
117-214/514

Principles of Software Construction 

Version Control with Git

Claire Le Goues Bogdan Vasilescu



217-214/514

GIT BASICS

Graphics by https://learngitbranching.js.org



317-214/514

Note: Some slides and imagery use 
discouraged terminology. Sorry I didn’t 
get a chance to update!

https://www.theserverside.com/feature/Why-GitHub-renamed-its-master-branch-to-main 

https://www.theserverside.com/feature/Why-GitHub-renamed-its-master-branch-to-main


417-214/514

git commit



517-214/514

git branch newImage



617-214/514

git commit



717-214/514

git checkout newImage; git commit



917-214/514

1) git merge bugFix (into master)
Three ways to move work around between branches



1017-214/514

git checkout bugfix; git merge master (into bugFix)



1117-214/514

Activity:



1217-214/514

2) git rebase master
Move work from bugFix directly onto master



1317-214/514

git checkout master; git rebase bugFix
But master hasn't been updated, so: 



1417-214/514

Activity:



1517-214/514

3) git cherry-pick C2 C4
Copy a series of commits below current location



1617-214/514

Activity:



1717-214/514

git reset HEAD~1
HEAD is the symbolic 
name for the currently 
checked out commit

Ways to undo work (1)



1817-214/514

git revert HEAD
git reset does not work 
for remote branches

Ways to undo work (2)



1917-214/514

Activity:



2017-214/514

Highly recommended

https://git-scm.com/book/en/v2

• (second) most useful life skill you 
will have learned in 214/514



2117-214/514

TYPES OF VERSION CONTROL



2217-214/514

Centralized version control

● Single server that contains 
all the versioned files

● Clients check out/in files 
from that central place

● E.g., CVS, SVN 
(Subversion), and Perforce

https://git-scm.com/book/en/v2/Getting-Started-About-Version-Control



2317-214/514

Distributed version control

● Clients fully mirror the 
repository

○ Every clone is a full backup of 
all the data

● E.g., Git, Mercurial, Bazaar

https://git-scm.com/book/en/v2/Getting-Started-About-Version-Control



2717-214/514

SVN (left) vs. Git (right)

• SVN stores changes to a base 
version of each file

• Version numbers (1, 2, 3, …) 
are increased by one after 
each commit 

• Git stores each version as a snapshot

• If files have not changed, only a link 
to the previous file is stored

• Each version is referred by the SHA-1 
hash of the contents

https://git-scm.com/book/en/v2/Getting-Started-About-Version-Control



2817-214/514

Aside: Git process

© Scott Chacon “Pro Git”



2917-214/514

Git Internals

© Scott Chacon “Pro Git”



3017-214/514

Git Internals

© Scott Chacon “Pro Git”



3117-214/514

Aside: Git object graph

© Scott Chacon “Pro Git”



3217-214/514

Aside: Which files to manage
● All code and noncode files

○ Java code
○ Build scripts
○ Documentation

● Exclude generated files (.class, …)
● Most version control systems have a mechanism to exclude files 

(e.g., .gitignore)



3317-214/514

SYNCING LOCAL <--> REMOTE



3417-214/514

Git Every computer is a server and version 
control happens locally.



3517-214/514

Git

git commit

How do you share code with collaborators if 
commits are local?



3617-214/514

Git

git push git pull

git push

… But requires host names / IP addresses

You push your commits into their repositories / 
They pull your commits into their repositories



3717-214/514

GitHub typical workflow
GitHub

Public repository where you make your changes public



3817-214/514

GitHub typical workflow
GitHub

git commit



3917-214/514

GitHub typical workflow
GitHub

git commit



4017-214/514

GitHub typical workflow
GitHub

git push

push your local changes into a remote repository. 



4117-214/514

GitHub typical workflow
GitHub

git push

Collaborators can push too if they have access rights.



4217-214/514

git push <remote> <branch>: upload local 
repository content to a remote repository

https://www.atlassian.com/git/tutorials/syncing/git-push



4317-214/514

GitHub typical workflow
GitHub

git pull

Without access rights, “don’t call us, we’ll call you” (pull from 
trusted sources) … But again requires host names / IP addresses.



4417-214/514

git pull <remote>: Fetch the specified remote’s copy of the 
current branch and immediately merge it into the local copy

Equivalent to:
git fetch origin HEAD + git merge HEAD
Also possible: git pull --rebase origin



4517-214/514

GitHub typical workflow
GitHub

git push

“Main” “Forks”

Instead, people maintain public remote “forks” of “main” 
repository on GitHub and push local changes.



4617-214/514

GitHub typical workflow
GitHub

Pull 
Request

“Main” “Forks”

Availability of new changes is signaled via ”Pull Request”.



4717-214/514

GitHub typical workflow
GitHub

git pull
“Main” “Forks”

Changes are pulled into main if PR accepted.



4817-214/514

BRANCH WORKFLOWS
https://www.atlassian.com/git/tutorials/comparing-workflows 

https://www.atlassian.com/git/tutorials/comparing-workflows


4917-214/514

1. Centralized workflow

● Central repository to serve as the 
single point-of-entry for all changes 
to the project

● Default development branch is 
called main

○ all changes are committed into main
○ doesn’t require any other branches



5017-214/514

Example



5117-214/514

Example



5217-214/514

Example



5317-214/514

Example

git push origin main



5417-214/514

Example

git push origin main



5517-214/514

git push origin main

error: failed to push some refs to '/path/to/repo.git’ 
hint: Updates were rejected because the tip of your current branch is behind its 
remote counterpart. Merge the remote changes (e.g. 'git pull') before pushing again. 
See the 'Note about fast-forwards' in 'git push --help' for details.



5617-214/514

Example

git pull --rebase 
origin master



5717-214/514



5817-214/514

Example



5917-214/514

Example

git rebase --continue



6017-214/514

Example



6117-214/514

2. Git Feature Branch Workflow

● All feature development should take place in a dedicated 
branch instead of the main branch

● Multiple developers can work on a particular feature without 
disturbing the main codebase

○ main branch will never contain broken code (enables CI)
○ Enables pull requests (code review)



6217-214/514

Example

git checkout -b marys-feature master

git status 
git add <some-file> 
git commit



6317-214/514

Example

git push -u origin marys-feature



6417-214/514

Example

git push



6517-214/514

Example



6617-214/514

Example



6717-214/514

Example - Merge pull request

git checkout master 
git pull 
git pull origin marys-feature 
git push



6817-214/514

3. Gitflow Workflow

● Strict branching model designed around the project release
○ Suitable for projects that have a scheduled release cycle

● Branches have specific roles and interactions
● Uses two branches

○ master stores the official release history; tag all commits in 
the master branch with a version number

○ develop serves as an integration branch for features



6917-214/514

GitFlow feature branches (from develop)



7017-214/514

GitFlow release branches (eventually into master)

no new features after this 
point—only bug fixes, docs, 
and other release tasks



7117-214/514

GitFlow hotfix branches used to quickly patch 
production releases



7217-214/514

Summary
● Version control has many advantages

○ History, traceability, versioning
○ Collaborative and parallel development

● Collaboration with branches
○ Different workflows

● From local to central to distributed version control


