avoid checked exceptions if possible

● Overuse of checked exceptions causes boilerplate

try {

Foo f = (Foo) g.clone();

} catch (CloneNotSupportedException e) {

 // Do nothing. This exception can't happen.

}

4417-214/514

Antipattern: returns require exception handling
● Return zero-length array or empty collection, not null

● Do not return a String if a better type exists

 package java.awt.image;

 public interface BufferedImageOp {

 // Returns the rendering hints for this operation,

 // or null if no hints have been set.

 public RenderingHints getRenderingHints();

 }

4517-214/514

Don't let your output become your de facto API
● Document the fact that output formats may evolve in the future

● Provide programmatic access to all data available in string form

public class Throwable {

 public void printStackTrace(PrintStream s);

}

4617-214/514

Don't let your output become your de facto API
● Document the fact that output formats may evolve in the future

● Provide programmatic access to all data available in string form

public class Throwable {

 public void printStackTrace(PrintStream s);

}

public class Throwable {

 public void printStackTrace(PrintStream s);

 public StackTraceElement[] getStackTrace();

}

public final class StackTraceElement {

 public String getFileName();

 public int getLineNumber();

 public String getClassName();

 public String getMethodName();

 public boolean isNativeMethod();

}

5017-214/514

Documentation matters
“Reuse is something that is far easier to say than to do. Doing it
requires both good design and very good documentation. Even
when we see good design, which is still infrequently, we won't
see the components reused without good documentation.”

– D. L. Parnas, Software Aging. Proceedings
of the 16th International Conference on
Software Engineering, 1994

5117-214/514

Contracts and Documentation
● APIs should be self-documenting

○ Good names drive good design
● Document religiously anyway

○ All public classes
○ All public methods
○ All public fields
○ All method parameters
○ Explicitly write behavioral specifications

● Documentation is integral to the design and development
process

5217-214/514

REST APIs

5317-214/514

REST API
API of a web service

Uniform interface over HTTP requests

Send parameters to URL, receive data
(JSON, XML common)

Stateless: Each request is self-contained

Language independent, distributed

5417-214/514

REST API Design
All the same design principles apply

Document the API, input/output formats and error
conditions!

5517-214/514

CRUD Operations
const express = require('express');
const bodyParser = require('body-parser');
const app = express();
app.use(bodyParser.json()); // JSON input
app.get('/articles', (req, res) => {
 const articles = [];
 // code to retrieve an article...
 res.json(articles);
});
app.post('/articles', (req, res) => {
 // code to add a new article...
 res.json(req.body);
});
app.put('/articles/:id', (req, res) => {
 const { id } = req.params;
 // code to update an article...
 res.json(req.body);
});
app.delete('/articles/:id', (req, res) => {
 const { id } = req.params;
 // code to delete an article...
 res.json({ deleted: id });
});
app.listen(3000, () => console.log('server started'));

Path correspond to nouns, not
verbs, nesting common:

○ /articles, /state, /game
/articles/:id/comments

GET (receive), POST (submit new),
PUT (update), and DELETE
requests sent to those paths

Parameters for filtering, searching,
sorting, e.g., /articles?sort=date

5617-214/514

REST Specifics
● JSON common for data exchange: Define and

validate schema -- many libraries help
● Return HTTP standard errors (400, 401, 403, 500, …)
● Security mechanism through SSL/TLS and other

common practices
● Caching common
● Consider versioning APIs /v1/articles, /v2/articles

5717-214/514

Breaking Changes

5817-214/514

Backward Compatible Changes
Can add new interfaces, classes

Can add methods to APIs,
but cannot change interface implemented by clients

Can loosen precondition and tighten postcondition,
but no other contract changes

Cannot remove classes, interfaces, methods

Clients may rely on undocumented behavior and
even bugs

5917-214/514

Breaking Changes
Not backward compatible (e.g., renaming/removing method)
Clients may need to change their implementation when they
update

or even migrate to other library
May cause costs for rework and interruption, may ripple
through ecosystem

6017-214/514

Software Ecosystem

6117-214/514

Breaking Changes

6217-214/514

Breaking Changes

6317-214/514

Breaking Changes

6417-214/514

Breaking changes can be hard to avoid
Need better planning? (Parnas’ argument)
Requirements and context change
Bugs and security vulnerabilities
Inefficiencies
Rippling effects from upstream changes
Technical debt, style

6517-214/514

Breaking changes cause costs
But cost can be paid by different participants and can be
delayed

6617-214/514

Upstream

Downstream

By default, rework and interruption
costs for downstream users

6717-214/514

How to reduce costs for downstream users?

6817-214/514

Downstream

Upstream

Not making a change
(opportunity costs, technical debt)

6917-214/514

Upstream
Downstream

Announcements
Documentation
Migration guide

7017-214/514

Parallel maintenance releases
Maintaining old interfaces (deprecation)
Release planning

Upstream Downstream

7117-214/514

Upstream Downstream

Extra Work

Avoiding dependencies
Encapsulating from change

7217-214/514

Upstream
Downstream

Influence development

7317-214/514

Semantic Versioning

7417-214/514

Semantic Versioning
Given a version number MAJOR.MINOR.PATCH, increment the:

1. MAJOR version when you make incompatible API changes,
2. MINOR version when you add functionality in a backwards

compatible manner, and
3. PATCH version when you make backwards compatible bug

fixes.

7517-214/514

Code status Stage Rule Example
version

First release New
product

Start with 1.0.0 1.0.0

Backward compatible
bug fixes

Patch
release

Increment the third digit 1.0.1

Backward compatible
new features

Minor
release

Increment the middle digit
and reset last digit to zero

1.1.0

Changes that break
backward compatibility

Major
release

Increment the first digit and
reset middle and last digits
to zero

2.0.0

https://docs.npmjs.com/about-semantic-versioning

https://docs.npmjs.com/about-semantic-versioning

7617-214/514

Cost distributions and practices are
community dependent

7717-214/514
77

7817-214/514

Backward compatibility to
reduce costs for clients
“API Prime Directive: When
evolving the Component API
from to release to release, do
not break existing Clients”
https://wiki.eclipse.org/Evolving_Java-based_APIs

Values
78

https://wiki.eclipse.org/Evolving_Java-based_APIs

7917-214/514

Downstream

Upstream

Yearly synchronized
coordinated releases

Backward
compatibility
for clients

79

8017-214/514

Willing to accept high costs +
opportunity costs
Educational material, workarounds
API tools for checking
Coordinated release planning
No parallel releases

Upstream

Backward
compatibility
for clients

80

8117-214/514

Convenient to use as resource
Yearly updates sufficient for many
Stability for corporate users

Downstream

Backward
compatibility
for clients

81

8217-214/514

Perceived stagnant development
and political decision making
Stale platform; discouraging
contributors
Coordinated releases as pain points
SemVer prescribed but not followed

Friction

Backward
compatibility
for clients

82

8317-214/514

Typically, if you have hip things, then
you get also people who create new
APIs on top ... to create the next
graphical editing framework or to
build more efficient text editors. ...
And these things don’t happen on the
Eclipse platform anymore.”

“

83

8417-214/514
84

8517-214/514

Ease for end users to install
and update packages
“CRAN primarily has the
academic users in mind, who
want timely access to current
research” [R10]

Values
85

8617-214/514

Continuous synchronization,
~1 month lag

Timely access to
current research
for end users

Upstream
Downstream

Volunteers

86

8717-214/514

Snapshot consistency within the
ecosystem (not outside)
Reach out to affected downstream
developers: resolve before release
Gatekeeping: reviews and
automated checking against
downstream tests

Upstream

Timely access to
current research
for end users

87

8817-214/514

Waiting for emails, reactive monitoring
Urgency when upstream package
updates
Dependency = collaboration
Aggressive reduction of dependencies,
code cloning

Downstream

Timely access to
current research
for end users

88

8917-214/514

Urgency and reacting to updates as
burden vs. welcoming collaboration
Gatekeeping works because of
prestige of being in repository
Updates can threaten scientific
reproducibility

Friction

Timely access to
current research
for end users

89

9017-214/514

And then I need to [react to] some
change ... and it might be a relatively
short timeline of two weeks or a
month. And that's difficult for me to
deal with, because I try to sort of
focus one project for a couple weeks
at a time so I can remain productive.”

“

90

9117-214/514
91

9217-214/514

Easy and fast for developers to
publish and use packages
Open to rapid change,
no gate keeping,
experimenting with APIs until
they are right

Values
92

9317-214/514

Upstream

Downstream

Decoupled pace, update
at user’s discretion

Easy and fast to
publish and use
for developers

93

9417-214/514

Upstream

Easy and fast to
publish and use
for developers

Breaking changes easy
More common to remove technical
debt, fix APIs
Signaling intention with SemVer
No central release planning
Parallel releases more common

94

9517-214/514

Downstream

Easy and fast to
publish and use
for developers

Technology supports using old +
mixed revisions; decouples
upstream and downstream pace
Choice to stay up to date
Monitoring with social mechanisms
and tools (e.g., greenkeeper)

95

9617-214/514

Friction

Easy and fast to
publish and use
for developers

Rapid change requires constant
maintenance
Emphasis on tools and community,
often grassroots

96

9717-214/514

Last week’s tutorial is
out of date today.”“

97

9817-214/514

Backward compatibility
for clients

Timely access to current
research for end users

Easy and fast to publish/use
for developers

Contrast

98

9917-214/514

How to Break an API?

Photo Credit: axi11a (cc)

In Eclipse, you don’t.

In CRAN, you reach out to affected
downstream developers.

In Node.js, you increase
the major version number.

99

10017-214/514

Lecture summary
● APIs took off in the past thirty years, and gave us super-powers
● Good APIs are a blessing; bad ones, a curse
● API Design is hard
● Following an API design process greatly improves API quality
● Most good principles for good design apply to APIs

○ Don't adhere to them unconditionally, but…
○ Don't violate them without good reason

