
117-214/514

Principles of Software Construction:
Objects, Design, and Concurrency

DevOps

Claire Le Goues Bogdan Vasilescu

217-214/514

Reading Quiz:
Modules
(on Canvas)

417-214/514

Where we are

Subtype
Polymorphism ✓

Information Hiding,
Contracts ✓

Immutability ✓

Types ✓
Static Analysis ✓

Unit Testing ✓

Domain Analysis ✓

Inheritance & Del. ✓

Responsibility
Assignment,

Design Patterns,
Antipattern ✓

Promises/
Reactive P. ✓

Static Analysis ✓

GUI vs Core ✓

Frameworks and
Libraries ✓, APIs ✓

Distributed systems,
microservices ✓

Testing for
Robustness ✓

CI ✓, DevOps,
Teams

Design for

understanding

change/ext.

reuse

robustness

...

Small scale:
One/few objects

Mid scale:
Many objects

Large scale:
Subsystems

517-214/514

Recall: Continuous Integration

617-214/514

717-214/514

7

817-214/514

917-214/514

Continuous Integration
● Automation
● Ensures absence of obvious build issues and configuration

issues (e.g., dependencies all checked in)
● Ensures tests are executed
● May encourage more tests
● Can run checks on different platforms

1017-214/514

Aside: The role of signaling

https://blog.devops4me.com/status-badges-in-azure-devops-pipelines/

1117-214/514

1217-214/514

Continuous Integration
● Automation
● Ensures absence of obvious build issues and configuration

issues (e.g., dependencies all checked in)
● Ensures tests are executed
● May encourage more tests
● Can run checks on different platforms

● What can all be automated?

1317-214/514

Any repetitive QA work remaining?

13

1417-214/514

Releasing Software

1517-214/514

Semantic Versioning for Releases
● Given a version number MAJOR.MINOR.PATCH, increment the:

○ MAJOR version when you make incompatible API changes,
○ MINOR version when you add functionality in a backwards-compatible

manner, and
○ PATCH version when you make backwards-compatible bug fixes.

● Additional labels for pre-release and build metadata are available
as extensions to the MAJOR.MINOR.PATCH format.

http://semver.org/

1617-214/514

Versioning entire projects

16

1717-214/514

Release management
with branches

1817-214/514 Release cycle of Facebook’s apps

1917-214/514

Facebook Tests for Mobile Apps
Unit tests (white box)

Static analysis (null pointer warnings, memory leaks, ...)

Build tests (compilation succeeds)

Snapshot tests (screenshot comparison, pixel by pixel)

Integration tests (black box, in simulators)

Performance tests (resource usage)

Capacity and conformance tests (custom)
Further readings: Rossi, Chuck, Elisa Shibley, Shi Su, Kent Beck, Tony Savor, and Michael Stumm. Continuous deployment of mobile software at facebook
(showcase). In Proceedings of the 2016 24th ACM SIGSOFT International Symposium on Foundations of Software Engineering, pp. 12-23. ACM, 2016.

2017-214/514

Release Challenges for Mobile Apps
Large downloads

Download time at user discretion

Different versions in production

Pull support for old releases?

Server side releases silent and quick, consistent

→ App as container, most content + layout from server

2117-214/514

From Release Date to Continuous Release
● Traditional View: Boxed Software

○ Working toward fixed release date, QA heavy before release
○ Release and move on
○ Fix post-release defects in next release or through expensive patches

● Frequent releases
○ Incremental updates delivered frequently (weeks, days, …), e.g.

Browsers
○ Automated updates (“patch culture”; “updater done? ship it”)

● Hosted software
○ Frequent incremental releases, hot patches, different versions for

different customers, customer may not even notice update

2217-214/514

2317-214/514

CC BY-SA 4.0
G. Détrez

https://en.wikipedia.org/wiki/Continuous_delivery#/media/File:Continuous_Delivery_process_diagram.svg

2417-214/514

The Shifting
Development-Operations Barrier

2517-214/514

2617-214/514

Common Release Problems?

2717-214/514

Common Release Problems (Examples)
● Missing dependencies
● Different compiler versions or library versions
● Different local utilities (e.g. unix grep vs mac grep)
● Database problems
● OS differences
● Too slow in real settings
● Difficult to roll back changes
● Source from many different repositories
● Obscure hardware? Cloud? Enough memory?

2817-214/514

The Dev – Ops Divide
● Coding
● Testing, static analysis, reviews
● Continuous integration
● Bug tracking
● Running local tests and

scalability experiments
● …

● Allocating hardware resources
● Managing OS updates
● Monitoring performance
● Monitoring crashes
● Managing load spikes, …
● Tuning database performance
● Running distributed at scale
● Rolling back releases
● …QA responsibilities in both roles

28

2917-214/514

QA Does not Stop in Dev

3017-214/514

QA Does not Stop in Dev
●Ensuring product builds correctly (e.g., reproducible

builds)
●Ensuring scalability under real-world loads
●Supporting environment constraints from real systems

(hardware, software, OS)
●Efficiency with given infrastructure
●Monitoring (server, database, Dr. Watson, etc)
●Bottlenecks, crash-prone components, … (possibly

thousands of crash reports per day/minute)

3117-214/514

Efficiency of release pipeline

https://www.slideshare.net/jmcgarr/continuous-delivery-at-netflix-and-beyond

3217-214/514

DevOps

3317-214/514

3417-214/514

Key Ideas and Principles
Better coordinate between developers and operations (collaborative)

Key goal: Reduce friction bringing changes from development into production

Considering the entire tool chain into production (holistic)

Documentation and versioning of all dependencies and configurations
("configuration as code")

Heavy automation, e.g., continuous delivery, monitoring

Small iterations, incremental and continuous releases

Buzz word!

3617-214/514

Common Practices
All configurations in version control

Test and deploy in containers

Automated testing, testing, testing, ...

Monitoring, orchestration, and automated actions in practice

Microservice architectures

Release frequently

3717-214/514

Heavy Tooling and Automation

3817-214/514

Heavy tooling and automation -- Examples
Infrastructure as code — Ansible, Terraform, Puppet, Chef

CI/CD — Jenkins, TeamCity, GitLab, Shippable, Bamboo, Azure DevOps

Test automation — Selenium, Cucumber, Apache JMeter

Containerization — Docker, Rocket, Unik

Orchestration — Kubernetes, Swarm, Mesos

Software deployment — Elastic Beanstalk, Octopus, Vamp

Measurement — Datadog, DynaTrace, Kibana, NewRelic, ServiceNow

3917-214/514

DevOps: Tooling Overview

4017-214/514

DevOps Tools
● Containers and virtual machines (Docker, …)
● Orchestration and configuration (ansible, Puppet,

Chef, Kubernetes, …)

● Sophisticated (custom) pipelines

4117-214/514

● Lightweight virtualization
● Sub-second boot time
● Shareable virtual images with full setup incl. configuration

settings
● Used in development and deployment
● Separate docker images for separate services (web server,

business logic, database, …)

4217-214/514

● Scripts to change system configurations (configuration files,
install packages, versions, …); declarative vs imperative

● Usually put under version control

Configuration management,
Infrastructure as Code

$nameservers = ['10.0.2.3']
file { '/etc/resolv.conf':

ensure => file,
owner => 'root',
group => 'root',
mode => '0644',
content => template('resolver/r.conf'),

}

- hosts: all
 sudo: yes
 tasks:
 - apt: name={{ item }}
 with_items:
 - ldap-auth-client
 - nscd
 - shell: auth-client-config -t nss -p lac_ldap
 - copy: src=ldap/my_mkhomedir dest=/…
 - copy: src=ldap/ldap.conf dest=/etc/ldap.conf
 - shell: pam-auth-update --package
 - shell: /etc/init.d/nscd restart

(Puppet)(ansible)

4317-214/514

Container Orchestration with Kubernetes
Manages which container to deploy to which machine

Launches and kills containers depending on load

Manage updates and routing

Automated restart, replacement, replication, scaling

Kubernetes master controls many nodes

4417-214/514

CC BY-SA 4.0 Khtan66

https://en.wikipedia.org/wiki/Kubernetes#/media/File:Kubernetes.png

4517-214/514

Monitoring
● Monitor server health
● Monitor service health
● Collect and analyze measures or log files
● Dashboards and triggering automated decisions

○ Many tools, e.g., Grafana as dashboard, Prometheus for
metrics, Loki + ElasticSearch for logs

○ Push and pull models

4617-214/514

4717-214/514

Grafana

4817-214/514

4917-214/514

Testing in Production

5017-214/514

Testing in
Production

5117-214/514

Chaos
Experiments

5217-214/514

5317-214/514

Crash Telemetry

5417-214/514

A/B Testing

5517-214/514

WHAT IF...?
... we hand plenty of subjects for experiments

... we could randomly assign subjects to treatment and
control group without them knowing

... we could analyze small individual changes and keep
everything else constant

▶ Ideal conditions for controlled experiments

5617-214/514

Experiment Size
With enough subjects (users), we can run many many
experiments

Even very small experiments become feasible

Toward causal inference

5717-214/514

IMPLEMENTING A/B TESTING
Implement alternative versions of the system

■ using feature flags (decisions in implementation)
■ separate deployments (decision in router/load balancer)

Map users to treatment group

■ Randomly from distribution
■ Static user - group mapping
■ Online service (e.g., launchdarkly, split)

Monitor outcomes per group

■ Telemetry, sales, time on site, server load, crash rate

https://launchdarkly.com/
https://www.split.io/

5817-214/514

FEATURE FLAGS
Boolean options
Good practices: tracked explicitly, documented, keep them localized and independent
External mapping of flags to customers

■ who should see what configuration
■ e.g., 1% of users sees one_click_checkout, but always the same users; or

50% of beta-users and 90% of developers and 0.1% of all users

if (features.enabled(userId, "one_click_checkout")) {
 // new one click checkout function
} else {
 // old checkout functionality
}

def isEnabled(user): Boolean = (hash(user.id) % 100) < 10

5917-214/514

6017-214/514

Comparing Outcomes

Group A

base game

2158 Users
average 18:13 min time
on site

Group B

game with extra god
cards
10 Users
average 20:24 min time
on site

60

6117-214/514
61

6217-214/514
62

6317-214/514 https://techcrunch.com/2014/06/29/ethics-in-a-data-driven-world/

https://techcrunch.com/2014/06/29/ethics-in-a-data-driven-world/

6417-214/514

Canary
Releases

6517-214/514

Canary Releases
Testing releases in production
Incrementally deploy a new release to users, not all at once
Monitor difference in outcomes (e.g., crash rates,
performance, user engagement)
Automatically roll back bad releases
Technically similar to A/B testing
Telemetry essential

6617-214/514

Canary Releases

6717-214/514

Canary Releases at Facebook
Phase 0: Automated unit tests

Phase 1: Release to Facebook employees

Phase 2: Release to subset of production machines

Phase 3: Release to full cluster

Phase 4: Commit to master, rollout everywhere

Monitored metrics: server load, crashes, click-through rate
Further readings: Tang, Chunqiang, Thawan Kooburat, Pradeep Venkatachalam, Akshay Chander, Zhe Wen, Aravind Narayanan, Patrick Dowell, and Robert Karl. Holistic
configuration management at Facebook. In Proceedings of the 25th Symposium on Operating Systems Principles, pp. 328-343. ACM, 2015. and Rossi, Chuck, Elisa Shibley, Shi
Su, Kent Beck, Tony Savor, and Michael Stumm. Continuous deployment of mobile software at facebook (showcase). In Proceedings of the 2016 24th ACM SIGSOFT
International Symposium on Foundations of Software Engineering, pp. 12-23. ACM, 2016.

http://sigops.org/s/conferences/sosp/2015/current/2015-Monterey/printable/008-tang.pdf
http://sigops.org/s/conferences/sosp/2015/current/2015-Monterey/printable/008-tang.pdf
https://research.fb.com/wp-content/uploads/2017/02/fse-rossi.pdf

6817-214/514

Real DevOps Pipelines are
Complex
● Incremental rollout, reconfiguring routers
●Canary testing
●Automatic rolling back changes

Chunqiang Tang,
Thawan Kooburat,
Pradeep
Venkatachalam, Akshay
Chander, Zhe Wen,
Aravind Narayanan,
Patrick Dowell, and
Robert Karl. Holistic
Configuration
Management at
Facebook. Proc. of
SOSP: 328--343 (2015).

68

https://dl.acm.org/citation.cfm?id=2815401
https://dl.acm.org/citation.cfm?id=2815401
https://dl.acm.org/citation.cfm?id=2815401
https://dl.acm.org/citation.cfm?id=2815401

6917-214/514

Chaos
Experiments

7317-214/514

Summary
Increasing automation of tests and deployments

Containers and configuration management tools help
with automation, deployment, and rollbacks

Monitoring becomes important

Many new opportunities for testing in production (feature
flags are common)

