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BRANCH WORKFLOWS
https://www.atlassian.com/git/tutorials/comparing-workflows 

https://www.atlassian.com/git/tutorials/comparing-workflows


317-214

1. Centralized workflow

• Central repository to serve as the 
single point-of-entry for all 
changes to the project

• Default development branch is 
called main
– all changes are committed into main
– doesn’t require any other branches
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Example
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Example
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Example
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Example

git push origin main
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Example

git push origin main
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error: failed to push some refs to '/path/to/repo.git' 
hint: Updates were rejected because the tip of your current branch is behind its 
remote counterpart. Merge the remote changes (e.g. 'git pull') before pushing again. 
See the 'Note about fast-forwards' in 'git push --help' for details.

git push origin main
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Example

git pull --rebase origin main
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Example
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Example

git rebase --continue
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Example
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2. Git Feature Branch Workflow

• All feature development should take place in a dedicated 
branch instead of the master branch

• Multiple developers can work on a particular feature without 
disturbing the main codebase
– main branch will never contain broken code (enables CI)
– Enables pull requests (code review)
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Example

git checkout -b marys-feature main
git status 
git add <some-file> 
git commit
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Example

git push -u origin marys-feature
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Example

git push
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Example
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Example
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Example - Merge pull request

git checkout main
git pull 
git pull origin marys-feature 
git push
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3. Gitflow Workflow

• Strict branching model designed around the project release
– Suitable for projects that have a scheduled release cycle

• Branches have specific roles and interactions
• Uses two branches

– main stores the official release history; tag all commits in the main branch 
with a version number

– develop serves as an integration branch for features
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GitFlow feature branches (from develop)
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GitFlow release branches (eventually into master)

no new features after this 
point—only bug fixes, docs, 
and other release tasks
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GitFlow hotfix branches used to quickly patch 
production releases
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Aside: Semantic Versioning
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Semantic Versioning

Given a version number MAJOR.MINOR.PATCH, increment the:
1. MAJOR version when you make incompatible API changes,
2. MINOR version when you add functionality in a backwards 

compatible manner, and
3. PATCH version when you make backwards compatible bug fixes.
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Code status Stage Rule Example 
version

First release New 
product

Start with 1.0.0 1.0.0

Backward compatible 
bug fixes

Patch 
release

Increment the third digit 1.0.1

Backward compatible 
new features

Minor 
release

Increment the middle digit 
and reset last digit to zero

1.1.0

Changes that break 
backward compatibility

Major 
release

Increment the first digit and 
reset middle and last digits 
to zero

2.0.0

https://docs.npmjs.com/about-semantic-versioning 

https://docs.npmjs.com/about-semantic-versioning
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Summary

• Version control has many advantages
– History, traceability, versioning

– Collaborative and parallel development

• Collaboration with branches
– Different workflows

• From local to central to distributed version control
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DEVELOPMENT AT SCALE
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Releasing at scale in industry

• Facebook: 
https://atscaleconference.com/videos/rapid-release-at-massive-scale/

• Google: 
https://www.slideshare.net/JohnMicco1/2016-0425-continuous-integration-at-google-scal
https://testing.googleblog.com/2011/06/testing-at-speed-and-scale-of-google.html

• Why Google Stores Billions of Lines of Code in a Single Repository: 
https://www.youtube.com/watch?v=W71BTkUbdqE 

• F8 2015 - Big Code: Developer Infrastructure at Facebook's Scale: 
https://www.youtube.com/watch?v=X0VH78ye4yY 

https://atscaleconference.com/videos/rapid-release-at-massive-scale/
https://www.slideshare.net/JohnMicco1/2016-0425-continuous-integration-at-google-scale
https://testing.googleblog.com/2011/06/testing-at-speed-and-scale-of-google.html
https://www.youtube.com/watch?v=W71BTkUbdqE
https://www.youtube.com/watch?v=X0VH78ye4yY
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Pre-2017 release management model at Facebook
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Diff lifecycle: local testing
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Diff lifecycle: CI testing (data center)
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Diff lifecycle: diff ends up on main branch
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Release every two weeks
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Quasi-continuous push from master (1,000+ devs, 1,000 diffs/day); 10 pushes/day
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https://www.softwire.com/blog/2013/09/26/continuous-integration-traffic-lights-revamp/index.html

https://samritchie.wordpress.com/2013/1
0/16/build-server-traffic-lights/
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https://blog.devops4me.com/status-badges-in-azure-devops-pipelines/
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Aside: Key idea – fast to deploy, slow to release

Dark launches at Instagram

● Early: Integrate as soon as possible. Find bugs early. Code can run 
in production about 6 months before being publicly announced 
(“dark launch”).

● Often: Reduce friction. Try things out. See what works. Push small 
changes just to gather metrics, feasibility testing. Large changes 
just slow down the team. Do dark launches, to see what 
performance is in production, can scale up and down. "Shadow 
infrastructure" is too expensive, just do in production.

● Incremental: Deploy in increments. Contain risk. Pinpoint issues.
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Aside: Feature Flags

Typical way to implement a dark launch.

http://swreflections.blogspot.com/2014/08/feature-toggles-are-one-of-worst-kinds.html

http://martinfowler.com/bliki/FeatureToggle.html

http://swreflections.blogspot.com/2014/08/feature-toggles-are-one-of-worst-kinds.html
http://martinfowler.com/bliki/FeatureToggle.html
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Issues with feature flags

Feature flags are “technical debt”

Example: $400 million financial services company went bankrupt 
in 45 minutes.

http://dougseven.com/2014/04/17/knightmare-a-devops-cautionary-tale/

http://dougseven.com/2014/04/17/knightmare-a-devops-cautionary-tale/
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Diff lifecycle: in production
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What’s in a weekly branch cut? (The limits of branches)
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Post-2017 release management model at Facebook
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Google: similar story. YUGE code base
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Exponential growth
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2016 numbers
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Google code base vs Linux kernel code base
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How do they do it?
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1. Lots of (automated) testing
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2. Lots of automation
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3. Smarter tooling

• Build system

• Version control

• …
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3a. Build system
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Which tests to run?
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Scenario 1: a change modifies common_collections_util
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Scenario 1: a change modifies common_collections_util
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Scenario 1: a change modifies common_collections_util
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Scenario 1: a change modifies common_collections_util



6617-214

Scenario 2: a change modifies the youtube_client
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Scenario 2: a change modifies the youtube_client



6817-214

3b. Version control

• Problem: even git can get slow at Facebook scale
– 1M+ source control commands run per day

– 100K+ commits per week
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3b. Version control

• Solution: redesign version control 
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3b. Version control
• Solution: redesign version control 

– Query build system's file monitor, Watchman, to see which files have 
changed
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3b. Version control
• Solution: redesign version control 

– Query build system's file monitor, Watchman, to see which files have 
changed → 5x faster “status” command
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3b. Version control
• Solution: redesign version control 

– Sparse checkouts??? (remember,  git is a distributed VCS)
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3b. Version control
• Solution: redesign version control 

– Sparse checkouts:

– Change the clone and pull commands to download only the commit 
metadata, while omitting all file changes (the bulk of the download) 

– When a user performs an operation that needs the contents of files (such as 
checkout), download the file contents on demand using existing memcache 
infrastructure
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3b. Version control
• Solution: redesign version control 

– Sparse checkouts → 10x faster clones and pulls

– Change the clone and pull commands to download only the commit 
metadata, while omitting all file changes (the bulk of the download) 

– When a user performs an operation that needs the contents of files (such as 
checkout), download the file contents on demand using existing memcache 
infrastructure
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4. Monolithic repository
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Monolithic repository – no major use of branches for 
development
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Did it work? Yes. Sustained productivity at Facebook

Lines Committed Per 
Developer Per Day 

Growth of the size of the 
Android and iOS dev teams 
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to be continued …
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MONOREPO VS MANY REPOS
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A recent history of code organization

• A single team with a monolithic application in a single repository 
…
• Multiple teams with many separate applications in many 

separate repositories 
• Multiple teams with many separate applications microservices in 

many separate repositories 
• A single team with many microservices in many repositories
…
• Many teams with many applications in one big Monorepo 
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Monorepos in industry
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Monorepos in industry



8717-214

Monorepos in industry
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Monorepos in open-source

2016 talk by FABIEN POTENCIER 
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Monorepos in open-source

2016 talk by FABIEN POTENCIER 
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Common build system
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Some advantages of monorepos
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Another refactoring example

• Make large backward incompatible changes easily... especially 
if they span different parts of the project 

• For example, old APIs can be removed with confidence 
– Change an API endpoint code and all its usages in all projects in one 

pull request 
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Some more advantages

• Easy continuous integration and code review for changes 
spanning several projects 

• (Internal) dependency management is a non-issue 
• Less context switching for developers
• Code more reusable in other contexts 
• Access control is easy 
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Some downsides

• Require collective responsibility for team and developers
• Require trunk-based development

– Feature toggles are technical debt (recall financial services example)

• Force you to have only one version of everything 
• Scalability requirements for the repository
• Can be hard to deal with updates around things like security 

issues
• Build and test bloat without very smart build system
• Slow VCS without very smart system
• Permissions?
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Summary
● Version control has many advantages

○ History, traceability, versioning
○ Collaborative and parallel development

● Collaboration with branches
○ Different workflows

● From local to central to distributed version control
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Summary
● Configuration management

○ Treat infrastructure as code
○ Git is powerful

● Release management: versioning, branching, …
● Software development at scale requires a lot of infrastructure

○ Version control, build managers, testing, continuous integration, deployment, …

● It’s hard to scale development
○ Move towards heavy automation (DevOps)

● Continuous deployment increasingly common
● Opportunities from quick release, testing in production, quick rollback


