
117-214/514

Principles of Software Construction:
Objects, Design, and Concurrency

Design for Robustness:
Distributed Systems

Bogdan Vasilescu Claire Le Goues

217-214/514

Administrivia
Reading/quiz for Tuesday.

We are working with selected teams to clean up framework code,
will announce/release later today.

317-214/514

Where we are

Subtype
Polymorphism ✓

Information Hiding,
Contracts ✓

Immutability ✓

Types ✓

Unit Testing ✓

Domain Analysis ✓

Inheritance & Del. ✓

Responsibility
Assignment,

Design Patterns,
Antipattern ✓

Promises/
Reactive P. ✓

Integration Testing ✓

GUI vs Core ✓

Frameworks and
Libraries ✓, APIs ✓

Module systems,
microservices

(Testing for)
Robustness

CI ✓, DevOps ✓,
Teams

Design for

understanding

change/ext.

reuse

robustness

...

Small scale:
One/few objects

Mid scale:
Many objects

Large scale:
Subsystems

417-214/514

Where did we start?

517-214/514

We design for robustness even in “small” systems.
● Single-threaded, local systems:

○ Problems are (typically) deterministic
○ Checked vs. unchecked exceptions

● Key ideas:
○ Provide explicit control-flow for normal and abnormal execution

■ Error handling and recovery for the latter
○ Unit testing to increase confidence

■ Cover both typical and atypical/boundary paths

617-214/514

We design for robustness even in “small” systems.
● Concurrent, local systems:

○ Non-determinism from thread ordering, asynchronous returns
○ Errors can occur at any shared mutable state

● Key ideas:
○ Reduce mutable state

■ Use atomicity, synchronization everywhere else
○ Organize asynchrony with promises

■ Especially natural in a single-threaded environment

717-214/514

Then we forced you to do this…

Backend
(Java/Node):
Data, logic,
rendering

Frontend
(Browser, HTML,
JavaScript):
Text, buttons

http calls

JSON

NanoHTTPd

/newgame

What design goals did this further?

817-214/514

Modern software is dominated by systems
composed of [components, APIs, modules],
developed by completely different people,

communicating over a network!

917-214/514

For example

● 3rd party Facebook apps
● Android user interface
● Backend uses Facebook data

1017-214/514

Database Server

Credit card server

Android Phone

1117-214/514

What is a distributed system?
● Multiple system components (computers) communicating via

some medium (the network) to achieve some goal
● “Concurrent” (shared-memory multiprocessing) vs. Distributed

○ Agents: Threads vs. Processes

■ Processes typically spread across multiple computers

■ Can put them on one computer for testing

○ Communication: changes to Shared Objects vs. Network Messages

1217-214/514

Distributed systems

● A collection of autonomous systems working
together to form a single system
○ Enable scalability, availability, resiliency, performance,

etc …
● Remote procedure calls instead of function calls

○ Typically REST API to URL

● Benefits? Drawbacks?

1317-214/514

Distributed System Benefits
Scalability

Very strong encapsulation (only APIs public)

Computation beyond local resources

Independent deployment, operations, and evolution

Also multiple containers on single system

Pay per transaction / storage / use

1417-214/514

What is a distributed system?

“A distributed system is one in which the failure of a computer you
didn't even know existed can render your own computer unusable.”

-- Leslie Lamport

1517-214/514

1617-214/514 source: http://martinfowler.com/articles/microservices.html

1717-214/514 http://christophermeiklejohn.com/filibuster/2021/10/14/filibuster-4.html

http://christophermeiklejohn.com/filibuster/2021/10/14/filibuster-4.html

1817-214/514 http://christophermeiklejohn.com/filibuster/2021/10/14/filibuster-4.html

http://christophermeiklejohn.com/filibuster/2021/10/14/filibuster-4.html

1917-214/514

2017-214/514

Microservices
Building applications as suite of small and easy to replace services

● fine grained, one functionality per service
● (sometimes 3-5 classes)
● composable
● easy to develop, test, and understand
● fast (re)start, fault isolation

Modelled around business domain

Interplay of different systems and languages, no commitment to technology stack

Easily deployable and replicable

Embrace automation, embrace faults

Highly observable

2117-214/514

Technical Considerations
REST APIs

Independent development and deployment

Self-contained services (e.g., each with own database)

● multiple instances behind load-balancer

Streamline deployment

2217-214/514 source: http://martinfowler.com/articles/microservices.html

2317-214/514

Overhead

2417-214/514

Software Architecture vs Design Patterns
Design patterns: Composition and interaction of objects

Architectural pattern: System-level structures, subsystems

Architecture often has focus on system qualities as performance,
scalability, robustness, security

Typical architectural patterns/styles: client server, microservice,
event-based, pipe and filter

2517-214/514

This introduces new challenges when designing
for robustness.
● Key ideas:

○ Provide explicit control-flow for normal and abnormal execution
■ Error handling and recovery for the latter

○ Test normal and abnormal execution
● Until now, most of the program was under our control

○ What if something goes wrong and it’s not our fault? How can we make
a robust system in light of this?

○ How can we test considering all the different components and
dependencies?

○ What if the system is too big to test?

2617-214/514

This introduces new challenges when designing
for robustness.
● Key ideas:

○ Provide explicit control-flow for normal and abnormal execution
■ Error handling and recovery for the latter

○ Test normal and abnormal execution
● Until now, most of the program was under our control

○ What if something goes wrong and it’s not our fault? How can we
make a robust system in light of this?

○ How can we test considering all the different components and
dependencies?

○ What if the system is too big to test?

2717-214/514

What will you do if
● An API your data plugin uses is temporarily down?

○ Or returns a surprising error code?
● Consider: retry

○ How Long? How often?
● But, you still need a backup plan.

○ Principle: delegating/handling recovery via a redirect in case of failure
○ If at all plausible, hand work over to proxy

■ Local data(set), fallback service, caching (e.g., store last Twitter feed)
○ If not, recruit clean-up service

■ Proces, display errors

What if Facebook withdraws its DNS

routing information?

https://blog.cloudflare.com/october-2021-facebook-outage/

https://blog.cloudflare.com/october-2021-facebook-outage/

2817-214/514

Retry!
● Exponential Backoff

○ Retry, but wait exponentially longer each time
○ Assumes that failures are exponentially distributed

■ E.g., a 10h outage is extremely rare, a 10s one not so crazy
○ E.g.:

const delay = retryCount => new Promise(resolve =>
setTimeout(resolve, 10 ** retryCount));

const getResource = async (retryCount = 0, lastError = null) => {
 if (retryCount > 5) throw new Error(lastError);
 try {
 return apiCall();
 } catch (e) {
 await delay(retryCount);
 return getResource(retryCount + 1, e);
 }
};

https://www.bayanbennett.com/posts/retrying-and-exponential-backoff-with-promises/

2917-214/514

Retry!
● Still need an exit-strategy

○ Learn HTTP response codes
■ Don’t bother retrying on a 403 (go find out why)

○ Use the API response, if any
■ Errors are often documented -- e.g., GitHub will send a “rate limit exceeded” message

const delay = retryCount => new Promise(resolve =>
setTimeout(resolve, 10 ** retryCount));

const getResource = async (retryCount = 0, lastError = null) => {
 if (retryCount > 5) throw new Error(lastError);
 try {
 return apiCall();
 } catch (e) {
 await delay(retryCount);
 return getResource(retryCount + 1, e);
 }
};

https://www.bayanbennett.com/posts/retrying-and-exponential-backoff-with-promises/

https://developer.mozilla.org/en-US/docs/Web/HTTP/Status

3017-214/514

Proxy Design Pattern
● Local representative for remote object

○ Create expensive obj on-demand
○ Control access to an object

● Hides extra “work” from client
○ Add extra error handling, caching
○ Uses indirection

https://refactoring.guru/design-patterns/proxy

3117-214/514

Example: Caching
interface FacebookAPI {

List<Node> getFriends(String name);
}
class FacebookProxy implements FacebookAPI {

FacebookAPI api;
HashMap<String,List<Node>> cache = new HashMap…
FacebookProxy(FacebookAPI api) { this.api=api;}

List<Node> getFriends(String name) {
result = cache.get(name);
if (result == null) {

result = api.getFriends(name);
cache.put(name, result);

}
return result;

}
}

3217-214/514

Example: Caching and Failover
interface FacebookAPI {

List<Node> getFriends(String name);
}
class FacebookProxy implements FacebookAPI {

FacebookAPI api;
HashMap<String,List<Node>> cache = new HashMap…
FacebookProxy(FacebookAPI api) { this.api=api;}

List<Node> getFriends(String name) {
try {

result = api.getFriends(name);
cache.put(name, result);
return result;

} catch (ConnectionException c) {
return cache.get(name);

}
}

3317-214/514

Example: Redirect to Local Service
interface FacebookAPI {

List<Node> getFriends(String name);
}
class FacebookProxy implements FacebookAPI {

FacebookAPI api;
FacebookAPI fallbackApi;
FacebookProxy(FacebookAPI api, FacebookAPI f) {

this.api=api; fallbackApi = f; }

List<Node> getFriends(String name) {
try {

return api.getFriends(name);
} catch (ConnectionException c) {

return fallbackApi.getFriends(name);
}

}

3417-214/514

Testing Distributed Systems
● Challenges:

○ Volatility
■ Users are hard to simulate
■ Real-world effects -- things crashing, delays, indicative use/data.

○ Performance
■ Massive databases? Systems with minutes-long start-up times?
■ Very common in ML

3517-214/514

For example:

● 3rd party Facebook apps
○ Android user interface
○ Backend uses Facebook data

How do we test this?

3617-214/514

Testing in real environments
Code FacebookAndroid

client
void buttonClicked() {
 render(getFriends());
}
List<Friend> getFriends() {
 Connection c = http.getConnection();
 FacebookAPI api = new FacebookAPI(c);
 List<Node> persons = api.getFriends("john");
 for (Node person1 : persons) {
 ...
 }
 return result;
}

3717-214/514

Eliminating Android dependency

Code FacebookTest driver

@Test void testGetFriends() {
 assert getFriends() == ...;
}
List<Friend> getFriends() {
 Connection c = http.getConnection();
 FacebookAPI api = new FacebookAPI(c);
 List<Node> persons = api.getFriends("john");
 for (Node person1 : persons) {
 ...
 }
 return result;
}

3817-214/514

That won’t quite work
● GUI applications process thousands of events

● Solution: automated GUI testing frameworks

○ Allow streams of GUI events to be captured, replayed

● These tools are sometimes called robots

3917-214/514

Eliminating Android dependency
Code FacebookTest

driver
@Test void testGetFriends() {
 assert getFriends() == ...;
}
List<Friend> getFriends() {
 Connection c = http.getConnection();
 FacebookAPI api = new FacebookAPI(c);
 List<Node> persons = api.getFriends("john");
 for (Node person1 : persons) {
 ...
 }
 return result;
}

How about this one?

4017-214/514

Test Doubles
● Stand in for a real object under test
● Elements on which the unit testing depends (i.e. collaborators),

but need to be approximated because they are
○ Unavailable
○ Expensive
○ Opaque
○ Non-deterministic

● Not just for distributed systems!

http://www.kickvick.com/celebrities-stunt-doubles

http://www.kickvick.com/celebrities-stunt-doubles

4117-214/514

How Test Doubles Help
1. Speed: simulate response without going through the API
2. Stability: guaranteed deterministic return, reduces flakiness
3. Coverage: reliably simulate problems (e.g., return 404)
4. Insight: expose internal state
5. Development: presume functionality not yet implemented

class FakeFacebook implements FacebookInterface {
 void connect() {}
 List<Node> getFriends(String name) {
 if ("john".equals(name)) {
 List<Node> result=new List();

 result.add(…);
 return result;

 }
 }
}

4217-214/514

● Most often talk about Mocks and Stubs
○ (technically other categories exist)

● Mocks give you a lot of power
○ Dictate what should be returned when (very broadly construed)
○ Requires framework using reflection

■ E.g., Mockito in Java; Mock functions in Jest*

● Stubs are way simpler; use when possible

*https://jestjs.io/docs/mock-functions

Types of Test Doubles

https://jestjs.io/docs/mock-functions

4317-214/514

Eliminating the Remote Service Dependency

Code FacebookTest driver

@Test void testGetFriends() {
 assert getFriends() == ...;
}
List<Friend> getFriends() {
 Connection c = http.getConnection();
 FacebookAPI api = new FacebookAPI(c);
 List<Node> persons = api.getFriends("john");
 for (Node person1 : persons) {
 ...
 }
 return result;
}

Replace by Double

4417-214/514

Introducing a Double (Stub)
Code Facebook

Interface
@Test void testGetFriends() {
 assert getFriends() == …;
}
List<Friend> getFriends() {
 Connection c = http.getConnection();
 FacebookInterface api = new FacebookStub(c);
 List<Node> persons = api.getFriends("john");
 for (Node person1 : persons) {
 for (Node person2 : persons) {
 …
 }
 }
 return result;
}

Test driver

class FacebookStub implements FacebookInterface {
 void connect() {}
 List<Node> getFriends(String name) {
 if ("john".equals(name)) {
 List<Node> result=new List();
 result.add(…);
 return result;
 } // ...
 }
}

Mock
Facebook

4517-214/514

REST API Calls and Testing
Test happy path

Test also error behavior!

● Correct timeout handling? Correct retry when connection
down?

● Invalid response detected?
● Graceful degradation?

Need to understand possible error behavior first

4617-214/514

Fallacies of distributed computing by Peter Deutsch

1. The network is reliable.
2. Latency is zero.
3. Bandwidth is infinite.
4. The network is secure.
5. Topology doesn't change.
6. There is one administrator.
7. Transport cost is zero.
8. The network is homogeneous.

4717-214/514

How to test?
1. The network is reliable.
2. Latency is zero.
3. Bandwidth is infinite.
4. The network is secure.
5. Topology doesn't change.
6. There is one administrator.
7. Transport cost is zero.
8. The network is homogeneous.

4817-214/514 http://christophermeiklejohn.com/filibuster/2021/10/14/filibuster-4.html

http://christophermeiklejohn.com/filibuster/2021/10/14/filibuster-4.html

4917-214/514

Handle Errors Locally

http://christophermeiklejohn.com/filibuster/2021/10/14/filibuster-4.html

http://christophermeiklejohn.com/filibuster/2021/10/14/filibuster-4.html

5017-214/514

Fault injection

● Mocks can emulate failures such as timeouts

● Allows you to verify the robustness of system

Code Mock
FacebookTest driver

class FacebookSlowStub implements FacebookInterface {
 void connect() {}

int counter = 0;
 List<Node> getFriends(String name) {

Thread.sleep(4000);
 if ("john".equals(name)) {
 List<Node> result=new List();
 result.add(…);
 return result;
 } // ...
 }
}

5117-214/514

Fault injection
Code Mock

FacebookTest driver

class FacebookErrorStub implements FacebookInterface {
 void connect() {}

int counter = 0;
 List<Node> getFriends(String name) {

counter++;
if (counter % 3 == 0)

throw new SocketException("Network is unreachable");
 if ("john".equals(name)) {
 List<Node> result=new List();
 result.add(…);
 return result;
 } // ...
 }
}

5217-214/514

Chaos Engineering
Experimenting on a distributed system in order to build confidence
in the system’s capability to withstand turbulent conditions in
production

5317-214/514

Design: Testability
● Single responsibility principle
● Dependency Inversion Principle (DIP)

○ High-level modules should not depend on low-level modules; both should
depend on abstractions. Abstractions should not depend on details. Details
should depend upon abstractions.

● Law of Demeter: Don’t acquire dependencies through
dependencies.

○ avoid: this.getA().getB().doSomething()
● Use factory pattern to instantiate new objects, rather than new.
● Use appropriate tools, e.g., dependency injection or mocking

frameworks

5417-214/514

Designing for Robustness
● As a client of distributed systems (mainly the Internet):

○ No harm trying again (redundancy)
○ Have a backup plan (resiliency)
○ Maintain awareness of what can go wrong (transparency)

■ HTTP status codes, API documentation, keeping tabs on vulnerabilities
○ Isolation, isolation, isolation

■ Use test doubles liberally
■ Rely on protocols to contain and manage failures
■ Never let one module crash another

● More pointers coming up

5517-214/514

Robust Distributed System Design
● Consider reading:

https://www.reactivemanifesto.org

○ Yet another meaning for “Reactive”!
○ Short guide identifying key principles

■ Goals: robustness, resilience, flexibility
■ Principles: responsiveness, elasticity, message-driven
■ Patterns/Heuristics: isolation, delegation, verbosity, replication, asynchrony

https://www.reactivemanifesto.org

5617-214/514

Principle: Modular Protection
● Errors should be contained and isolated

○ A failing printer should not corrupt a document
○ Handle exceptions locally as much as possible, return useful feedback
○ Don’t do this:

5717-214/514

Principle: Modular Protection
● Online: use HTTP response status codes effectively

○ Don’t just hand out 404, 500
■ Unless they really apply

○ Provide and document fall-back options, information
■ Good RESTful design helps

5817-214/514

Principle: Delegating Recovery

(Again?)

● Don’t make a failing node/module serve a client
○ It needs to clean itself up
○ Forward clients to designated recovery service

■ A bit like the proxy pattern
○ Consider asynchrony

■ Failure is often expensive

5917-214/514

Principle: Consider Idempotence

● Idempotency: the same call from the same context should have
the same result
○ Hitting “Pay” twice should not cost you double!
○ A resource should not suddenly switch from JSON to XML
○ Makes APIs predictable, resilient

6017-214/514

Ensuring Idempotence

● Fairly easy for read-only requests
○ Ensure consistency of read-only data
○ Never attach side-effects to GET requests*

● Also for updates, deletes
○ Not “safe”, because data is mutated
○ Natural idempotency because the target is identified

● How about writing/sending new data?

*https://twitter.com/rombulow/status/990684463007907840

https://twitter.com/rombulow/status/990684463007907840

6117-214/514

Ensuring Idempotence
● How about writing/sending new data?

○ Could fail anywhere
■ Including in displaying success message after payment!

○ POST is not idempotent
○ Use Unique Identifiers
○ Server keeps track of

requests already handled

https://stripe.com/blog/idempotency

https://stripe.com/blog/idempotency

6217-214/514

Distributed Systems
There are entire courses on getting these right; not a goal here
But do:

● Understand challenges and solutions to achieving robustness
○ Primarily as a client of a distributed system (we all are these days)
○ Test for all scenarios, leveraging test doubles
○ Provide error handling through isolation

● Learn to communicate with, and provide your own, nodes
○ API design
○ Microservices

