Principles of Software Construction:
Objects, Design, and Concurrency

A Quick Tour of all
23 GoF Design Patterns

Claire Le Goues Bogdan Vasilescu

Carnegie Mellon University
School of Computer Science

institute for
I S SOFTWARE
RESEARCH

17-214/514 1 [Hj e

But first:
Last of static analysis

Carnegie Mellon University
School of Computer Science

institute for
I S SOFTWARE
RESEARCH

17-214/514 2 [|g s

RESEARCH

We left off: ...Google had done experiments with FindBugs,

and none of them had worked!

1. A dashboard: run FindBugs overnight,
report results in a centralized location
Failed because: dashboard is outside
the developer’s workflow

2. Recurring Fixlt events: company-wide
one-week effort to fix warnings
Failed because: FindBugs is too
imprecise (44% of issues were “bugs’,
but only 16% mattered)

3. Add to Code Review: run on every
change, allow toggling warnings
Failed because: too imprecise and
inconsistent

17-214/514

What went wrong / what do we need?
1.

Precision is key -- developers lose faith

in inaccurate tools

Provide timely warnings -- in-IDE or

rapidly on builds

a. Checkers are way more useful
during coding

Make a platform -- allow adding useful

checks

Google built its own tools for compile and review time

e At compile-time:
o Perfectly Precise: only run checkers that have NO false-positives;
never halt a build incorrectly
o Simple and actionable, ideally to the point of auto-fix suggestions
e Atreview time: TriCoder
o Must be 90%+ precise; if not checker gets disabled and it's on the
checker authors to fix it.
o Actionable, but may require some work; improve correctness or quality
o Some compile-time checks moved to review-time!

e Ran 50K times per day -- in 2018

17-214/514 4 Sf Z?;‘i’f{z{%

TriCoder

package com.google.devtools.staticanalysis;
public class Test {

~ Lint Missing a Javadoc comment.
Java
1:02 AM, Aug 21

Please fix

Not useful

public boolean foo() {
return getString() == "foo".toString();

~ ErrorProne String comparison using reference equality instead of value equality

StringEquality
1:03 AM, Aug 21

Please fix

(see h

)

[lIdepotIgoogIe3ljavalcomlgoogIeldevtoolslstaticanalysisl‘l’ est.java

package com.google.devtools.staticanalysis;

public class Test {
public boolean foo() {
return getString() == "foo".toString();
}

public String getString() {
return new String("foo");
}
}

17'2 m Cancel

package com.google.devtools.staticanalysis;
import java.util.Objects;

public class Test {
public boolean foo() {
return Objects.equals(getString(), "foo".toString());
}

public String getString() {
return new String("foo");
}
}

5 [

institute for
SOFTWARE
RESEARCH

What else could we do?

e Use more complicated logic
One example: Infer, at Facebook
(Google claims this won't (easily)
scale to their mono-repo.)
e UseAl?
o Facebook: Getafix, also integrates
with SapFix
o Amazon: CodeGuru
o Microsoft: IntelliSense in VSCode,
mostly refactoring/code

completion, trained on large
volumes of code - S =0 Woam Ja®
H H H = —= =t o
o Mostly fairly simple ML (details moe [mmliey Swme U el e
I i m ited) Find V?I';"g“:f“m . 'w1th amonal;le the exg'e?::jv: lines and Cmuo t;:(:f:;w il:)r:‘es of and reduce cost
17-214/514 6

Summary

e \We all constantly make mistakes

o Static analysis captures common issues
o Choose suitable abstractions; consider trade-offs

m E.g., dynamic vs. static typing; sound vs. precise
e At big-tech-scale, automated checks are key
o Help normalize coding standards
o Even rare bugs are common at scale
o But: social factors are very important

17-214/514 7 Sf 2?;“5*}{1{%

Back to our main topic

17-214/514 8 Sf 2?;“5*}{1{%

A
vy
z
=
=
=
7
0
>
74
=
<
v
=
m
<
T
7~
0
b4
m
w
Z
©
Z
Z

e Published 1994
e 23 Patterns
e \Widely known

SARAS ONILNAWOD

17-214/514

/
Z Design Patter?
§

Elements of Reusable
Object—Oriente

ich Gamma
IEQrilchard Helm
Ralph Johnson

d Software

A
vy
P
“/
g
73
0
iz
<
=
o
=
m
=<
T
/'._J
o)
=
m
w
n
A
=
7/
Z
r
@)
@)

e Published 1994
e 23 Patterns
e \Widely known

T

SOPISSIIA e LOSUYO
WS
SANAS ONILNAW

1en

o PLULL

ik >
<

17-214/514

Our course so far

Composite
Strategy
Template Method
Iterator
Decorator
Observer

Factory Method
?

17-214/514

Not in the book:

e Model view controller

e Promise

Why?
® Seminal and canonical list of well-known patterns

® Not all patterns are commonly used

® Does not cover all popular patterns

® At least know where to look up when somebody
mentions the “Bridge pattern”

17-214/514 13 Sf i?ﬁfﬁ{%

Grouping Patterns

Creational Patterns
Structural Patterns

Behavioral Patterns

17-214/514

SEPISSIIATe uosuyof
WS » eLILLED

tttttttttttt
SSSSSSSS
RRRRRRRR

Memento

| Proxy |

saving state Adapter I
of iteration P
Builder 1
iterator Hvokdng. Bridge
| terator | Fseess
composites
enumerating
children
adding

responsibilities
to objects

|
. defining definin,
adding traversals g
operations the chain

defining
grammar

Decorator sharing
composites

changing skin
versus guts

adding
sharing Interpreter operations k:haln of Responsibimy]

stralegies
sharing
Strategy "’”’L’;?s’
sharil symi
staresng Mediator conyi
lex
dependency
hegenen—— Observer |
doinng | Stte |

algorithm's

steps
Template Method often uses

Prototype
. Factory Method
configure factory _
dynal

mically implement using

Abstract Factory
single

instance i Facéids
instance
17-214/514 Singleton

composed
2

15 [Hi

institute for
SOFTWARE
RESEARCH

Pattern Name

® Intent — the aim of this pattern
® Use case — a motivating example

® Key types — the types that define pattern

O ltalic type name indicates abstract class; typically this is an
interface when the pattern is used in Java

® Examples

17-214/514 16 Lo

|. Creational Patterns

Abstract factory
Builder
Factory method

Prototype

A A

Singleton

17-214/514

Problem:

* We want to support multiple platforms with our code
(e.g., Mac and Windows)

 We want our code to be platform independent

* Suppose we want to create Window with
setTile(String text)and repaint()

How can we write code that will create the correct Window
for the correct platform, without using conditionals?

17-214 21 SN e

Abstract Factory Pattern

«Clients
GUIBuilder

Main

+ buildWindow(AbstractiidgetF actony) : void

VN

afbstractF actonys
AbstractWidget Factory

+ createWifindow) : Window

«ConcreteFactons
MsWindowsWidget Factory

+ main(String) : void

aAbstractProducts
Window

+ setTitle(String) : void
+ repaint): void

+ createWifindow]) : Window

«ConcreteFactony»
MacOSXwidgetFactory

«ConcreteProducts
MSWindow

+ createWindowd) : Window

+
+

setTitle(String) : void
repaint() : void

17-214

«ConcreteProducts
MacOSXWindow

+
+

setTitle(String) : void
repaint() : void

22

institute for
SOFTWARE
RESEARCH

Abstract Factory

® Intent — allow creation of families of related objects
independent of implementation

® Use case — look-and-feel in a GUI toolkit

O Each L&F has its own windows, scrollbars, etc.

® Key types — Factory with methods to create each family
member, Products

® Not common in JDK / JavaScript

17-2 14/5 14 23 Sf g\é}}:i{%

Problem:

* How to handle all combinations of fields when constructing?

public class User {
private final String firstName; //required
private final String lastName; //required
private final int age; //optional
private final String phone; //optional
private final String address; //optional

institute for
17-214 24 RO

Solution 1

public User(String firstName, String lastName)
this(firstName, lastName, 0);

}

public User(String firstName, String lastName,
this(firstName, lastName, age, "");

by

public

User(String firstName, String lastName,

this(firstName, lastName, age, phone, "");

by

public

this.
this.
this.
this.
this.

}

User(String firstName, String lastName,
firstName = firstName;

lastName = lastName;

age = age;

phone = phone;

address = address;

int age) {

int age, String phone) {

int age, String phone, String address) {

Bad (code becomes harder to read and maintain with many attributes)

17-214

institute OV
SOFTWARE

https://jlordiales.wordpress.com/2012/12/13/the-builder-pattern-in- pﬂa&tlcem RESEARCH

Solution 2: default no-arg constructor plus setters and getters
for every attribute

public class User { bublic int getAge() {
private String firstName; // required return age;
private String lastName; // required }

private int age; // optional
private String phone; // optional
private String address; //optional 1

public void setAge(int age) {
this.age = age;

public String getPhone() {

public String getFirstName() { return phone;

return firstName;

} Yoo .

public void setFirstName(String firstName) { publ}c void setPhone(String phone) {
this.firstName = firstName; ; this.phone = phone;

}

public String getLastName() { public String getAddress() {
return lastName; return address;

} }

public void setLastName(String lastName) { public void setAddress(String address) {
this.lastName = lastName; this.address = address;

} }

}

Bad (potentially inconsistent state, mutable)

institute for

17-214 https://ilordiales.wordpress.com/2012/12/13/the-builder-pattern-in- przﬁtlcem RESEARCH

Solution 3

public cl
private
private
private
private
private

private
this.
this.
this.
this.
this.
}
public
public
public
public

public

17-214

ass User {
final String firstName; // required
final String lastName; // required
final int age; // optional
final String phone; // optional
final String address; // optional

User(UserBuilder builder) {
firstName = builder.firstName;
lastName = builder. lastName;
age = builder.age;
phone = builder.phone;
address = builder.address;

String getFirstName() { ... }

String getLastName() { ... }

public static class UserBuilder {

private final String firstName;
private final String lastName;
private int age;

private String phone;

private String address;

public UserBuilder(String firstName,

String lastName) {

this.firstName = firstName;
this.lastName = lastName;

}

public UserBuilder age(int age) {
this.age = age;
return this;

}

public UserBuilder phone(String phone) {

t+hic_nhnne = nhnne:*

public User getUser() {

int getAge() { ... }
String getPhone() { ... }

String getAddress() { ... }

https://jlordiales.wordpre }

return new
User.UserBuilder("Jhon", "Doe")

.phone("1234567")
.address("Fake address 1234")
Lbuild();

L in- pﬁﬁthce!lg!i

institute for
SOFTWARE
RESEARCH

Builder Pattern

® Intent — separate construction of complex object from

representation so same creation process can create
different representations

® Use case — converting rich text to various formats
® Types — Builder, ConcreteBuilders, Director, Products

® StringBuilder (Java), DirectoryBuilder (HW2)

17'2 14/5 14 30 Sf institute for

SSSSSSSS
RRRRRRRR

Builder Discussion

® Emulates named parameters in languages that don't
support them

® Emulates 2" constructors or factories with n builder
methods, by allowing them to be combined freely

® Cost is an intermediate (Builder) object

17-2 14/5 14 31 Sr g\é}}:i{%

Gof4 Builder
lllustration

https://refactoring.guru/design-patterns/builder

17-214/514

b = new ConcreteBuilderl()
d = new Director(b)

d.make()

Productl p = b.getResult()

------------------- Client ﬂ

«interface»
Builder

Director

- builder: Builder

+ reset()

+ buildStepA()
+ buildStepB()
+ buildStepZ()

+ Director(builder)
+ changeBuilder(builder)
+ make(type)

e et

Concrete
Builderl

Concrete
Builder2

- result: Productl

- result: Product2

+ reset()

+ buildStepA()
+ buildStepB()
+ buildStepZ()
+ getResult():

+ reset()

+ buildStepA()
+ buildStepB()
+ buildStepZ()
+ getResult():

Productl Product2
¥ ¥
Productl Product2

builder.reset()

if (type == "simple”) {
builder.buildStepA()

} else {
builder.buildStepB()
builder.buildStepZ()

}

result = new Product2()
result.setFeatureB()

return this.result

2 institute for
I S SOFTWARE
RESEARCH

director = new Director()

CarBuilder builder = new CarBuilder()
director.makeSportsCar(builder)

Car car = builder.getResult()

------------------- Client \1/

Builder
Example

«interface» Director
Builder P
+ reset() - -
+ setSeats(number) + makESUV(bUIlder)
+ setEngine(engine) + makeSportsCar(builder)

+ setTripComputer()

B e

+ setGPS() builder.reset()
4 builder.setSeats(2)
(R R . builder.setEngine(

new SportEngine())

17-214/514

Car CarManual builder.setTripComputer()
Builder Builder builder.setGPS()
- car: Car - manual: Manual

+ reset()

+ setSeats(number)
+ setEngine(engine)
+ setTripComputer()

+ reset()

+ setSeats(number)
+ setEngine(engine)
+ setTripComputer()

this.manual =
new Manual()

Add a trip computer

instruction.
+ setGPS() + setGPS()
+ getResult(): Car + getResult(): Manual return this.manual
y y
Car Manual c

institute for
| S SOFTWARE
RESEARCH

Another Builder Code Example

NutritionFacts twolLiterDietCoke = new NutritionFacts.Builder(
"Diet Coke", 240, 8).sodium(1).build();
public class NutritioanFacts {
public static class Builder {
public Builder(String name, int servingSize,
int servingsPerContainer) { ... }

public Builder totalFat(int val) { totalFat = val; }
public Builder saturatedFat(int val) { satFat = val; }
public Builder transFat(int val) { transFat = val; }
public Builder cholesterol(int val) { cholesterol = val; }
... [/ 15 more setters
public NutritionFacts build() {
return new NutritionFacts(this);

}

}

private NutritionFacts(Builder builder) { ... }

}

17-214/514 34 Lo

Recall: Factory Method Pattern

® Intent — abstract creational method that lets subclasses decide which
class to instantiate

® Use case — creating documents in a framework

® Key types — Creator, which contains abstract method to create an
iInstance

® Java: Iterable.iterator()

® Related Static Factory pattern is very common

O Technically not a GoF pattern, but close enough, e.g. Integer.valueOf(int)

17-214/514 35 Sf 2?:‘2’&1{‘2%

Factory Method lllustration

public interface Iterable<E> {
public abstract Iterator<E> iterator();
}

public class ArraylList<E> implements List<E> {
public Iterator<E> iterator() { ... }

}

public class HashSet<E> implements Set<E> {
public Iterator<E> iterator() { ... }

17-214/514 36 [s

Static Factory Method Example

public DatabaseConnection {
private DatabaseConnection(String address) { .. }
public static DatabaseConnection create
(String address) {
//optional caching or checking..
return new DatabaseConnection(address);

13 99
- 3

c = DatabaseConnection.create(“localhost™);

17-214/514 37 Lo

Prototype Pattern

® Intent — create an object by cloning another
and tweaking as necessary

® Use case — writing a music score editor in a graphical
editor framework

® Key types — Prototype

® Java: Cloneable, but avoid (except on arrays)
e JavaScript: Builtin language feature

17-214/514 38 Lo

Problem:

* Ensure there is only a single instance of a class
(e.g., java.lang.Runtime)

* Provide global access to that class

17-214 39 LSIN o

Singleton Pattern

® |ntent — ensuring a class has only one instance

® Use case — GoF say print queue, file system, company in
an accounting system

O Compelling uses are rare but they do exist
® Key types — Singleton

® Java: java.lang.Runtime.getRuntime(),
java.util.Collections.emptyList()

17'2 14/5 14 40 Sf institute for

SSSSSSSS
RRRRRRRR

Singleton lllustration

public class Elvis {

private static final = new OF
public static () { return 5
private () {}

const elvis = { .. }
function getElvis() {

export { getElvis }

17-214/514 a1 | s

Singleton Discussion

Singleton = global variable
No flexibility for change or extension

Tends to be overused

tttttttttttt

17-214/514 42 [s

These were the creational patterns

Abstract factory
Builder

Factory method
Prototype

A S

Singleton

17-214

ll. Structural Patterns

Adapter
Bridge
Composite
Decorator
Facade
Flyweight

N o U s WwNhRE

Proxy

17-214/514

||||||||||||
SSSSSSSS
RRRRRRRR

Adapter

* Intent — convert interface of a class into one that
another class requires, allowing interoperability

* Use case — numerous, e.g., arrays vs. collections
* Key types — Target, Adaptee, Adapter
JDK—-Arrays.asList(T[])

= institute for
17-214 a6 ISIN somes

Recall: The Adapter Design Pattern

17-214/514

«interface»

Client

S Client Interface

https://refactoring.guru/design-patterns/adapter

+ method(data)

A

Adapter

Service

- adaptee: Service ——=>>...

+ method(data)

+ serviceMethod(specialData)

specialData = convertToServiceFormat(data)
return adaptee.serviceMethod(specialData)

Recall: The Adapter
Design Pattern

Applicability
e You want to use an existing class,

and its interface does not match the
one you need

e You want to create a reusable class
that cooperates with unrelated
classes that don’t necessarily have
compatible interfaces

e You need to use several subclasses,
but it's impractical to adapt their
interface by subclassing each one

17-214/514

«stereotypes

«stereotypes {::srl!r]si: }
Client +Request(] {abstract}

«stereotypes «stereotypes
Adapter adaptee Adaptee
+Request() +SpecificRequest()

Request| B

01
}adaptee.SpecificRequest[]

Consequences

» Exposes the functionality of an object in
another form

» Unifies the interfaces of multiple
incompatible adaptee objects

» Lets a single adapter work with multiple
adaptees in a hierarchy

« -> Low coupling, high cohesion

Problem: There are two types of thread schedulers, and two
types of operating systems or "platforms".

17-214

ThreadScheduler

AN

PreemptiveThreadScheduler

TimeSlicedThreadScheduler

T

|

| |

UnixPTS

Z% |

WindowsPTS UnixTSTS

WindowsTSTS

image source: https://sourcemaking.com

Problem: we have to define a class for each permutation
of these two dimensions

ThreadShceduler

JaN
[l
PreemptiveThreadScheduler TimeSlicedThreadScheduler
AN AN
| | I |
UnixPTS WindowsPTS UnixTSTS WindowsTSTS
JVM_PTS JVM_TSTS

* How would you redesign this?

image source: https://sourcemaking.com

17-214 so [EHH &

Bridge Pattern: Decompose the component's interface
and implementation into orthogonal class hierarchies.

ThreadScheduler

A
A\
£

PreemptiveThreadScheduler

ThreadScheduler_Implementation

7\
7\
AN

I

TimeSlicedThreadScheduler

UnixPTS

image source: https://sourcemaking.com

17-214

|

WindowsPTS

JVM_PTS

Bridge

* Intent — decouple an abstraction from its implementation so
they can vary independently

* Use case — portable windowing toolkit
* Key types — Abstraction, Implementor

e JDK - JDBC, Java Cryptography Extension (JCE), Java Naming &
Directory Interface (JNDI)

* Bridge pattern is very similar to Service Provider
— Abstraction ~ API, Implementer ~ SPI

17-214 52 LISIN o

Adapter vs Bridge

* Adapter makes things work together after they're designed;
Bridge makes them work before they are.

* Bridge is designed up-front to let the abstraction and the

implementation vary independently. Adapter is retrofitted to
make unrelated classes work together.

17-214

Recall: Composite Pattern

® |ntent — compose objects into tree structures. Let
clients treat primitives & compositions uniformly.

® Use case — GUI toolkit (widgets and containers)

® Key type — Component that represents both primitives
and their containers

® Java: javax.swing.JComponent

17-214/514 57 Lo

The Composite Design Pattern

e Applicability

o You want to represent part-whole hierarchies

of objects Context «interface» *

. . Component

o You want to be able to ignore the difference +operation () children

between compositions of objects and AN

individual objects

e Consequences
. . . . Leaf C i

o Makes the client simple, since it can treat ° omposte -parent

objects and composites uniformly woparation] roparationl PN
o Makes it easy to add new kinds of / +add(in C(_: Comcponenﬁ) 1

N +removelin c: Componen

components operation() { [

o Can make the design overly general far {e in:children)
] c.operation();
m Operations may not make sense on }
every class
m Composites may contain only certain
components

17-214/514 58 el

RESEARCH

Recall: Decorator Pattern

® Intent — attach features to an object dynamically
® Use case — attaching borders in a GUI toolkit

® Key types — Component, implement by decorator and
decorated

® Java: Collections (e.g., Synchronized wrappers),
java.1io streams, Swing components

17-214/514 59 Lo

Decorator vs Composite?

Client

\4

«interface»
Component

a = new ConcComponent()

b = new ConcDecorator1(a)

¢ = new ConcDecorator2(b)

c.execute()

// Decorator -> Decorator -> Component

+ execute()

A

Concrete
Component

+ execute()

17-214/514

Base Decorator

- wrappee: Component >~
+ BaseDecorator(c: Component) wrappee = ¢
+ execute()
ZF wrappee.execute()
Concrete [
Decorators
+ execute() » super::execute()
+ extra() extra()

Context

«interface»
Component
+operation () -children
Leaf Composite

+operation()

+operation()

P +add(in ¢ : Component)

| operation() {

for (cin children)
c.operation();

}

+remove(in ¢ : Component)

60 [Hi

-parent

institute for
SOFTWARE
RESEARCH

Facade Pattern

® Intent — provide a simple unified interface to a set of
iInterfaces in a subsystem

O GoF allow for variants where the complex underpinnings are
exposed and hidden

® Use case — any complex system; GoF use compiler
® Key types — Facade (the simple unified interface)

® JDK - java.util.concurrent.Executors

17'2 14/5 14 62 Sf institute for

SSSSSSSS
RRRRRRRR

Facade lllustration

Subsystem classes

Facade

[

3/

17-214/514

Facade example

17-214

Customer service Facade

A

Y

Y

Order fullfillment

Billing

Shipping

64

institute for
SOFTWARE
RESEARCH

class SantoriniController {
newGame() { .. }
isValidMove(w, x, yv) { .. }

move(w, X, v) { .. }
getWinner() { .. }

17-214/514 65 [i

Discussion

Facade vs Controller Heuristic

Same idea

Facade for subsystem, controller for use case
Facade vs Singleton

Facade sometimes a global variable

Typically little design for change/extension

17-214/514 66 Lo

Problem: Imagine implementing a forest of individual

trees in a realtime game

17-214

A

A

L]

A

MeESH MESY

RBARK BARK.
Len)ES (LAVES
PARANS PARAMS
@smw PoSITION

MESH

BARK |

LERAVES

PRR.AMS
POSITION

MESH

BARK

LéAUé:$‘

PARAMS
POSITIbN

Source: http://gameprogrammingpatterns.com/flyweight.html

67

Trick: most of the fields in these objects are the same
between all of those instances

“isgsr Nemaiw sy Eiey

[PARAMNS PARAMS PARANS PARANS
PO&SITION PesITION POSITION PASITIAN
MoDEL | MESH BARK LEAVES

Source: http://gameprogrammingpatterns.com/flyweight.html

-
institute for

1S r AT

- 68 RRRRRRR H

Flyweight

* Intent — use sharing to support large numbers
of fine-grained objects efficiently

e Use case — characters in a document
* Key types — Flyweight (instance-controlled!)

— Some state can be extrinsic to reduce number of instances

JDK — String literals (JVM feature)

= institute for
17-214 69 LN ;o

Flyweight

Key idea: Avoid
copies of
structurally equal
objects, reuse
object

Requires
immutable objects
and factory with
caching

17-214/514

FlyweightFactory

- cache: Flyweight[]

+ getFlyweight(repeatingState)

cache[repeatingState] =

}

L4

Flyweight

- repeatingState

+ operation(uniqueState)

if (cache[repeatingState] == null) { Context

new Flyweight(repeatingState) - uniqueState

return cache[repeatingState]

Client

- flyweight

+ Context(repeatingState, uniqueState)
+ operation()

this.uniqueState = uniqueState
this.flyweight =
factory.getFlyweight(repeatingState)

flyweight.operation(uniqueState)

https://refactoring.guru/design-patterns/flyweight 70 [s

RESEARCH

Flyweight Illustration

ol [Tt

>

character

— [objects]|

17-214

row
objects

column
object

71

Proxy Pattern

Intent — surrogate for another object
Use case — delay loading of images till needed

Key types — Subject, Proxy, RealSubject

Gof mention several flavors
O virtual proxy — stand-in that instantiates lazily
O remote proxy — local representative for remote obj
O protection proxy — denies some ops to some users
O smart reference — does locking or ref. counting, e.g.

® JDK — RMI, collections wrappers

17-214/514 72 [

Proxy

* Decorator vs Proxy:
— Decorator adds responsibilities to object (w/t inheritance).
— Proxy is used to “control access” to an object.

17-214 73 ISIN o

Proxy lllustrations

aTextDocument

Virtual Proxy

[anImageProxy |

c J

in memory

[fileName * y I

Smart Reference

anImage]
[data]
I_on disk —I

Remote Proxy

SynchronizedList

17-214

ArraylList

Client

Proxy

These were the structural patterns

Adapter
Bridge
Composite
Decorator
Facade
Flyweight

N o U s W

Proxy

17-214

lll. Behavioral Patterns

Chain of Responsibility
Command

Interpreter

Iterator

Mediator

Memento

Observer

State

Strategy

Template method

11. Visitor
17-214 76 [EIN v

O N EWNE

—
o

Chain of Responsibility

* Intent — avoid coupling sender to receiver by passing
request along until someone handles it

* Use case — context-sensitive help facility
* Key types — RequestHandler

JDK—-ClassLoader, Properties

* Exception handling could be considered a form of
Chain of Responsibility pattern

= institute for
17-214 77 | ISYH o

Window

NN

Toolbar

SubPanel
Text
Button Image
17-214/514

Button

4\

«interface»
Handler

e

+ setNext(h: Handler)
+ handle(request)

A

BaseHandler

Button

Checkbox

https://refactoring.guru/design-patterns/chain-of-responsibility

Button

- next: Handler

Button

+ setNext(h: Handler)
+ handle(request)

JA\

ConcreteHandlers

=

+ handle(request)

-

Client

h1l = new HandlerA()
h2 = new HandlerB()
h3 = new HandlerC()
hl.setNext(h2)
h2.setNext(h3)

Vs
h1l.handle(request)

if (next != null)
next.handle(request)

if (canHandle(request)) {

/ ..
} else {
parent::handle(request)

}

o
institute for
7 | S SOFTWARE
RESEARCH

https://refactoring.guru/design-patterns/chain-of-responsibility

Command

* Intent — encapsulate a request as an object, letting you
parameterize one action with another, queue or log
requests, etc.

 Use case — menu tree
e Key type — Command (Runnable)
 JDK - Common! Executor framework, etc.

public static void main(String[] args) {
SwingUtilities.invokelLater(() -> new Demo().setVisible(true));
}

17-214 79 LISXN o

Command lllustration

class ClickAction {
constructor(name) { this.name = name }

execute() {

}

let ¢ = new ClickAction("Restart Game")

getElementById("menu").addEventListener("click", c.execute)

getElementById("btn").addEventListener("click", c.execute)

setTimeout(c.execute, 2000)

Object (or function) represents an action, execution deferred, arguments possibly configured early.
Can be reused in multiple places. Can be queued, logged, ...

17-214/514 80 [|j s

Interpreter Pattern

® Intent — given a language, define class hierarchy for parse
tree, recursive method to interpret it

® Use case — regular expression matching

® Key types — Expression, NonterminalExpression,
TerminalExpression

® JDK — no uses I'm aware of

® Necessarily uses Composite pattern!

17-2 14/5 14 81 Sr g\é}}:i{%

lterator Pattern

® Intent — provide a way to access elements of a
collection without exposing representation

® Use case — collections
® Key types — lterable, Iterator
O But GoF discuss internal iteration, too

® Java and JavaScript: collections, for-each statement ..

17-2 14/5 14 82 Sf g\é}}:i{%

lterator lllustration

public interface Iterable<E> {
public abstract Iterator<E> iterator();

}

public class ArraylList<E> implements List<E> {
public Iterator<E> iterator() { ... }

}

public class HashSet<E> implements Set<E> {
public Iterator<E> iterator() { ... }

}

Collection<String> c = ...;

for (String s : c) // Creates an Iterator appropriate to c
System.out.println(s);

17-214/514 83 [5

Problem:

L
¥
N

.
N

institute for

17-214 84 serivnE

Mediator Pattern

17-214 gs [s

Mediator

Intent — define an object that encapsulates how a set
of objects interact, to reduce coupling.

— O(n) couplings instead of O(n?)

e Use case — dialog box where change in one component
affects behavior of others

* Key types — Mediator, Components
JDK — Unclear

-

institute r

1S r B

- 86 LE=AN researc H

Mediator Illlustration

Problem: without violating encapsulation, allow client of
Editor to capture the object’s state and restore later

public class Editor {
//state
public String editorContents;
public void setState(String contents) {
this.editorContents = contents;

}

Provide save and restoreToState methods
Hint: define custom type (Memento)

-
institute for

1S r B

7- 88 L=l REK H

Problem: without violating encapsulation, allow client of
Editor to capture the object’s state and restore later

public class Editor {
//state
public String editorContents;
public void setState(String contents) {
this.editorContents = contents;

}
public EditorMemento save() {

return new EditorMemento(editorContents);
}

public void restoreToState(EditorMemento memento) {
editorContents = memento.getSavedState();

= f

17-214 https://dzone.com/articles/design-patterns-memento 89 Slap el

Problem: without violating encapsulation, allow client of
Editor to capture the object’s state and restore later

public class EditorMemento {
private final String editorState;
public EditorMemento(String state) {
editorState = state;
}
public String getSavedState() {
return editorState;
}
}

= institute for
17-214 o0 IMIN s

Memento

* Intent — without violating encapsulation, allow client to
capture an object’s state, and restore later

e Use case —when you need to provide an undo
mechanism in your applications, when the internal
state of an object may need to be restored at a later

stage (e.g., text editor)
* Key type — Memento (opaque state object)
e JDK — none that I’'m aware of (not serialization)

17-214 91

Observer

Intent — let objects observe the behavior of other
objects so they can stay in sync

e Use case — multiple views of a data object in a GUI
» Key types — Subject (“Observable”), Observer

— GoF are agnostic on many details!
* JDK —Swing, left and right

= institute for
17-214 92 INMN s

Problem: allow object to behave in different ways
depending on internal state

class Document
string state;
Ll wws
method publish() {
switch (state
"draft":
state = "moderation";
break;
“"moderation":
if (currentUser.role == 'admin')
state = "published"
break;
"published"
// Do nothing.

/] s

nstitute F
17-214 93 SOV

class Document
string state;

L s
method publish() {
switch (state) {
"draft":
state = "moderation";
break;
"moderation":
if (currentUser.role ==
state = "published"
break;
"published":
// Do nothing.
}
L e
17-214

https://sourcemaking.com/design patterns/state/java/1

interface State {
void publish(Document wrapper);

}

class Document {
private State currentState;

public Document() {
currentState = new Draft();

public void set_state(State s) {
currentState = s;

'admin') public void publish() {

currentState.publish(this);

class Draft implements State {
public void publish(Document wrapper) {
wrapper.set_state(new Moderation());

[/ «sa

-
institute for
I S SOFTWARE

RESEARCH

94

State

* Intent —allow an object to alter its behavior when internal state
changes. “Object will appear to change class.”

e Use case — TCP Connection (which is stateful)
* Key type — State (Object delegates to state!)

 JDK—none that I’'m aware of, but...

— Works great in Java
— Use enums as states
— Use AtomicReference<State> to store it [EJ]

institute for
SSSSSSSS

17-214 Tl | S

State

e State can be considered as an extension of Strategy

* Both patterns use composition to change the behavior of the
main object by delegating the work to the helper objects.
— Strategy makes these objects completely independent

— State allows state objects to alter the current state of the context with
another state, making them interdependent

17-214 o6 LEIN o

State Example
Without the pattern:

With the pattern:

class Connection {

boolean isOpen = false;
void open() {

if (isOpen) throw new Inval..
../ /open connection
isOpen=true;

}

void close() {

if (!isOpen) throw new Inval..

../ /close connection
isOpen=false;

}

17-214/514

class Connection {
private State state = new Closed();
public void setState(State s) { .. }
void open() { state.open(this); }

}

interface State {
void open(Connection c);
void close(Connection c);
}
class Open implements State {
void open(Connection c) { throw ..}
void close(Connection c) {
//..close connection
c.setState(new Closed());

}
class Closed impl. State { .. }

Strategy

* Intent — represent a behavior that parameterizes an
algorithm for behavior or performance

e Use case — line-breaking for text compositing
* Key types — Strategy

JDK—-Comparator

= institute for
17-214 YR | S [Bt

Template Method

* Intent — define skeleton of an algorithm or data
structure, deferring some decisions to subclasses

e Use case — application framework that lets plugins
implement all operations on documents

* Key types — AbstractClass, ConcreteClass
e JDK — skeletal collection impls (e.g., AbstractlList)

= institute for
17-214 100 IS o

Problem:

* |t should be possible to define a new operation for (some)
classes of an object structure without changing the
classes.

— Example: Calculate shipping for different regions for all
items in shopping cart. Be able to add new shipping
cost formulas without changing existing code.

17-214 101 LEIN o

The Visitable interface

//Element interface
public interface Visitable{
public void accept(Visitor visitor);

= W N -

=

//concrete element

2 public class Book implements Visitable{
3 private double price;

4 private double weight;

//accept the visitor

public void accept(Visitor vistor) {
8 visitor.visit(this);

o] }

10 public double getPrice() {
11 return price;

12 }
13 public double getWeight() {
14 return weight;

17-214 https://dzone.com/articles/design-patterns-visitor

102

institute for
SOFTWARE
RESEARCH

public interface Visitor({

i public void visit(Book book); The ViSitor inte rfa Ce

//visit other concrete items
5 public void visit(CD cd);
6 public void visit(DVD dvd);
7

1 public class PostageVisitor implements Visitor {
2 private double totalPostageForCart;
3 //collect data about the book

A public void wvisit (Book book) {

5 //assume we have a calculation here related to weight and price
6 //free postage for a book over 10

7 if (book.getPrice() < 10.0) {

8 totalPostageForCart += book.getWeight() * 2;

9

12 //add other visitors here
1:3 public void visit(CD cd) {...}
14 public void visit(DVD dvd) {...}

15

16 //return the internal state

4T public double getTotalPostage() {
18 return totalPostageForCart;

19 }

20/}

hstihiie
17—214 103 RESEARCH

Driving the visitor

public class ShoppingCart {

//normal shopping cart stuff

private ArrayList<Visitable> items;

//create a visitor
PostageVisitor visitor = new PostageVisitor();
//iterate through all items

1l
2
3
4 public double calculatePostage() {
5
6
7
8

17-214

for(Visitable item: items) {
item.accept(visitor);

}

double postage = visitor.getTotalPostage();

return postage;

104

institute for
SOFTWARE
RESEARCH

Visitor

17-214

«interfacex
Visitor

Client

+ wisitElementConcreteElement) : void

Concrete Visitor

+ wisitElementConcreteElement) : void

I

W

xinterfacex
Element

+

acceptVisitor) : void

Concrete Element

+

acceptVisitor) : void

105

institute for
SOFTWARE
RESEARCH

Visitor

* Intent —represent an operation to be performed on elements of
an object structure (e.g., a parse tree). Visitor lets you define a
new operation without modifying the type hierarchy.

e Use case — type-checking, pretty-printing, etc.

* Key types — Visitor, ConcreteVisitors, all the element types that
get visited

* JDK —none that I’'m aware of; very common in compilers

institute for
SSSSSSSS

17-214 106 1SR et

These were the behavioral patterns

Chain of Responsibility
Command
Interpreter
Iterator

Mediator
Memento
Observer

State

Strategy
Template method
11. Visitor

LN WNE

=
<

17-214 107 LIEXN o

A

vy
>
Z
=
=
7
0O
>
Z
=
Z
%)
r=
m
<
T
~
o)
4
m
n
&
0
A
Z

e Published 1994
e 23 Patterns
e Widely known

SARAS ONILNAWOD

Z

17-214/514 110 [

Summary

Now you know all the Gang of Four patterns
Definitions can be vague
Coverage is incomplete

But they're extremely valuable

o They gave us a vocabulary
o And a way of thinking about software

e Look for patterns as you read and write software
o GoF, non-GoF, and undiscovered

17-214/514 111 ek

