
117-214/514

Principles of Software Construction

Version Control in the Wild

Claire Le Goues Bogdan Vasilescu

217-214

BRANCH WORKFLOWS
https://www.atlassian.com/git/tutorials/comparing-workflows

https://www.atlassian.com/git/tutorials/comparing-workflows

317-214

1. Centralized workflow

• Central repository to serve as the
single point-of-entry for all
changes to the project

• Default development branch is
called main
– all changes are committed into main
– doesn’t require any other branches

417-214

Example

517-214

Example

617-214

Example

717-214

Example

git push origin main

817-214

Example

git push origin main

917-214

error: failed to push some refs to '/path/to/repo.git'
hint: Updates were rejected because the tip of your current branch is behind its
remote counterpart. Merge the remote changes (e.g. 'git pull') before pushing again.
See the 'Note about fast-forwards' in 'git push --help' for details.

git push origin main

1017-214

Example

git pull --rebase origin main

1117-214

1217-214

Example

1317-214

Example

git rebase --continue

1417-214

Example

1517-214

2. Git Feature Branch Workflow

• All feature development should take place in a dedicated
branch instead of the master branch

• Multiple developers can work on a particular feature without
disturbing the main codebase
– main branch will never contain broken code (enables CI)
– Enables pull requests (code review)

1617-214

Example

git checkout -b marys-feature main
git status
git add <some-file>
git commit

1717-214

Example

git push -u origin marys-feature

1817-214

Example

git push

1917-214

Example

2017-214

Example

2117-214

Example - Merge pull request

git checkout main
git pull
git pull origin marys-feature
git push

2217-214

3. Gitflow Workflow

• Strict branching model designed around the project release
– Suitable for projects that have a scheduled release cycle

• Branches have specific roles and interactions
• Uses two branches

– main stores the official release history; tag all commits in the main branch
with a version number

– develop serves as an integration branch for features

2317-214

GitFlow feature branches (from develop)

2417-214

GitFlow release branches (eventually into master)

no new features after this
point—only bug fixes, docs,
and other release tasks

2517-214

GitFlow hotfix branches used to quickly patch
production releases

2617-214

Aside: Semantic Versioning

2717-214

Semantic Versioning

Given a version number MAJOR.MINOR.PATCH, increment the:
1. MAJOR version when you make incompatible API changes,
2. MINOR version when you add functionality in a backwards

compatible manner, and
3. PATCH version when you make backwards compatible bug fixes.

2817-214

Code status Stage Rule Example
version

First release New
product

Start with 1.0.0 1.0.0

Backward compatible
bug fixes

Patch
release

Increment the third digit 1.0.1

Backward compatible
new features

Minor
release

Increment the middle digit
and reset last digit to zero

1.1.0

Changes that break
backward compatibility

Major
release

Increment the first digit and
reset middle and last digits
to zero

2.0.0

https://docs.npmjs.com/about-semantic-versioning

https://docs.npmjs.com/about-semantic-versioning

2917-214

Summary

• Version control has many advantages
– History, traceability, versioning

– Collaborative and parallel development

• Collaboration with branches
– Different workflows

• From local to central to distributed version control

3017-214

DEVELOPMENT AT SCALE

3117-214

Releasing at scale in industry

• Facebook:
https://atscaleconference.com/videos/rapid-release-at-massive-scale/

• Google:
https://www.slideshare.net/JohnMicco1/2016-0425-continuous-integration-at-google-scal
https://testing.googleblog.com/2011/06/testing-at-speed-and-scale-of-google.html

• Why Google Stores Billions of Lines of Code in a Single Repository:
https://www.youtube.com/watch?v=W71BTkUbdqE

• F8 2015 - Big Code: Developer Infrastructure at Facebook's Scale:
https://www.youtube.com/watch?v=X0VH78ye4yY

https://atscaleconference.com/videos/rapid-release-at-massive-scale/
https://www.slideshare.net/JohnMicco1/2016-0425-continuous-integration-at-google-scale
https://testing.googleblog.com/2011/06/testing-at-speed-and-scale-of-google.html
https://www.youtube.com/watch?v=W71BTkUbdqE
https://www.youtube.com/watch?v=X0VH78ye4yY

3217-214

Pre-2017 release management model at Facebook

3317-214

Diff lifecycle: local testing

3417-214

Diff lifecycle: CI testing (data center)

3517-214

Diff lifecycle: diff ends up on main branch

3617-214

Release every two weeks

3717-214

Quasi-continuous push from master (1,000+ devs, 1,000 diffs/day); 10 pushes/day

3817-214

https://www.softwire.com/blog/2013/09/26/continuous-integration-traffic-lights-revamp/index.html

https://samritchie.wordpress.com/2013/1
0/16/build-server-traffic-lights/

3917-214

https://blog.devops4me.com/status-badges-in-azure-devops-pipelines/

4017-214

4117-214

Aside: Key idea – fast to deploy, slow to release

Dark launches at Instagram

● Early: Integrate as soon as possible. Find bugs early. Code can run
in production about 6 months before being publicly announced
(“dark launch”).

● Often: Reduce friction. Try things out. See what works. Push small
changes just to gather metrics, feasibility testing. Large changes
just slow down the team. Do dark launches, to see what
performance is in production, can scale up and down. "Shadow
infrastructure" is too expensive, just do in production.

● Incremental: Deploy in increments. Contain risk. Pinpoint issues.

4217-214

Aside: Feature Flags

Typical way to implement a dark launch.

http://swreflections.blogspot.com/2014/08/feature-toggles-are-one-of-worst-kinds.html

http://martinfowler.com/bliki/FeatureToggle.html

http://swreflections.blogspot.com/2014/08/feature-toggles-are-one-of-worst-kinds.html
http://martinfowler.com/bliki/FeatureToggle.html

4317-214

Issues with feature flags

Feature flags are “technical debt”

Example: $400 million financial services company went bankrupt
in 45 minutes.

http://dougseven.com/2014/04/17/knightmare-a-devops-cautionary-tale/

http://dougseven.com/2014/04/17/knightmare-a-devops-cautionary-tale/

4417-214

Diff lifecycle: in production

4517-214

What’s in a weekly branch cut? (The limits of branches)

4617-214

Post-2017 release management model at Facebook

4717-214

Google: similar story. YUGE code base

4817-214

Exponential growth

4917-214

2016 numbers

5017-214

Google code base vs Linux kernel code base

5117-214

How do they do it?

5217-214

1. Lots of (automated) testing

5317-214

2. Lots of automation

5417-214

3. Smarter tooling

• Build system

• Version control

• …

5517-214

3a. Build system

5617-214

5717-214

5817-214

5917-214

6017-214

6117-214

Which tests to run?

6217-214

Scenario 1: a change modifies common_collections_util

6317-214

Scenario 1: a change modifies common_collections_util

6417-214

Scenario 1: a change modifies common_collections_util

6517-214

Scenario 1: a change modifies common_collections_util

6617-214

Scenario 2: a change modifies the youtube_client

6717-214

Scenario 2: a change modifies the youtube_client

6817-214

3b. Version control

• Problem: even git can get slow at Facebook scale
– 1M+ source control commands run per day

– 100K+ commits per week

6917-214

3b. Version control

• Solution: redesign version control

7017-214

3b. Version control
• Solution: redesign version control

– Query build system's file monitor, Watchman, to see which files have
changed

7117-214

3b. Version control
• Solution: redesign version control

– Query build system's file monitor, Watchman, to see which files have
changed → 5x faster “status” command

7217-214

3b. Version control
• Solution: redesign version control

– Sparse checkouts??? (remember, git is a distributed VCS)

7317-214

3b. Version control
• Solution: redesign version control

– Sparse checkouts:

– Change the clone and pull commands to download only the commit
metadata, while omitting all file changes (the bulk of the download)

– When a user performs an operation that needs the contents of files (such as
checkout), download the file contents on demand using existing memcache
infrastructure

7417-214

3b. Version control
• Solution: redesign version control

– Sparse checkouts → 10x faster clones and pulls

– Change the clone and pull commands to download only the commit
metadata, while omitting all file changes (the bulk of the download)

– When a user performs an operation that needs the contents of files (such as
checkout), download the file contents on demand using existing memcache
infrastructure

7517-214

4. Monolithic repository

7617-214

Monolithic repository – no major use of branches for
development

7717-214

Did it work? Yes. Sustained productivity at Facebook

Lines Committed Per
Developer Per Day

Growth of the size of the
Android and iOS dev teams

7817-214

to be continued …

7917-214

MONOREPO VS MANY REPOS

8017-214

A recent history of code organization

• A single team with a monolithic application in a single repository
…
• Multiple teams with many separate applications in many

separate repositories
• Multiple teams with many separate applications microservices in

many separate repositories
• A single team with many microservices in many repositories
…
• Many teams with many applications in one big Monorepo

8317-214 2015 talk by Benjamin Eberlei

8517-214

Monorepos in industry

8617-214

Monorepos in industry

8717-214

Monorepos in industry

8817-214

Monorepos in open-source

2016 talk by FABIEN POTENCIER

8917-214

Monorepos in open-source

2016 talk by FABIEN POTENCIER

9117-214

Common build system

9817-214

Some advantages of monorepos

9917-214

10017-214

10117-214

10217-214

Another refactoring example

• Make large backward incompatible changes easily... especially
if they span different parts of the project

• For example, old APIs can be removed with confidence
– Change an API endpoint code and all its usages in all projects in one

pull request

10317-214

Some more advantages

• Easy continuous integration and code review for changes
spanning several projects

• (Internal) dependency management is a non-issue
• Less context switching for developers
• Code more reusable in other contexts
• Access control is easy

10417-214

Some downsides

• Require collective responsibility for team and developers
• Require trunk-based development

– Feature toggles are technical debt (recall financial services example)

• Force you to have only one version of everything
• Scalability requirements for the repository
• Can be hard to deal with updates around things like security

issues
• Build and test bloat without very smart build system
• Slow VCS without very smart system
• Permissions?

10517-214/514

Summary
● Version control has many advantages

○ History, traceability, versioning
○ Collaborative and parallel development

● Collaboration with branches
○ Different workflows

● From local to central to distributed version control

10617-214/514

Summary
● Configuration management

○ Treat infrastructure as code
○ Git is powerful

● Release management: versioning, branching, …
● Software development at scale requires a lot of infrastructure

○ Version control, build managers, testing, continuous integration, deployment, …

● It’s hard to scale development
○ Move towards heavy automation (DevOps)

● Continuous deployment increasingly common
● Opportunities from quick release, testing in production, quick rollback

