
117-214/514

Principles of Software Construction:
Objects, Design, and Concurrency

A Quick Tour of all
23 GoF Design Patterns

Claire Le Goues Bogdan Vasilescu

217-214/514

Last of static analysis
But first:

317-214/514

1. A dashboard: run FindBugs overnight,
report results in a centralized location
Failed because: dashboard is outside
the developer’s workflow

2. Recurring FixIt events: company-wide
one-week effort to fix warnings
Failed because: FindBugs is too
imprecise (44% of issues were “bugs”,
but only 16% mattered)

3. Add to Code Review: run on every
change, allow toggling warnings
Failed because: too imprecise and
inconsistent

We left off: …Google had done experiments with FindBugs,
and none of them had worked!

What went wrong / what do we need?
1. Precision is key -- developers lose faith

in inaccurate tools
2. Provide timely warnings -- in-IDE or

rapidly on builds
a. Checkers are way more useful

during coding
3. Make a platform -- allow adding useful

checks

417-214/514

Google built its own tools for compile and review time

● At compile-time:
○ Perfectly Precise: only run checkers that have NO false-positives;

never halt a build incorrectly
○ Simple and actionable, ideally to the point of auto-fix suggestions

● At review time: TriCoder
○ Must be 90%+ precise; if not checker gets disabled and it’s on the

checker authors to fix it.
○ Actionable, but may require some work; improve correctness or quality
○ Some compile-time checks moved to review-time!

● Ran 50K times per day -- in 2018

517-214/514

TriCoder

617-214/514

● Use more complicated logic
○ One example: Infer, at Facebook
○ (Google claims this won’t (easily)

scale to their mono-repo.)
● Use AI?

○ Facebook: Getafix, also integrates
with SapFix

○ Amazon: CodeGuru
○ Microsoft: IntelliSense in VSCode,

mostly refactoring/code
completion, trained on large
volumes of code

○ Mostly fairly simple ML (details
limited)

What else could we do?

717-214/514

Summary
● We all constantly make mistakes

○ Static analysis captures common issues
○ Choose suitable abstractions; consider trade-offs

■ E.g., dynamic vs. static typing; sound vs. precise

● At big-tech-scale, automated checks are key
○ Help normalize coding standards
○ Even rare bugs are common at scale
○ But: social factors are very important

817-214/514

Back to our main topic

917-214/514

● Published 1994

● 23 Patterns

● Widely known

1017-214/514

● Published 1994

● 23 Patterns

● Widely known

Quiz due tomorrow!

1217-214/514

Not in the book:

● Model view controller
● Promise

Our course so far
● Composite
● Strategy
● Template Method
● Iterator
● Decorator
● Observer
● Factory Method
● ?

1317-214/514

Why?

● Seminal and canonical list of well-known patterns

● Not all patterns are commonly used

● Does not cover all popular patterns

● At least know where to look up when somebody
mentions the “Bridge pattern”

1417-214/514

Grouping Patterns
I. Creational Patterns

II. Structural Patterns
III. Behavioral Patterns

1517-214/514

1617-214/514

Pattern Name
● Intent – the aim of this pattern

● Use case – a motivating example

● Key types – the types that define pattern

○ Italic type name indicates abstract class; typically this is an
interface when the pattern is used in Java

● Examples

2017-214/514

I. Creational Patterns

1. Abstract factory

2. Builder

3. Factory method

4. Prototype

5. Singleton

2117-214

Problem:

• We want to support multiple platforms with our code
(e.g., Mac and Windows)

• We want our code to be platform independent

• Suppose we want to create Window with
setTile(String text) and repaint()

How can we write code that will create the correct Window
for the correct platform, without using conditionals?

2217-214

Abstract Factory Pattern

2317-214/514

Abstract Factory
● Intent – allow creation of families of related objects

independent of implementation
● Use case – look-and-feel in a GUI toolkit

○ Each L&F has its own windows, scrollbars, etc.

● Key types – Factory with methods to create each family
member, Products

● Not common in JDK / JavaScript

2417-214

Problem:

• How to handle all combinations of fields when constructing?

2517-214

Solution 1

Bad (code becomes harder to read and maintain with many attributes)

https://jlordiales.wordpress.com/2012/12/13/the-builder-pattern-in-practice/

2617-214

Solution 2: default no-arg constructor plus setters and getters
for every attribute

Bad (potentially inconsistent state, mutable)

https://jlordiales.wordpress.com/2012/12/13/the-builder-pattern-in-practice/

2717-214

Solution 3

https://jlordiales.wordpress.com/2012/12/13/the-builder-pattern-in-practice/

3017-214/514

Builder Pattern

● Intent – separate construction of complex object from
representation so same creation process can create
different representations

● Use case – converting rich text to various formats

● Types – Builder, ConcreteBuilders, Director, Products

● StringBuilder (Java), DirectoryBuilder (HW2)

3117-214/514

Builder Discussion

● Emulates named parameters in languages that don’t
support them

● Emulates 2n constructors or factories with n builder
methods, by allowing them to be combined freely

● Cost is an intermediate (Builder) object

3217-214/514

Gof4 Builder
Illustration

https://refactoring.guru/design-patterns/builder

3317-214/514

Builder
Example

3417-214/514

Another Builder Code Example
NutritionFacts twoLiterDietCoke = new NutritionFacts.Builder(
 "Diet Coke", 240, 8).sodium(1).build();
public class NutritioanFacts {
 public static class Builder {
 public Builder(String name, int servingSize,
 int servingsPerContainer) { ... }
 public Builder totalFat(int val) { totalFat = val; }
 public Builder saturatedFat(int val) { satFat = val; }
 public Builder transFat(int val) { transFat = val; }
 public Builder cholesterol(int val) { cholesterol = val; }
 ... // 15 more setters
 public NutritionFacts build() {
 return new NutritionFacts(this);
 }
 }
 private NutritionFacts(Builder builder) { ... }
}

3517-214/514

Recall: Factory Method Pattern
● Intent – abstract creational method that lets subclasses decide which

class to instantiate

● Use case – creating documents in a framework

● Key types – Creator, which contains abstract method to create an
instance

● Java: Iterable.iterator()

● Related Static Factory pattern is very common
○ Technically not a GoF pattern, but close enough, e.g. Integer.valueOf(int)

3617-214/514

Factory Method Illustration
public interface Iterable<E> {
 public abstract Iterator<E> iterator();
}

public class ArrayList<E> implements List<E> {
 public Iterator<E> iterator() { ... }
 ...
}

public class HashSet<E> implements Set<E> {
 public Iterator<E> iterator() { ... }
 ...
}

3717-214/514

Static Factory Method Example
public DatabaseConnection {
 private DatabaseConnection(String address) { … }
 public static DatabaseConnection create

(String address) {
 //optional caching or checking…
 return new DatabaseConnection(address);
 }
}

c = new DatabaseConnection(“localhost”);
c = DatabaseConnection.create(“localhost”);

3817-214/514

Prototype Pattern
● Intent – create an object by cloning another

and tweaking as necessary
● Use case – writing a music score editor in a graphical

editor framework
● Key types – Prototype
● Java: Cloneable, but avoid (except on arrays)
● JavaScript: Builtin language feature

3917-214

Problem:

• Ensure there is only a single instance of a class
(e.g., java.lang.Runtime)

• Provide global access to that class

4017-214/514

Singleton Pattern
● Intent – ensuring a class has only one instance

● Use case – GoF say print queue, file system, company in
an accounting system
○ Compelling uses are rare but they do exist

● Key types – Singleton

● Java: java.lang.Runtime.getRuntime(),
 java.util.Collections.emptyList()

4117-214/514

Singleton Illustration
public class Elvis {
 private static final Elvis ELVIS = new Elvis();
 public static Elvis getInstance() { return ELVIS; }
 private Elvis() { }
 ...
}

const elvis = { … }
function getElvis() {

export { getElvis }

4217-214/514

Singleton Discussion
Singleton = global variable

No flexibility for change or extension

Tends to be overused

4417-214

These were the creational patterns

1. Abstract factory

2. Builder

3. Factory method

4. Prototype

5. Singleton

4517-214/514

II. Structural Patterns
1. Adapter

2. Bridge

3. Composite

4. Decorator

5. Façade

6. Flyweight

7. Proxy

4617-214

Adapter

• Intent – convert interface of a class into one that
another class requires, allowing interoperability

• Use case – numerous, e.g., arrays vs. collections

• Key types – Target, Adaptee, Adapter

• JDK – Arrays.asList(T[])

4717-214/514

Recall: The Adapter Design Pattern

https://refactoring.guru/design-patterns/adapter

4817-214/514

Recall: The Adapter
Design Pattern

Applicability
● You want to use an existing class,

and its interface does not match the
one you need

● You want to create a reusable class
that cooperates with unrelated
classes that don’t necessarily have
compatible interfaces

● You need to use several subclasses,
but it’s impractical to adapt their
interface by subclassing each one

Consequences
• Exposes the functionality of an object in

another form
• Unifies the interfaces of multiple

incompatible adaptee objects
• Lets a single adapter work with multiple

adaptees in a hierarchy
• -> Low coupling, high cohesion

4917-214

Problem: There are two types of thread schedulers, and two
types of operating systems or "platforms".

image source: https://sourcemaking.com

5017-214

Problem: we have to define a class for each permutation
of these two dimensions

image source: https://sourcemaking.com

• How would you redesign this?

5117-214

Bridge Pattern: Decompose the component's interface
and implementation into orthogonal class hierarchies.

image source: https://sourcemaking.com

5217-214

Bridge

• Intent – decouple an abstraction from its implementation so
they can vary independently

• Use case – portable windowing toolkit

• Key types – Abstraction, Implementor

• JDK – JDBC, Java Cryptography Extension (JCE), Java Naming &
Directory Interface (JNDI)

• Bridge pattern is very similar to Service Provider

– Abstraction ~ API, Implementer ~ SPI

5317-214

Adapter vs Bridge

• Adapter makes things work together after they're designed;
Bridge makes them work before they are.

• Bridge is designed up-front to let the abstraction and the
implementation vary independently. Adapter is retrofitted to
make unrelated classes work together.

5717-214/514

Recall: Composite Pattern

● Intent – compose objects into tree structures. Let
clients treat primitives & compositions uniformly.

● Use case – GUI toolkit (widgets and containers)

● Key type – Component that represents both primitives
and their containers

● Java: javax.swing.JComponent

5817-214/514

The Composite Design Pattern
● Applicability

○ You want to represent part-whole hierarchies
of objects

○ You want to be able to ignore the difference
between compositions of objects and
individual objects

● Consequences
○ Makes the client simple, since it can treat

objects and composites uniformly
○ Makes it easy to add new kinds of

components
○ Can make the design overly general

■ Operations may not make sense on
every class

■ Composites may contain only certain
components

5917-214/514

Recall: Decorator Pattern

● Intent – attach features to an object dynamically

● Use case – attaching borders in a GUI toolkit

● Key types – Component, implement by decorator and
decorated

● Java: Collections (e.g., Synchronized wrappers),
java.io streams, Swing components

6017-214/514

Decorator vs Composite?

6217-214/514

Façade Pattern
● Intent – provide a simple unified interface to a set of

interfaces in a subsystem
○ GoF allow for variants where the complex underpinnings are

exposed and hidden

● Use case – any complex system; GoF use compiler
● Key types – Façade (the simple unified interface)
● JDK – java.util.concurrent.Executors

6317-214/514

Façade Illustration
Façade

√√

√

√

√

√ √

Subsystem classes

6417-214

Façade example

6517-214/514

class SantoriniController {

newGame() { … }

isValidMove(w, x, y) { … }

move(w, x, y) { … }

getWinner() { … }

}

6617-214/514

Discussion
Facade vs Controller Heuristic

Same idea
Facade for subsystem, controller for use case

Facade vs Singleton
Facade sometimes a global variable
Typically little design for change/extension

6717-214

Problem: Imagine implementing a forest of individual
trees in a realtime game

Source: http://gameprogrammingpatterns.com/flyweight.html

6817-214

Trick: most of the fields in these objects are the same
between all of those instances

Source: http://gameprogrammingpatterns.com/flyweight.html

6917-214

Flyweight

• Intent – use sharing to support large numbers
of fine-grained objects efficiently

• Use case – characters in a document

• Key types – Flyweight (instance-controlled!)
– Some state can be extrinsic to reduce number of instances

• JDK – String literals (JVM feature)

7017-214/514

Flyweight
Key idea: Avoid
copies of
structurally equal
objects, reuse
object

Requires
immutable objects
and factory with
caching

https://refactoring.guru/design-patterns/flyweight

7117-214

Flyweight Illustration

7217-214/514

Proxy Pattern
● Intent – surrogate for another object

● Use case – delay loading of images till needed

● Key types – Subject, Proxy, RealSubject

● Gof mention several flavors
○ virtual proxy – stand-in that instantiates lazily
○ remote proxy – local representative for remote obj
○ protection proxy – denies some ops to some users
○ smart reference – does locking or ref. counting, e.g.

● JDK – RMI, collections wrappers

7317-214

Proxy

• Decorator vs Proxy:
– Decorator adds responsibilities to object (w/t inheritance).

– Proxy is used to “control access” to an object.

7417-214

Proxy Illustrations

Virtual Proxy

Smart Reference Remote Proxy

SynchronizedList ArrayList

aTextDocument
image anImage

data
in memory on disk

anImageProxy
fileName

Client

Proxy

Server

7517-214

These were the structural patterns

1. Adapter

2. Bridge

3. Composite

4. Decorator

5. Façade

6. Flyweight

7. Proxy

7617-214

1. Chain of Responsibility
2. Command
3. Interpreter
4. Iterator
5. Mediator
6. Memento
7. Observer
8. State
9. Strategy

10. Template method
11. Visitor

III. Behavioral Patterns

7717-214

Chain of Responsibility

• Intent – avoid coupling sender to receiver by passing
request along until someone handles it

• Use case – context-sensitive help facility

• Key types – RequestHandler

• JDK – ClassLoader, Properties

• Exception handling could be considered a form of
Chain of Responsibility pattern

7817-214/514 https://refactoring.guru/design-patterns/chain-of-responsibility

https://refactoring.guru/design-patterns/chain-of-responsibility

7917-214

Command

• Intent – encapsulate a request as an object, letting you
parameterize one action with another, queue or log
requests, etc.

• Use case – menu tree

• Key type – Command (Runnable)

• JDK – Common! Executor framework, etc.

public static void main(String[] args) {
SwingUtilities.invokeLater(() -> new Demo().setVisible(true));

}

8017-214/514

Command Illustration
class ClickAction {

constructor(name) { this.name = name }

execute() { /* … update based on click event */ }

}

let c = new ClickAction("Restart Game")

getElementById("menu").addEventListener("click", c.execute)

getElementById("btn").addEventListener("click", c.execute)

setTimeout(c.execute, 2000)

Object (or function) represents an action, execution deferred, arguments possibly configured early.
Can be reused in multiple places. Can be queued, logged, ...

8117-214/514

Interpreter Pattern
● Intent – given a language, define class hierarchy for parse

tree, recursive method to interpret it
● Use case – regular expression matching

● Key types – Expression, NonterminalExpression,
TerminalExpression

● JDK – no uses I’m aware of

● Necessarily uses Composite pattern!

8217-214/514

● Intent – provide a way to access elements of a
collection without exposing representation

● Use case – collections

● Key types – Iterable, Iterator

○ But GoF discuss internal iteration, too

● Java and JavaScript: collections, for-each statement ..

Iterator Pattern

8317-214/514

Iterator Illustration
public interface Iterable<E> {
 public abstract Iterator<E> iterator();
}
public class ArrayList<E> implements List<E> {
 public Iterator<E> iterator() { ... }
 ...
}
public class HashSet<E> implements Set<E> {
 public Iterator<E> iterator() { ... }
 ...
}
Collection<String> c = ...;
for (String s : c) // Creates an Iterator appropriate to c
 System.out.println(s);

8417-214

Problem:

8517-214

Mediator Pattern

8617-214

Mediator

• Intent – define an object that encapsulates how a set
of objects interact, to reduce coupling.

– 𝓞(n) couplings instead of 𝓞(n2)

• Use case – dialog box where change in one component
affects behavior of others

• Key types – Mediator, Components

• JDK – Unclear

8717-214

Mediator Illustration

8817-214

Problem: without violating encapsulation, allow client of
Editor to capture the object’s state and restore later

Provide save and restoreToState methods
Hint: define custom type (Memento)

8917-214 https://dzone.com/articles/design-patterns-memento

Problem: without violating encapsulation, allow client of
Editor to capture the object’s state and restore later

9017-214

Problem: without violating encapsulation, allow client of
Editor to capture the object’s state and restore later

9117-214

Memento

• Intent – without violating encapsulation, allow client to
capture an object’s state, and restore later

• Use case – when you need to provide an undo
mechanism in your applications, when the internal
state of an object may need to be restored at a later
stage (e.g., text editor)

• Key type – Memento (opaque state object)

• JDK – none that I’m aware of (not serialization)

9217-214

Observer

• Intent – let objects observe the behavior of other
objects so they can stay in sync

• Use case – multiple views of a data object in a GUI

• Key types – Subject (“Observable”), Observer

– GoF are agnostic on many details!

• JDK – Swing, left and right

9317-214

Problem: allow object to behave in different ways
depending on internal state

9417-214 https://sourcemaking.com/design_patterns/state/java/1

9517-214

State

• Intent – allow an object to alter its behavior when internal state
changes. “Object will appear to change class.”

• Use case – TCP Connection (which is stateful)

• Key type – State (Object delegates to state!)

• JDK – none that I’m aware of, but…
– Works great in Java
– Use enums as states
– Use AtomicReference<State> to store it [EJ]

9617-214

State

• State can be considered as an extension of Strategy

• Both patterns use composition to change the behavior of the
main object by delegating the work to the helper objects.
– Strategy makes these objects completely independent

– State allows state objects to alter the current state of the context with
another state, making them interdependent

9717-214/514

State Example

class Connection {

 boolean isOpen = false;
 void open() {

 if (isOpen) throw new Inval…

 …//open connection

 isOpen=true;

 }

 void close() {

 if (!isOpen) throw new Inval…

 …//close connection

 isOpen=false;

 }

}

class Connection {

 private State state = new Closed();

 public void setState(State s) { … }

 void open() { state.open(this); }

 …

}

interface State {

 void open(Connection c);

 void close(Connection c);

}

class Open implements State {

 void open(Connection c) { throw …}

 void close(Connection c) {

 //…close connection

 c.setState(new Closed());

 }

}

class Closed impl. State { … }

Without the pattern:

With the pattern:

9917-214

Strategy

• Intent – represent a behavior that parameterizes an
algorithm for behavior or performance

• Use case – line-breaking for text compositing

• Key types – Strategy

• JDK – Comparator

10017-214

Template Method

• Intent – define skeleton of an algorithm or data
structure, deferring some decisions to subclasses

• Use case – application framework that lets plugins
implement all operations on documents

• Key types – AbstractClass, ConcreteClass

• JDK – skeletal collection impls (e.g., AbstractList)

10117-214

Problem:

• It should be possible to define a new operation for (some)
classes of an object structure without changing the
classes.

– Example: Calculate shipping for different regions for all
items in shopping cart. Be able to add new shipping
cost formulas without changing existing code.

10217-214

The Visitable interface

https://dzone.com/articles/design-patterns-visitor

10317-214

The Visitor interface

10417-214

Driving the visitor

10517-214

Visitor

10617-214

Visitor

• Intent – represent an operation to be performed on elements of
an object structure (e.g., a parse tree). Visitor lets you define a
new operation without modifying the type hierarchy.

• Use case – type-checking, pretty-printing, etc.

• Key types – Visitor, ConcreteVisitors, all the element types that
get visited

• JDK – none that I’m aware of; very common in compilers

10717-214

These were the behavioral patterns

1. Chain of Responsibility
2. Command
3. Interpreter
4. Iterator
5. Mediator
6. Memento
7. Observer
8. State
9. Strategy

10. Template method
11. Visitor

11017-214/514

● Published 1994

● 23 Patterns

● Widely known

11117-214/514

Summary
● Now you know all the Gang of Four patterns
● Definitions can be vague
● Coverage is incomplete
● But they’re extremely valuable

○ They gave us a vocabulary
○ And a way of thinking about software

● Look for patterns as you read and write software
○ GoF, non-GoF, and undiscovered

