Principles of Software Construction

Version Control with Git

Claire Le Goues Bogdan Vasilescu

Carnegie Mellon University
School of Computer Science

institute for
I S SOFTWARE
RESEARCH

17-214/514 1 [s

GIT BASICS

Graphics by https://learngitbranching.js.org

17-214/514 2 [|g s

RRRRRRRR

Why GitHub renamed its master branch to main

The GitHub master branch is no more. Developers used to think it was
untouchable, but that's not the case. Here's why GitHub made the switch
from master branch to main branch.

Mike Kiev - Fotolia

Mike Kiev - Fotolia

Article 1of 4

Part of: Cultural change in development

Since its inception, the Git DVCS tool's default branch name was set to master. Every Git repository had
a master branch unless a developer took explicit steps to remove it, which was rarely ever done
because the master branch plays an integral role in the software development world. For most projects,
the master branch represents the source of truth -- that is, all the code that works, is tested and ready

to be pushed to production.

However, the term master is out of favor in the computing world and beyond. Git and GitHub weren't far
behind either. Starting October 1, all new GitHub repositories will create a default branch named main,
and GitHub will no longer create a master branch for you. Let's examine why GitHub renamed the
master branch to main branch and what effect it will have on developers.

Cultural sensitivity

The computer industry's use of the terms master and slave caught everyone's attention in the summer
of 2020. Amid the many protests and the growing social unrest, these harmful and antiquated terms
were no longer considered appropriate.

"Both Conservancy and the Git project are aware that the initial branch name, 'master,' is offensive to
some people and we empathize with those hurt by the use of that term," said the Software Freedom
Conservancy.

Note: Some slides and imagery use
discouraged terminology. Sorry | didn'’t
get a chance to update!

https://www.theserverside.com/feature/Why-GitHub-renamed-its-master-branch-to-main

o
3 institute for
I S SOFTWARE
RESEARCH

https://www.theserverside.com/feature/Why-GitHub-renamed-its-master-branch-to-main

git commit

O

CﬁQZD

17-214/514 4 :n?&:i{%

git branch newlImage

®

C§§::D

@

Le=

17-214/514 5 ﬁ?:“ék”ti‘c[%

git commit

@

17-214/514 6 [s

RRRRRRRR

git checkout newImage; git commit

newImage*

17-214/514 7 :2}:7:'2%

Three ways to move work around between branches
1) git merge bugFix (intomaster)

@ @

@

@
()

Sa’e 0

17-214/514 9 :2}:7:'2%

git checkout bugfix; git merge master (into bugFix)

@ O
®

o
()
-’

17-214/514 10 ggiifrti{%

®

=il

Activity:

17-214/514

@

Move work from bugFix directly onto master
2) git rebase master

17-214/514 12 2?:’:‘{’2%

But master hasn't been updated, so:
git checkout master; git rebase bugFix

® @
® ®

O,:;J

= L=

17-214/514 13 2?:’:‘{’2%

Activity:
®

U:Q

17-214/514

—

Copy a series of commits below current location

3) git cherry-pick C2 C4
O

@
) ®
O

e

S

17-214/514 15 i?i'k"ti{%

Activity:

17-214/514

Ways to undo work (1) HEAD is the symbolic

git reset HEAD~1 name for the currently
checked out commit

® @

o s

Up

17-214/514 17 i?i'k"ti{%

Ways to undo work (2) git reset does not work
git revert HEAD for remote branches

®

@

@:@

17-214/514 18 2?:’:‘{’2%

Activity:

17-214/514

Highly recommended SECOND EDITION

* (second) most useful life skill you
will have learned in 214/514 PI’O

EVERYTI
K

HING YOU NEED TO
0UT GIT

Apress

https://git-scm.com/book/en/v2

17-214/514 20 |Ij o

TYPES OF VERSION CONTROL

Centralized version control

e Single server that contains Comuter A Central VCS Server
a” the VerS|Oned flleS n Version Database
e Clients check out/in files e e
from that central place m’.on :
e E.g,CVS, SVN SR ST |
. L — | Version 1
(Subversion), and Perforce | e

https://git-scm.com/book/en/v2/Getting-Started-About-Version-Control
17-2 14/5 14 22 Sf gé;{"ui{%

Distributed version control

Server Computer

Version Database

e Clients fully mirror the version 3
repOSitory Version 2

Version 1

o Every clone is a full backup of 7 N
all the data |

e E.g., Git, Mercurial, Bazaar Conputer A e
AT
: t
Version Database || || Version Database
Version 3 Version 3
|
Version 2 Version 2
|
Version 1 Version 1

https://git-scm.com/book/en/v2/Getting-Started-About-Version-Control
17'2 14/5 14 23 Sf gét;t;;\tsi%

SVN (left) vs.

Checkins Over Time

File A Al . A2
File B » Al

FileiC . Al . A2

* SVN stores changes to a base

version of each file

* Version numbers (1, 2, 3, ...)

are increased by one after
each commit

A2

A3

Git (right)

Checkins Over Time

File A Al Al A2 A2
File B B B Bl B2

File C C1 C2 C2 C3

Git stores each version as a snapshot

If files have not changed, only a link
to the previous file is stored

Each version is referred by the SHA-1
hash of the contents

https://git-scm.com/book/en/v2/Getting-Started-About-Version-Control

17-214/514

nstitute
SSSSSSSS
RRRRRRRR

Aside: Git process

Untracked Unmodified

Remove the file

© Scott Chacon “Pro Git”

17-214/514

Edit the file
Stage the file

. omit

o
28 institute for
| S SOFTWARE
RESEARCH

Git Internals

co -

© Scott Chacon “Pro Git”

17-214/514

(g |

master

C2

-

AN

c4

3

L) _—
SOFTWARE

RRRRRRRR

Git Internals

3c4e9c

tree

new.txt test.txt bak
e)
fa49b0 1f7a7a d8329f
"new file" "version 2" tree
test.txt
\
83baae

"version 1"

© Scott Chacon “Pro Git”

17-214/514 30 sl

RESEARCH

Aside: Git object graph

1a410e 3cde9c
third commit new.txt

test.txt
\\\‘\ 1f7a7a
"version 2"
>
RO 0155eb test.txt
second commit tree
new.txt fa49b0

"new file" %+

fdfafc d8329f 83baae
first commit tree test.txt = nyersion 1"

© Scott Chacon “Pro Git”

17-214/514 31 sl

Aside: Which files to manage

e All code and noncode files

o Java code
o Build scripts

o Documentation

e Exclude generated files (.class, ...)

e Most version control systems have a mechanism to exclude files
(e.g., .gitignore)

17'214/514 32 Sf gég?ﬁ%

SYNCING LOCAL <--> REMOTE

Glt Every computer is a server and version
control happens locally.

17-214/514 34 Sf :?}E}{z{%

Glt How do you share code with collaborators if
commits are local?

N
git commit i i

17-214/514 35 Sf 2?}3}&{%

Glt You push your commits into their repositories /
They pull your commits into their repositories

git push

... But requires host names / IP addresses

17-214/514 36 Lo

GitHub typical workflow

GitHub

Public repository where you make your changes public

17-214/514 37 Lo

GitHub typical workflow

GitHub

N
git commit i i

17-2 14/5 14 38 Sf g\é}}:i{%

GitHub typical workflow

GitHub

[HH
git commit i i

17-214/514 39 Lo

GitHub typical workflow

GitHub

git push

push your local changes into a remote repository.

17-2 14/5 14 40 I Sf gégi{%

GitHub typical workflow

GitHub

i git push i i

Collaborators can push too if they have access rights.

17-2 14/5 14 41 |Sf gé;{"ui{%

git push <remote> <branch>: upload local
repository content to a remote repository

Origin / Master Origin / Master
N2 N2
O—CO—CO—-=0 Oo—0O—C0CO—-0
T T
Master Master

https://www.atlassian.com/git/tutorials/syncing/git-push
17-214/514 42 [s

GitHub typical workflow

GitHub

A Y
A Y
A Y
N
A Y
N
N
A \\
A ~
N Se
\\ - \\
~ git pull ™
N ~
N S
\ i

Without access rights, “don’t call us, we’ll call you” (pull from

trusted sources) ... But again requires host names / IP addresses.
17-214/514 43 [H] s

git pull <remote>: Fetch the specified remote’s copy of the
current branch and immediately merge it into the local copy

Origin / Master

oo

Equivalent to:
git fetch origin HEAD + git merge HEAD
Also possible: git pull --rebase origin

17-214/514 a4 | s

RRRRRRRR

GitHub typical workflow

GitHub

“Forks”

\\Mainll

lii' g”:pLE;iil lii' Iii'

Instead, people maintain public remote “forks” of "main”

repository on GitHub and push local changes. _
17-214/514 45 5°£‘X”i‘

GitHub typical workflow

GitHub
“Main” “Forks”
" 5 =
Request

Availability of new changes is signaled via "Pull Request”.
17-214/514 46 [| s

GitHub typical workflow

GitHub

Changes are pulled into main if PR accepted.
17-214/514 47 [s

BRANCH WORKFLOWS

https://www.atlassian.com/qit/tutorials/comparing-workflows

17-214/514 a8 | s

RRRRRRRR

https://www.atlassian.com/git/tutorials/comparing-workflows

1. Centralized workflow

e Central repository to serve as the
single point-of-entry for all changes
to the project

e Default development branch is

called main

o all changes are committed into main
o doesn’t require any other branches

17-214/514

Example

John works on his feature

17-214/514 50 Sf g

Example

Mary works on her feature

17-214/514 51 Sf é?éi‘i”é‘i’ii

Example

John publishes his feature

:
& & 8

17-214/514 52 Sf s

Example

John publishes his feature

git push origin main

17-214/514 53 [[j 5

Example

Mary tries to publish her feature

git push origin main

17-214/514 54 [[j i

RRRRRRRR

error: failed to push some refs to '/path/to/repo.git’
hint: Updates were rejected because the tip of your current branch is behind its

remote counterpart. Merge the remote changes (e.g. 'git pull') before pushing again.
See the 'Note about fast-forwards' in 'git push --help' for details.

Mary tries to publish her feature

git push origin main %

& & &

17-214/514 S s for

Example

Mary rebases on top of John's commit(s)

git pull --rebase
origin master

& & &

17-214/514 56 [[j s

Mary’s Repository

O—0O-0

17-214/514

¢
o0

™

Master

/I\

Master

57 i

institute for
SOFTWARE
RESEARCH

Example

Mary resolves a merge conflict

17-214/514 58 [[j s

Example

Mary’s Repository

Pause here for

1\

Master

git rebase --continue

17-214/514 59 Lo

Example

Mary successfully publishes her feature

=
5

& & &

17-214/514 60 [Jj i

2. Git Feature Branch Workflow

o All feature development should take place in a dedicated
branch instead of the main branch

e Multiple developers can work on a particular feature without
disturbing the main codebase

o main branch will never contain broken code (enables CI)
o Enables pull requests (code review)

17-214/514

Example

Mary begins a new feature

0—0—010

git checkout -b marys-feature master

git status
git add <some-file>
17-214/514 git commit

Example

Mary goes to lunch

®

& & &

git push -u origin marys-feature

17-214/514 63 [[] s

RRRRRRRR

Example

Mary finishes her feature

=

& & &

git push

17-214/514 64 [i

Example

Bill receives the pull request

& & &

17-214/514 65 Sf ;?;i’f’.;{":

Example

Mary makes the changes
S

S,

A S,

b

17-214/514 66 [i

Example - Merge pull request

Mary publishes her feature
O——"2 —@
git checkout master
git pull

git pull origin marys-feature
git push

17-214/514 67 [i

3. Gitflow Workflow

vO0.1 v0.2 vi.0

N v v
01” O O
o o O
e Strict branching model designed around the project release
o Suitable for projects that have a scheduled release cycle

e Branches have specific roles and interactions

e Uses two branches

o master stores the official release history; tag all commits in
the master branch with a version number
o develop serves as an integration branch for features

17-214/514 68 Lo

GitFlow feature branches (from develop)

17-214/514 69 Lo

GitFlow release branches (eventually into master)

no new features after this
point—only bug fixes, docs,

and other release tasks
17-214/514 70 Sf ;3}&&{*@

GitFlow hotfix branches used to quickly patch

production releases

v0.1 v0.2

N2
O O

17-214/514 71 iy

Summary

e \ersion control has many advantages
o History, traceabillity, versioning
o Collaborative and parallel development

e Collaboration with branches
o Different workflows

e From local to central to distributed version control

17-214/514 72 iy

