Principles of Software Construction

Version Control in the Wild

Claire Le Goues Bogdan Vasilescu

Carnegie Mellon University
School of Computer Science

institute for
I S SOFTWARE
RESEARCH

17-214/514 1 [s

BRANCH WORKFLOWS

https://www.atlassian.com/qgit/tutorials/comparing-workflows

-
institute for

IS 1A

7-214 p I | O | B

https://www.atlassian.com/git/tutorials/comparing-workflows

1. Centralized workflow

e Central repository to serve as the
single point-of-entry for all
changes to the project

e Default development branch is

called main
— all changes are committed into main
— doesn’t require any other branches

17-214

\\\\\\\\\\
SSSSSSSS
RRRRRRRR

Example

John works on his feature

PPy institute for
IS
- 4 RRRRRRR H

Example

Mary works on her feature

P citute for
IS 1A
17-214 5 IBl e :

Example

John publishes his feature

:
& & 8

P citute for
IS 1A
17-214 6 Nl -

Example

John publishes his feature

git push origin main

(
& & 8

P citute for
IS 1A
17-214 7 IHw -

Example

Mary tries to publish her feature

AT Y
S

T
N—
N—

Tgit push origin main

S & &

P citute for
IS 1A
17-214 8 Ml -

error: failed to push some refs to '/path/to/repo.git'

hint: Updates were rejected because the tip of your current branch is behind its
remote counterpart. Merge the remote changes (e.g. 'git pull') before pushing again.
See the 'Note about fast-forwards' in 'git push --help' for details.

Mary tries to publish her feature

git push origin main

& & &

o institute for
17_2 14 9 SOFTWARE

RESEARCH

Example

Mary rebases on top of John’s commit(s)

git pull --rebase origin main

17-214 10 Mo

Mary’s Repository

O—0O-0

17-214

¢
o0

™

Master

/I\

Master

11

institute for
SOFTWARE
RESEARCH

Example

Mary resolves a merge conflict

17-214 12 [Hi e

Example

Mary’s Repository

Pause here for

1\

Master

git rebase --continue

te for

17-214 13 [

Example

Mary successfully publishes her feature

17-214 14 [Hil s

2. Git Feature Branch Workflow

» All feature development should take place in a dedicated
branch instead of the master branch

* Multiple developers can work on a particular feature without

disturbing the main codebase
— main branch will never contain broken code (enables Cl)
— Enables pull requests (code review)

17-214 15 [Hi oo

Example

Mary begins a new feature

O_O_Olo

git checkout -b marys-feature main
git status

git add <some-file>

git commit

17-214 16 [Hi oo

Example

Mary goes to lunch

®

g 8 &

git push -u origin marys-feature
17-214 17 [HEs

Example

Mary finishes her feature

git push

17-214 18 IBl o

Example

Bill receives the pull request

17-214 10 [Hizies

Example

Mary makes the changes

17-214 20 [Hi:zins

Example - Merge pull request

Mary publishes her feature

O———=0 —@

git checkout main

git pull

git pull origin marys-feature

git push

17-214 21 [HIl s

3. Gitflow Workflow

vi.0

N

O
O O

©Q O«[:

° \O-O
* Strict branching model designed around the project release

— Suitable for projects that have a scheduled release cycle
* Branches have specific roles and interactions

* Uses two branches
— main stores the official release history; tag all commits in the main branch
with a version number
— develop serves as an integration branch for features

17-214 22 Ml

GitFlow feature branches (from develop)

17-214

vo.1

v0.2

v1.0

O

GitFlow release branches (eventually into master)

vO.1 v0.2 v1.0
Y ¥ N2
Y
\J

no new features after this

point—only bug fixes, docs,

and other release tasks
17-214 24 [Hi i

GitFlow hotfix branches used to quickly patch
production releases

vO0.1 v0.2 v1.0

N2
O O

17-214 25 NN o

Aside: Semantic Versioning

o institute for
17-214 26 ot

Semantic Versioning

Given a version number MAJOR.MINOR.PATCH, increment the:

1.
2.

3.

17-214

MAJOR version when you make incompatible APl changes,
MINOR version when you add functionality in a backwards
compatible manner, and

PATCH version when you make backwards compatible bug fixes.

Code status Stage Rule Example

version
First release New Start with 1.0.0 1.0.0
product
Backward compatible Patch Increment the third digit 1.0.1
bug fixes release
Backward compatible Minor Increment the middle digit 1.1.0
new features release and reset last digit to zero
Changes that break Major Increment the first digitand 2.0.0
backward compatibility release reset middle and last digits

to zero

17-214 https://docs.npmjs.com/about-semantic-versioning 28 MM i

RESEARCH

https://docs.npmjs.com/about-semantic-versioning

Summary

* Version control has many advantages
— History, traceability, versioning
— Collaborative and parallel development

e Collaboration with branches
— Different workflows

* From local to central to distributed version control

17-214 29 [HI s

DEVELOPMENT AT SCALE

= institute [m
17-214 30 NN

Releasing at scale in industry

* Facebook:
https://atscaleconference.com/videos/rapid-release-at-massive-scale/

* Google:
https://www.slideshare.net/JohnMicco1/2016-0425-continuous-integration-at-google-scal

https://testing.googleblog.com/2011/06/testing-at-speed-and-scale-of-google.html

* Why Google Stores Billions of Lines of Code in a Single Repository:
https://www.youtube.com/watch?v=W71BTkUbdqgE

* F8 2015 - Big Code: Developer Infrastructure at Facebook's Scale:
https://www.youtube.com/watch?v=X0VH78ye4yY

= institute for
17-214 31 M

https://atscaleconference.com/videos/rapid-release-at-massive-scale/
https://www.slideshare.net/JohnMicco1/2016-0425-continuous-integration-at-google-scale
https://testing.googleblog.com/2011/06/testing-at-speed-and-scale-of-google.html
https://www.youtube.com/watch?v=W71BTkUbdqE
https://www.youtube.com/watch?v=X0VH78ye4yY

Pre-2017 release management model at Facebook

17-214 32 [Hl e

Diff lifecycle: local testing

B Tools/xctool/xctool/xctool/Version.m View Options ¥

r on.h'

NSString * const XCToolVersionString = @"9.2.1"; NSString * const XCToolVersionString =

BB cxampleTest (0.050s)

OK (1 test, 4 assertions)

—

Test and lint locally

institute for
I S r SOFTWARE
33 RESEARCH

Diff lifecycle: Cl testing (data center)

4

App and Build
Configuration Matrix

Diff lifecycle: diff ends up on main branch

Continuous Continuous

Dogfooding

Release every two weeks

www.facebook.com

1week of development

Master

Release
branch

Tuesday

(weekly") Every weekday (3x)

Quasi-continuous push from master (1,000+ devs, 1,000 diffs/day); 10 pushes/day

) Push-Blocking Alerts
(008 arod Push-Blocking Tasks Flytrap
Crash Bot for WWW Anomaly

Emergency Button Alerts

Push-Blocking Alerts
Push-Blocking Tasks
Emergency Button

employees

Master

institute for
I S r SOFTWARE
RESEARCH

https://samritchie.wordpress.com/2013/1
0/16/build-server-traffic-lights/

https://www.softwire.com/blog/2013/09/26/continuous-integration-traffic-lights-revamp/index.html

institute [O(
17-214 38 SOt

17-214

Status

Build Pipeline

Release Pipeline

Dev

Test

Prod

deployment succeeded # deployment succeeded

o deployment succeeded

& NuGet 0.6.0

e NuGet 0.6.0

= NuGet 0.4.0

https://blog.devops4me.com/status-badges-in-azure-devops-pipelines/

39

institute for
SOFTWARE
RESEARCH

Signals of PR quality

25% ‘

= ouild passing
£ 0.5
Z [
= n
2 D 0.41
o =
S 2 0.3-
3 v
©
s 0 5.5
o »
SRl oo (e buis passing f i passing 2
(oo o0 g 0.1
L
Result: Build status+code coverage 0.0

8-6-4-20 2 4 6 8
Month index relative to badge

badges indicate more tests in PRs

STREIDEL

Carnegie Mellon University

= institute for
17-214 40 ot

Aside: Key idea — fast to deploy, slow to release
Dark launches at Instagram

e Early: Integrate as soon as possible. Find bugs early. Code can run
in production about 6 months before being publicly announced
(“dark [aunch”).

e Often: Reduce friction. Try things out. See what works. Push small
changes just to gather metrics, feasibility testing. Large changes
just slow down the team. Do dark launches, to see what
performance is in production, can scale up and down. "Shadow
infrastructure" is too expensive, just do in production.

e Incremental: Deploy in increments. Contain risk. Pinpoint issues.

17-214 a1 (DI

Aside: Feature Flags

Typical way to implement a dark launch.

, ‘ peTOUrVeEYy: Trve
Ul detinition ‘

pet survey

<toggle name = "petSurvey™
code for pending feature... YUANINZ. progyam
<Mtoggle> C g

petSurvey: true | faise

http://swreflections.blogspot.com/2014/08/feature-toggles-are-one-of-worst-kinds.html

http://martinfowler.com/bliki/FeatureToggle.html

= institute for
17-214 42 sormwnse

http://swreflections.blogspot.com/2014/08/feature-toggles-are-one-of-worst-kinds.html
http://martinfowler.com/bliki/FeatureToggle.html

Issues with feature flags

Feature flags are “technical debt”

Example: $400 million financial services company went bankrupt
in 45 minutes.
http://dougseven.com/2014/04/17/knightmare-a-devops-cautionary-tale/

vvvvvvvvvvv
SSSSSSSS

17-214 a3 [HI&5%

http://dougseven.com/2014/04/17/knightmare-a-devops-cautionary-tale/

Diff lifecycle: in production

j._'

Production

v

What'’s in a weekly branch cut? (The limits of branches)

Weekly web branch

10000

0
13-Jan 13-Jun 13-Nov 14-Mar 14-Aug 15-Jan 15-May 15-Sep 16-Feb 16-Jun

Post-2017 release management model at Facebook

Quasi-continuous web release

Google: similar story. YUGE code base

Google repository statistics

Total number of files*
Number of source files
Lines of code

Depth of history

Size of content

Commits per workday

*The total number of files includes source files copied into release branches, files that are deleted at the latest revision

1 billion

9 million

2 billion

35 million commits
86 terabytes

45 thousand

47

configuration files, documentation, and supporting data files

institute for
SOFTWARE
RESEARCH

Exponential growth

Millions of changes committed (cumulative)

1/1/2000 1/1/2005 1/1/2010 1/1/2015

Google Speed and Scale 2016 numbers

¢ >30,000 developers in 40+ offices
e 13,000+ projects under active development

¢ 30k submissions per day (1 every 3 seconds)

¢ All builds from source

e 30+ sustained code changes per minute with 90+ peaks
¢ 50% of code changes monthly

e 150+ million test cases / day, > 150 years of test / day

e Supports continuous deployment for all Google teams!

Google Confidential and Prapristary

M institute for
17-214 49 ot

Google code base vs Linux kernel code base

Some perspective

e 15 million lines of code in 40 thousand files (total)

e 15 million lines of code in 250 thousand files changed per week,
by humans
e 2 billion lines of code, in 9 million source files (total)

How do they do it?

17-214 51 [H e

1. Lots of (automated) testing

Google workflow

Sync user Gk

workspace » Write code » revlaw ‘ Commit

to repo

All code is reviewed before commit (by humans and automated tooling)

Each directory has a set of owners who must approve the change to their
area of the repository

Tests and automated checks are performed before and after commit
Auto-rollback of a commit may occur in the case of widespread breakage

-
institute for

I S r SOFTWARE

5 2 RESEARCH

2. Lots of automation

Additional tooling support

Critique Code review

CodeSearch* Code browsing, exploration, understanding, and archeology
Tricorder** Static analysis of code surfaced in Critique, CodeSearch
Presubmits Customizable checks, testing, can block commit

TAP Comprehensive testing before and after commit, auto-rollback

Rosie Large-scale change distribution and management

* See “How Developers Search for Code: A Case Study”, In European Software Engineering Conference and the ACM SIGSOFT Symposium on the Foundations of Software Engineering, 2015

** See “Tricorder: Building a program analysis ecosystem”. In International Conference on Software Engineering (ICSE), 2015

institute for
I S SOFTWARE
53 RESEARCH

3. Smarter tooling

* Build system
* Version control

17-214 54 [Hl o

3a. Build system

-
institute for

IS TR

- 55 LERAN rescarce

Google

@® Triggers builds in continuous cycle

® Cycle ime =longest build + test cycle

® Tests many changes together
® Which change broke the build?

17-214

Standard Continuous Build System

Change 1 Change 2 Change 3
: 1 1
— >
1 ‘—_’I
Test One | Test One |
Test Two Test Two

56

institute for
SOFTWARE
RESEARCH

Google

® Uses fine-grained dependencies
® Change 2 broke test 1

Google Continuous Build System
@® Triggers tests on every change

i

Change 1 Change 2 Change 3
Test One |
Test Two |
Test One
Test Two
I 1
_>| >I
: __ﬁ’: 1
Test One | Test One | :
Test Two Test Two
| : |
I 1 1
1] 1
1 1 1

17-214

57

institute for
SOFTWARE
RESEARCH

Google: Continuous Integration Display

e e

& | Fsluy | ‘-Ahl:n"w-| etz Suweh L e Haad « Nasar Cf s | 30315734 20003899 Cidars |
Showing 12 of 1100 targets: | o ed ! Eroker Lo o) ey
Changallst and 1t | WAGTIE WeITI WACT2 AeITIT WAC6LT Re3TTI WS35 wee3Id WACLT Al WAtdE) Ae3d2E 2ACl00 AeI2] WALITY RLI2TC WALI0C Ae32D] w119 AeeT10l XALCSI Am3I21 XeME6 AsI21 XaMCE0 ':-.;m
angellst and RUbMIEUMA: "y g e e Ve s Wim o few | Wie i Mo I Ml ie WIm in Mim Wt Wim Ml Wim Ml Wie S W
o e e e i i e o M K i
AMECted Largety: m#1 1 tee & bl ek 2 basi ket) Meaid ek 1 bal 4 ket 7 $atd T el bk P Rl D badu T Mesak T bakd X Vsl M Meant 1 Vsl A48 mesod 708 Piamis] 40 Aes e 08 el 1
* Pawet THE Fivene 133 3ot 2T Bovrns 403 Sa00nt T/0 Roerne 390 R L = Byrre 13 Pasent 16 Brne 781 Pasant NG Ryrre 281 Byrra W Frannt TR

.\
=
<

i
I

F;
I
I

SO NEEE

Google Benefits

e ldentifies failures sooner
e Identifies culprit change precisely
o Avoids divide-and-conquer and tribal knowledge
e Lower compute costs using fine grained dependencies
o Keeps the build green by reducing time to fix breaks
e Accepted enthusiastically by product teams
e Enables teams to ship with fast iteration times
o Supports submit-to-production times of less than 36

hours for some projects

= institute for
17-214 59 SOt

Google: Costs

e Requires enormous investment in compute resources (it

helps to be at Google) grows in proportion to:
o Submission rate
¢ Average build + test time
¢ Variants {debug, opt, valgrind, etc.)
o Increasing dependencies on core libraries
o Branches
e Requires updating dependencies on each change
o Takes time to update - delays start of testing

Gooqgie Conlfigegntial ang K
.
institute for
I S SOFTWARE
- 60 RESEARCH

Which tests to run?

GMAIL

Test Target:
name: //depot/gmail_client_tests
name: //depot/gmail_server_tests

buzz_client_tests

youtube_client gmail_client

BUZZ

Test targets:
name: //depot/buzz_server_tests
name: //depot/buzz_client_tests

gmail_client_tests gmail_server_tests

gmail_server

buzz_server_tests

buzz_server

common_collections_util >

17-214

f

-
institute for

I S r SOFTWARE

6 1 RESEARCH

Scenario 1: a change modifies common_collections_util

buzz_client_tests gmail_client_tests gmail_server_tests buzz_server_tests

buzz_client buzz_server

youtube_client gmail_client gmail_server youtube_server

When a change modifying common_collections_util
common_collections_util is E> < = = >

submitted. ¥

= institute [Ov
17-214 62 [Hiis

Scenario 1: a change modifies common_collections_util

buzz_client_tests gmail_client_tests gmail_server_tests buzz_server_tests
N

buzz_client : buzz_server

youtube_client gmail_client Q)utube_seer

When a change modifying common_collections_util
common_collections_util is = < - -

submitted.

= institute [Ov
17-214 63 s

Scenario 1: a change modifies common_collections_util

buzz_client_tests gmail_client_tests @I_server_tesD buzz_server_tests

youtube_ cllent gmanl cllent

Wheht a change MoaTyg common_collections util
common_collections_util is E> < = =

submitted.

M tute for
17-214 64 SOt

Scenario 1: a change modifies common_collections_util

All tests are affected! Both Gmail and Buzz projects need to be updated

buzz_client_tests @il_client_t@ @I_sewer_@ @
/ Z

s N

— | | =

youtube_ cllent gmall cllent

When a change modifying common_collections_util
common_collections_util is = < = -

submitted.

M institute for
17-214 65 SOt

Scenario 2: a change modifies the youtube_client

buzz_client_tests gmail_client_tests gmail_server_tests buzz_server_tests

buzz_client buzz_server

youtube_client gmail_client gmail_server youtube_server

When a change modifying
youtube_client is submitted.

common_collections_util

= institute for
17-214 66 ot

Scenario 2: a change modifies the youtube_client

Only buzz_client_tests are run and
only Buzz project needs to be updated.

buzz_client_tests) gmail_client_tests gmail_server_tests buzz_server_tests

" buzz_server

youtube_client

gmail_client gmail_server youtube_server

N

When a change modifying
youtube_client is submitted.

common_collections_util

z institute For
17-214 67 [HI s

3b. Version control

* Problem: even git can get slow at Facebook scale
— 1M+ source control commands run per day
— 100K+ commits per week

Cloning with git: iOS Today

Many files
Deep history

Large “footprint” makes git slow

ios (git)

nstitute for

17-214 68 sormwnse

3b. Version control

e Solution: redesign version control

Enter Mercurial: Sparse Checkouts

Work on only the files you need. Enter Mercurial: Shallow History

Build system knows how to

check out more.
Work locally without complete history.

Need more history? e SR wREER

Downloaded automatically on demand.

= institute for
17-214 69 ot

3b. Version control

e Solution: redesign version control

— Query build system's file monitor, Watchman, to see which files have
changed

17-214 70 [Hl e

3b. Version control

* Solution: redesign version control

— Query build system's file monitor, Watchman, to see which files have
changed — 5x faster “status” command

Time

status diff, no changes diff, one change update to parent commit one
change

B Watchman on m Watchman off

M institute for
17-214 71 oLt

3b. Version control

e Solution: redesign version control
— Sparse checkouts??? (remember, git is a distributed VCS)

17-214 72 [Hl e

3b. Version control

e Solution: redesign version control
— Sparse checkouts:

— Change the clone and pull commands to download only the commit
metadata, while omitting all file changes (the bulk of the download)

— When a user performs an operation that needs the contents of files (such as
checkout), download the file contents on demand using existing memcache
infrastructure

17-214 73 [Hl e

3b. Version control

e Solution: redesign version control
— Sparse checkouts — 10x faster clones and pulls

— Change the clone and pull commands to download only the commit
metadata, while omitting all file changes (the bulk of the download)

— When a user performs an operatlon that needs the contents of files (such as

checl ' ° oot ' ' 1d using existing memcache
infra:

remotefilelog
dait

Time

" “ Basic Hg

|
= m

17-214 large rebase large pull clone 74 S (E RWEEETE%{R:

4. Monolithic repository

17-214 75 | [H e

Monolithic repository — no major use of branches for
development

Trunk-based development

Piper users work at “head”, a consistent view of the codebase

All changes are made to the repository in a single, serial ordering
There is no significant use of branching for development

Release branches are cut from a specific revision of the repository

trunk / mainline
cherry pick

release branch

-
institute for

I S r SOFTWARE

76 RESEARCH

Did it work? Yes. Sustained productivity at Facebook

200 i I
Lines Committed Per
150 ¥
PR A, i Developer Per Day
=00
100 >\ 7 R
50 I’\V,
!
0 4
2 2 3 A o 5 5 6
un 290 5ec 200531 20350 200 (g 200 ¢ 10 2002 0p 200 L pr 200

= = +Android
—i0$S

Growth of the size of the
Android and iOS dev teams

= institute for
17-214 77 SOt

to be continued ...

= institute for
17-214 78 ot

MONOREPO VS MANY REPOS

= institute [m
17-214 79 ot

A recent history of code organization
* Asingle team with a monolithic application in a single repository

 Multiple teams with many separate applications in many
separate repositories

 Multiple teams with many separate-apptleationrs microservices in

many separate repositories
* Asingle team with many microservices in many repositories

* Many teams with many applications in one big Monorepo

17-214 go Ml e

What is a Monolithic Repository (monorepo)?

A single version control repository containing multiple

» projects
» applications
> libraries,

often using a common build system.

i Qofoo

17-214 2015 talk bv Beniamin Eberlei

83

institute for
SOFTWARE
RESEARCH

Monorepos in industry

Google (computer science version

n ACM | About Communications | ACM Resources

COMMUNICATIONS sesrch s

0F ThE

ACM et

HOME | CURRENTISSUE | NEWS | BLOGS OPINION | RESEARCH | PRACTICE | CAREERS | ARCHIVE VIDEOS

Home | Magazine Archive { July 2016 (Vol. 59, No.7) / Why Google Storas Sillions of Lines of Cods in a Single... / Full Text

CONTRIBUTED ARTICLES

Why Google Stores Billions of Lines of Code in a Single
Repository

By Rachel Potvin, Josh Levenbarg
Communications of the ACM, Vol. 59 No. 7, Pages 78-87
O TieiaiE SIGN IN for Full Access

vewas: B [@ B & svre = & @ o © B Password -

» Forgot Password?
Early Google emplovees decided to work with a shared codebase » Create an ACM Web Account
mansged through a centralized source control system. This
approach has served Google well for more than 16 years, and
today the vast mi

SIGN IN

ority of Google's sollware assels conlinues to

be slored in a single, shared reposilory. Meanwhile, the number

of Google software developers has steadily incressed, and the size ARTICLE CONTENTS:

of the Google codebase has grown exponentially (see Figure 1), As Introduction

a resull. the technology used o host the codebase has also Key Insights

evolved signilicantly. Google-Scale
Background

Backto Top

3 TSN N

17-214 85

institute for
SOFTWARE
RESEARCH

Monorepos in industry

Scaling Mercurial at Facebook

Ei coue

Open Source Platforms v Infrastructure Systems v Hardware Infrastructure + Video & VR v Artificial Intelligence v

OPTIMIZAT ON

© 7January 2014 ¥ INFRA - OPEN 3 CE - PERFORMAN

Scaling Mercurial at Facebook

‘ Durham Goode . Siddharth P Ag:

va

With thousands of commits a week across hundreds of thousands of files, Facebook's main source Recommended
repository is enormous-—-many times larger than even the Linux kernel, which checked in at 17 million
lines of code and 44,000 files in 2013. Given our size and complexity—and Facebook's oractice of

shipping code twice a day--improving our source control is one way we help our engineers move fast.

Choosing a source control system

8 : Scaling mrer
Two years ago, as we saw our repository continue to grow at a staggering rate, we sat down and ng

extrapolated our growth forward a few years. Based on those projections, it appeared likely that our
then-current technology, a Subversion server with a Git mirror, would become a productivity
bottleneck very soon. We looked at the available options and found none that were both fast and
easy to use at scale.

Qur code base has grown organically and its internal dependencies are very complex, We could have
spent a lot of time making it mare modular in a way that would be friendly to a source control toal, but
there are a number of benefits {o using a single repository. Even at our current scale, we often make
large changes throughout our code base, and having a single repository is useful for continuous

institute for
17-214 86 ot

Monorepos in industry

Microsoft claim the largest git repo on the planet

Brian Harrys blog

Visual Studio ALM and Farming

thing wanl to know akou

The largest Git repo on the planet

17 by Brian Harry MS j 58 Comments

B3 Share 2.2k 3213 _

It's been 3 months since | first wrote about our efforts to scale Git to extremely large projects and teams with an effort we called "Git Virtual

Visual Studio Team Services
File System”. As a reminder, GVFS, together with a set of enhancements tc Git, enables Git to scale 1o VERY large repos by virtualizing both the

-giz folder and the working directory. Rather than download the entire repo and checkout all the files, it dynamically downloads only the Search
portions you need based on what you use

Search MSDN wiith Bing el
you an update. Three months age, GYFS was still a dream. | don't mean it didn't exist— we had &
was unproven. We had validated on some big repos but we hadn't rolled it out to any meaningful Search thi

Alot has happened and | wanted to g
concrete implementaticen, but rather,
number of engineers so we had only conviction that it was going to work. Now we have proof.

Today, | want to shae our results. In addition, we're announcing the next steps in our GVFS journey for customers, including expanded open
sourcing to start taking contributions and improving how it works fer us at Microsoft, as well as for partners and customers.

Windows is live on Git

Email Address

Over the past 3 months, we have largely completed the ‘ollout of Git/GVFS to the Windows team at Microsoft, aaE enie

A
As a refresher, the Windows code base is approximately 3.5M files and. when checked in to a Git repo, results in a repo of about 300GB.

Dl bn
-

institute for
17-214 87 ot

Monorepos in open-source

foresquare public monorepo

K foursquare / fsqio Owach~ 8 Kstar 120 | Yrork |19
<> Code Issues 20 Pull requests o Projects 0 Wiki Insights

A monorepo that holds all of Foursquare's opensource projects

pants foursquare monarepa mongodb scala

P 538 commits ¥ 1branch > 2 releases 22 16 contributors s Apache-2.0

e S e i

& mateor committed with mateor Upgrade avis to use mongodb3.0+ (#780) . Latest commit 434b378 on 1 Aug

B 3rdparty Update the testinfra deployed file (#748) 3 months ago

M build-suppoert Monolithic vy resolve commit (#530) 3 months ago
Add a check he cur ore deleting (#709) 2 months

Add installation instructions to pom 3 months ago

Spindle: Make ThriftParserTest actually depend on its input {; 3 months
[.dockerignore Update fsqio/fsqio Dockerfile and add one for fs fishes 2 years
[Z) .gitignore ate upkeep to no longer clobber glob: 10 months
& travisym jrade Fsepio Travis config to use mongc 3 months agc
[E BUILD.openscurce Monolithi esolve commit 3 months age
[E BUILD.tools Drop a BUILD.tools in Fsq.io 8 mor le!
= CLAmd directory 2 years ag
Y CONTDIRITINGG mA Dart » FORITDIONITING mad 2

17-214 2016 talk bv FABIEN POTENCIER gs [Hi &

Monorepos in open-source

The @ Symfony monorepo
43 projects, 25 000 commits, and 400 000 LOC

https://github. conf synfony/synfony

Bri dge/

5 sub-projects
Bundl e/

5 sub-projects
Conponent/

33 i ndependent sub-projects like Asset, Cache,
CssSel ector, Finder, Form HttpKernel, Ldap,

Routing, Security, Serializer, Tenplating,
Translation, Yam, ...

2016 talk bv FABIEN POTENCIER

ommon build system

Bazel from Google

Documentation Contribute Blog

Build and
reliably

GET BAZEL ‘

A high-pe¢

Speed up your
and tests

Bazel only rebuilds wi
necessary. With adva Gelting Started

distbuted caching, g Pants: A fast, scalable build system

Buck s a build sy

dependency analysis: Seting Up Pants

ol € N m
execution, you get fa¢ small; rellsable r Tutoriai
incremental builds. languages on mai 3
Common Tasks Pants is a build system designed for codebases that:
Why Buck? Pants Basics + Are large andior growing rapidly.
o N + Consist of many subprojects that share a significant amount of code.
Buck can help yot Wihy Use Pants? i
= + Have complex dependencies on third-party liraries.
its Co
s + Use a variety of languages, code generators and frameworks,
¢ Speedupyq BUILD files
of multiple cc » P o
farget Addresses
track of unch T
Third-Party Dependencies Pans supports Java, Scaia, Python, CiC+=, Go, JavascriptiNode, Thifl, Protobuf and Androld
+ Add reprodu Pants Options code. Adding support for other languages, frameviorks and code generators s straightforward. s
everybody ge Invoking Pants Pants s a collaborative open-sourca project, buit and used by Twitter, Foursquare, Square, Medium and other companies.
< Gatcormict! Reporting Server
SRS IDE Support .
Getting Started
WM « Instaling Pants
+ Setting Up Pants

Projects with Pants.
+ Tutorial

VM 3rdparty Pattem

Scala Support
Publisning Atfacts Cookbook

Pants for Mave

Experts The Common Tasks is a practical, iide to some of the Pants tasks that you're most likely to carry out on a daily basis.

= institute for
17-214 01 NI

Some advantages of monorepos

17-214 os [H &

High Discoverability For Developers

v

Developers can read and explore the whole codebase
grep, IDEs and other tools can search the whole codebase

v

v

IDEs can offer auto-completion for the whole codebase
Code Browsers can links between all artifacts in the codebase

v

i Qofoo

R ——— —
Y R O (] RGN I | {1 el N0 2

17-214 99

institute for
SOFTWARE
RESEARCH

Code-Reuse is cheap

Almost zero cost in introducing a new library

» Extract library code into a new directory/component
» Use library in other components
» Profit!

100

institute for
SOFTWARE
RESEARCH

Refactorings in one commit

Allow large scale refactorings with one single,
atomic, history-preserving commit

» Extract Library/Component
» Rename Functions/Methods/Components

» Housekeeping (phpcs-fixer, Namespacing, ...)

101

institute for
SOFTWARE
RESEARCH

Another refactoring example
* Make large backward incompatible changes easily... especially
if they span different parts of the project

* For example, old APIs can be removed with confidence
— Change an API endpoint code and all its usages in all projects in one
pull request

17-214 102 Ml

Some more advantages

* Easy continuous integration and code review for changes
spanning several projects

* (Internal) dependency management is a non-issue

* Less context switching for developers

* Code more reusable in other contexts

* Access control is easy

\\\\\\\\\\\\\\
SSSSSSSS

17-214 103 [H &%

Some downsides

* Require collective responsibility for team and developers

* Require trunk-based development
— Feature toggles are technical debt (recall financial services example)

* Force you to have only one version of everything

* Scalability requirements for the repository

* Can be hard to deal with updates around things like security
issues

* Build and test bloat without very smart build system

* Slow VCS without very smart system

* Permissions?

17-214 104 Bl

Summary

e \ersion control has many advantages
o History, traceabillity, versioning
o Collaborative and parallel development

e Collaboration with branches
o Different workflows

e From local to central to distributed version control

17-214/514 105 [s

Summary

e Configuration management

o Treat infrastructure as code
o Gitis powerful

e Release management: versioning, branching, ...

e Software development at scale requires a lot of infrastructure

o Version control, build managers, testing, continuous integration, deployment, ...

e It's hard to scale development

o Move towards heavy automation (DevOps)

e Continuous deployment increasingly common

e Opportunities from quick release, testing in production, quick rollback

17-214/514 106 [Jj s

