
117-214/514

Principles of Software Construction:
Objects, Design, and Concurrency

The Last One:
Locking Back & Looking Forward

Claire Le Goues Bogdan Vasilescu

217-214/514

Looking Back at the Semester

317-214/514

Principles of Software Construction:
Objects, Design, and Concurrency

Introduction, Overview, and Syllabus

Claire Le Goues Bogdan Vasilescu

417-214/514

Welcome to the era of “big code”

(informal reports)

517-214/514

Our goal: understanding both the building blocks and also the
design principles for construction of software systems at scale

From Programs to Applications and
Systems
Writing algorithms, data

structures from scratch

Functions with inputs
and outputs

Sequential and local computation

Full functional specifications

Reuse of libraries,
frameworks

Asynchronous and
reactive designs

Parallel and distributed
computation

Partial, composable,
targeted models

617-214/514

2021 GitHub State of the Octoverse report

717-214/514

User needs
(Requirements) CodeMiracle?

Maintainable?
Testable?
Extensible?
Scalable?
Robust? ...

817-214/514

Which version is better?
static void sort(int[] list, boolean ascending) {
 …
 boolean mustSwap;
 if (ascending) {
 mustSwap = list[i] > list[j];
 } else {
 mustSwap = list[i] < list[j];
 }
 …
}

interface Order {
 boolean lessThan(int i, int j);
}
class AscendingOrder implements Order {
 public boolean lessThan(int i, int j) { return i < j; }
}
class DescendingOrder implements Order {
 public boolean lessThan(int i, int j) { return i > j; }
}

static void sort(int[] list, Order order) {
 …
 boolean mustSwap =
 order.lessThan(list[j], list[i]);
 …
}

Version A:

Version B':

917-214/514

it depends
Depends on what?
What are scenarios?
What are tradeoffs?

In this specific case, what
would you recommend?
(Engineering judgement)

1017-214/514

Some qualities of interest, i.e., design goals
Functional

correctness Adherence of implementation to the specifications

Robustness Ability to handle anomalous events

Flexibility Ability to accommodate changes in specifications

Reusability Ability to be reused in another application

Efficiency Satisfaction of speed and storage requirements

Scalability Ability to serve as the basis of a larger version of the application

Security Level of consideration of application security

Source: Braude, Bernstein,
Software Engineering. Wiley

2011

1117-214/514

Semester overview
● Introduction to Object-Oriented

Programming
● Introduction to design

○ Design goals, principles, patterns

● Designing objects/classes
○ Design for change
○ Design for reuse

● Designing (sub)systems
○ Design for robustness
○ Design for change (cont.)

● Design for large-scale reuse

Crosscutting topics:
● Building on libraries and frameworks
● Building libraries and frameworks
● Modern development tools: IDEs,

version control, refactoring, build
and test automation, static analysis

● Testing, testing, testing
● Concurrency basics

1217-214/514

Trying to get back to normal with …
gestures widely everything

Talk to us about concerns and
accommodations

1317-214/514

Principles of Software Construction
(Design for change, class level)

Starting with Objects
(dynamic dispatch, encapsulation, entry points)

Claire Le Goues Bogdan Vasilescu

1417-214/514

Where we are

Subtype
Polymorphism ✓

Information Hiding,
Contracts ✓

Immutability ✓

Types ✓
Static Analysis ✓

Unit Testing ✓

Domain Analysis ✓

Inheritance & Del. ✓

Responsibility
Assignment,

Design Patterns,
Antipattern ✓

Promises/
Reactive P. ✓

Integration Testing ✓

GUI vs Core ✓

Frameworks and
Libraries ✓, APIs ✓

Module systems,
microservices ✓

Testing for
Robustness ✓

CI ✓, DevOps ✓,
Teams

Design for

understanding

change/ext.

reuse

robustness

...

Small scale:
One/few objects

Mid scale:
Many objects

Large scale:
Subsystems

1517-214/514

Data structures and procedures
struct point {
 int x;
 int y;
};

void movePoint(struct point p, int deltax, int deltay) { p.x = …; }

int main() {

struct point p = { 1, 3 };

int deltaX = 5;

movePoint(p, 0, deltaX);

...

}

This is C code!

1617-214/514

Interfaces and Objects in Java
interface Counter {
 int get();
 int add(int y);
 void inc();
}
Counter obj = new Counter() {
 int v = 1;
 public int get() { return this.v; }
 public int add(int y) { return this.v + y; }
 public void inc() { this.v++; }
};

System.out.println(obj.add(obj.get()));
// 2

This uses anonymous
classes to create an
object without a class.
This isn’t very common, it
just looks a lot like the
TS.

interface Counter {
 v: number;
 inc(): void;
 get(): number;
 add(y: number): number;
}
const obj: Counter = {
 v: 1,
 inc: function() { this.v++; },
 get: function() { return this.v; },
 add: function(y) { return this.v + y; }
}

Yellow background is Java, Black is Typescript

1717-214/514

Multiple Implementations of Interface
interface Point {

int getX();
int getY();

}
class PolarPoint implements Point {

double len, angle;
PolarPoint(double len, double angle)

{this.len=len; this.angle=angle;}
int getX() { return this.len * cos(this.angle);}
int getY() { return this.len * sin(this.angle); }
double getAngle() {…}

}
Point p = new PolarPoint(5, .245);

This is Java code!

1817-214/514

How to hide information?

class CartesianPoint {
int x,y;
Point(int x, int y) {

this.x=x;
this.y=y;

}
int getX() { return this.x; }
int getY() { return this.y; }
int helper_getAngle();

}

const point = {
x: 1, y: 0,
getX: function() {…}
helper_getAngle:

function() {…}
}

Left is Java, right is Typescript

1917-214/514

Starting a Program

Objects do not do anything on their own, they wait for method calls

Every program needs a starting point, or waits for events

// start with: node file.js
function createPrinter() {

return {
print: function() { console.log("hi"); }

}
}
const printer = createPrinter();
printer.print()
// hi

Defining interfaces,
functions, classes

Starting:
Creating objects and
calling methods

Typescript compiles to
Javascript, by the way. There
are several ways to run it.

This is Typescript code!

2017-214/514

Principles of Software Construction:
Objects, Design, and Concurrency

IDEs, Build system, Continuous
Integration, Libraries

Bogdan Vasilescu Claire Le Goues

2117-214/514

● For each in {IDE, Build systems, libraries, CI}:
○ What is it today?
○ What is under the hood?

● What is next?

Abstraction, Reuse, and Programming Tools

2217-214/514

Under the Hood: IDEs
Automate common programming actions, like debugging, which is often the
default mode when you run in the IDE (like in VSCode)

Java:

2317-214/514

Quick overview of today’s toolchain: Build Systems

How does this happen?

2417-214/514

https://maven.apache.org/guides/getting-
started/maven-in-five-minutes.html

2517-214/514

Under the Hood: Libraries & Frameworks

Which kind is a command-line parsing package?

Which kind is Android?

How about a tool that runs tests based on annotations you add in your code?

http://tom.lokhorst.eu/2010/09/why-libraries-are-better-than-frameworks`

2617-214/514

HW1: Extending the Flash Card System

2717-214/514

Principles of Software Construction:
Objects, Design, and Concurrency

Specifications and unit testing,
exceptions

Claire Le Goues Bogdan Vasilescu

2817-214/514

Where we are

Subtype
Polymorphism ✓

Information Hiding,
Contracts ✓

Immutability ✓

Types ✓
Static Analysis ✓

Unit Testing ✓

Domain Analysis ✓

Inheritance & Del. ✓

Responsibility
Assignment,

Design Patterns,
Antipattern ✓

Promises/
Reactive P. ✓

Integration Testing ✓

GUI vs Core ✓

Frameworks and
Libraries ✓, APIs ✓

Module systems,
microservices ✓

Testing for
Robustness ✓

CI ✓, DevOps ✓,
Teams

Design for

understanding

change/ext.

reuse

robustness

...

Small scale:
One/few objects

Mid scale:
Many objects

Large scale:
Subsystems

2917-214/514

Who’s to blame?

Algorithms.shortestDistance(g, “Tom”, “Anne”);

> ArrayOutOfBoundsException

3017-214/514

Service*
implementation

Service* interface

Client
environment

 Hidden from
service* provider

 Hidden from
service* client

* service = object,
subsystem, …

● Imperative to build systems that scale!
● This is why we:

○ Encode specifications
○ Test

Most real-world code has a contract

3117-214/514

Throwable

Exception

RuntimeException

IOException

EOFException

FileNotFoundException

NullPointerException

IndexOutOfBoundsException

ClassNotFoundException

Object

Error

StackOverflowError

…

…

…

…

Checked Exceptions

Java’s exception hierarchy (messy)

3217-214/514

Testing

How do we know
this works?

Testing

Are we done?

int isPos(int x) {
 return x >= 1;
}

@Test
void testIsPos() {
 assertTrue(isPos(1));
}

@Test
void testNotPos() {
 assertFalse(isPos(-1));
}

This is Java code

3317-214/514

Docstring Specification
class RepeatingCardOrganizer {
 ...
 /**
 * Checks if the provided card has been answered correctly the required
number of times.
 * @param card The {@link CardStatus} object to check.
 * @return {@code true} if this card has been answered correctly at least
{@code this.repetitions} times.
 */
 public boolean isComplete(CardStatus card) {
 // IGNORE THIS WHEN SPECIFICATION TESTING!
 }
}

3417-214/514

Boundary Value Testing

We cannot test for every integer.

Choose representative values:
1 for positives, -1 for negatives

And boundary cases: 0 is a likely
candidate for mistakes

● Think like an attacker

int isPos(int x) {
 return x >= 0; // What if?
}

@Test
void test1IsPos() {
 assertTrue(isPos(1));
}

@Test
void test0IsNotPos() {
 assertFalse(isPos(0)); // Fails
}

This is Java code

3517-214/514

Principles of Software Construction:
Objects, Design, and Concurrency

Test case design

Claire Le Goues Bogdan Vasilescu

3617-214/514

Specification vs. Structural Testing
● Specification-based testing: test solely the

specification
○ Ignores implementation, use inputs/outputs only
○ Typical objective: Cover all specified behavior

● Structural Testing: consider implementation
○ Typical objective: Optimize for various kinds of code

coverage
■ Line, Statement, Data-flow, etc.

3717-214/514

CreditWallet.pay()
public boolean pay(int cost, boolean useCredit) {
 if (useCredit) {
 if (enoughCredit) {
 return true;
 }
 }
 if (enoughCash) {
 return true;
 }
 return false;
}

Test
case

useCredit
Enough
Credit

Enough
Cash

Result Coverage

1 T T - Pass --

2 F - T Pass --

3 F - F Fails Statement

3817-214/514

Control-Flow of CreditCard.pay()
useCredit

enough
Credit

pay
w/credit

true

true

enough
Cash

pay
w/cash

fail

false

false

false

true

Paths:

● {true, true}: pay w/credit
● {false, true}: pay w/cash
● {false, false}: fail
● {true, false, true}: pay w/cash

after failing credit
● {true, false, false}: try credit,

but
fail, and no cash

3917-214/514

Writing Testable Code

Aim to write easily testable code

● Which is almost by definition more modular

public List<String> getLines(String path) throws IOException {
 return Files.readAllLines(Path.of(path));
}

public boolean hasHeader(List<String> lines) {
 return !lines.get(0).isEmpty()
}

// Test:
// - hasHeader with empty, non-empty first line
// - getLines (if you must) with null, real path

4017-214/514

Boundary Value Testing

We need a strategy to identify plausible mistakes

● Boundary Value Testing: errors often occur at boundary conditions
○ Identify equivalence partitions: regions where behavior should be the same

■ cost <= money: true, cost > money: false
■ Boundary value: cost == money

/** Returns true and subtracts cost if enough
 * money is available, false otherwise.
 */
public boolean pay(int cost) {
 if (cost < this.money) {
 this.money -= cost;
 return true;
 }
 return false;
}

4117-214/514

HW 2: Testing the Flash Card System

4217-214/514

Principles of Software Construction:
Objects, Design, and Concurrency

Object-oriented Analysis

Claire Le Goues Bogdan Vasilescu

4317-214/514

Where we are

Subtype
Polymorphism ✓

Information Hiding,
Contracts ✓

Immutability ✓

Types ✓
Static Analysis ✓

Unit Testing ✓

Domain Analysis ✓

Inheritance & Del. ✓

Responsibility
Assignment,

Design Patterns,
Antipattern ✓

Promises/
Reactive P. ✓

Integration Testing ✓

GUI vs Core ✓

Frameworks and
Libraries ✓, APIs ✓

Module systems,
microservices ✓

Testing for
Robustness ✓

CI ✓, DevOps ✓,
Teams

Design for

understanding

change/ext.

reuse

robustness

...

Small scale:
One/few objects

Mid scale:
Many objects

Large scale:
Subsystems

4417-214/514

Problem
Space
(Domain
Model)

Solution
Space

(Object Model)

● Real-world concepts

● Requirements, Concepts

● Relationships among concepts

● Solving a problem

● Building a vocabulary

● System implementation

● Classes, objects

● References among objects and
inheritance hierarchies

● Computing a result

● Finding a solution

4517-214/514

An object-oriented design process
Model / diagram the problem, define concepts

● Domain model (a.k.a. conceptual model), glossary

Define system behaviors

● System sequence diagram
● System behavioral contracts

Assign object responsibilities, define interactions

● Object interaction diagrams

Model / diagram a potential solution

● Object model

OO Analysis:
Understanding
the problem

OO Design:
Defining a
solution

4617-214/514

Visual notation: UML

Library Account

accountID
lateFees

Name of
real-world
concept
(not software class)

Properties
of concept

Book

title
author

borrow

1 *

Associations
between
concepts

Multiplicities/cardinalities
indicate “how many”

4717-214/514

One domain model for the library system

4817-214/514

UML Sequence Diagram Notation
User System Actors in this

use case
(systems and
real-world
objects/people)

Messages and
responses for
interactions,
text describes what
happens conceptually

Time proceeds
from top to
bottom

login(card)

borrow(book)

success?, due date

4917-214/514

Principles of Software Construction:
Objects, Design, and Concurrency

Object-oriented Design

Claire Le Goues Bogdan Vasilescu

5017-214/514

Where we are

Subtype
Polymorphism ✓

Information Hiding,
Contracts ✓

Immutability ✓

Types ✓
Static Analysis ✓

Unit Testing ✓

Domain Analysis ✓

Inheritance & Del. ✓

Responsibility
Assignment,

Design Patterns,
Antipattern ✓

Promises/
Reactive P. ✓

Integration Testing ✓

GUI vs Core ✓

Frameworks and
Libraries ✓, APIs ✓

Module systems,
microservices ✓

Testing for
Robustness ✓

CI ✓, DevOps ✓,
Teams

Design for

understanding

change/ext.

reuse

robustness

...

Small scale:
One/few objects

Mid scale:
Many objects

Large scale:
Subsystems

5117-214/514

Topologies with different coupling

5217-214/514

Design Heuristic: Law of Demeter

● Each module should have only limited knowledge
about other units: only units "closely" related to the
current unit

● In particular: Don’t talk to strangers!

● For instance, no a.getB().getC().foo()

for (let i of shipment.getBox().getItems())
shipmentWeight += i.getWeight() …

5317-214/514

Object Diagrams
Objects/classes with
fields and methods

Interfaces with
methods

Associations,
visibility, types

5417-214/514

Low Representational Gap
Identified concepts provide inspiration for classes in the implementation

Classes mirroring domain concepts often
intuitive to understand, rarely change
(low representational gap)

Library Account

accountID
lateFees

Book

title
author

borrow

1 *

class LibraryDatabase {

Map<Int, List<Int>>

borrowedBookIds;

Map<Int, Int> lateFees;

Map<Int, String>

bookTitles;

}

class DatabaseRow { … }

5517-214/514

Who should be responsible for
knowing the grand total of a sale?

5617-214/514

Anti-Pattern:
God Object

class Chat {

List<String> channels;

Map<String, List<Msg>> messages;

Map<String, String> accounts;

Set<String> bannedUsers;

File logFile;

File bannedWords;

URL serverAddress;

Map<String, Int> globalSettings;

Map<String, Int> userSettings;

Map<String, Graphic> smileys;

CryptStrategy encryption;

Widget sendButton, messageList;

}

class Chat {
Content content;
AccountMgr accounts;
File logFile;
ConnectionMgr conns;

}
class ChatUI {

Chat chat;
Widget sendButton, …;

}
class AccountMgr {

… acounts, bannedUsr…
}

5717-214/514

Information Expert ->
"Do It Myself Strategy"

Expert usually leads to designs where a software object
does those operations that are normally done to the
inanimate real-world thing it represents

○ a sale does not tell you its total; it is an inanimate thing

In OO design, all software objects are "alive" or "animated,"
and they can take on responsibilities and do things.

They do things related to the information they know.

5817-214/514

Design Goals, Principles, and Patterns
● Design Goals

○ Design for change, understanding, reuse, division of labor, …

● Design Principle

○ Low coupling, high cohesion

○ Low representational gap

● Design Heuristics

○ Law of demeter

○ Information expert

○ Creator

○ Controller

58

Goals

Heuristics Patterns

Principles

5917-214/514

HW3: Santorini (Base game)

6017-214/514

Principles of Software Construction:
Objects, Design, and Concurrency

Inheritance and delegation

Claire Le Goues Bogdan Vasilescu

6117-214/514

Where we are

Subtype
Polymorphism ✓

Information Hiding,
Contracts ✓

Immutability ✓

Types ✓
Static Analysis ✓

Unit Testing ✓

Domain Analysis ✓

Inheritance & Del.
✓

Responsibility
Assignment,

Design Patterns,
Antipattern ✓

Promises/
Reactive P. ✓

Integration Testing ✓

GUI vs Core ✓

Frameworks and
Libraries ✓, APIs ✓

Module systems,
microservices ✓

Testing for
Robustness ✓

CI ✓, DevOps ✓,
Teams

Design for

understanding

change/ext.

reuse

robustness

...

Small scale:
One/few objects

Mid scale:
Many objects

Large scale:
Subsystems

6217-214/514

Class Hierarchy
In Java:

Object

CollectionError

ListRuntimeError
Exception

6317-214/514

Inheritance enables Extension & Reuse
class Animal {
 final String name;

 public Animal(String name) {
 this.name = name;
 }

 public String identify() {
 return this.name;
 }
}

class Dog extends Animal {
 public Dog() {
 super("dog");
 }
}

Animal animal = new Dog();
animal.identify(); // “dog”

Declared Type
Instantiated TypeCompile-time

Check (Java)

6417-214/514

Is this Square a behavioral subtype of Rectangle?
class Rectangle {

//@ invariant h>0 && w>0;
int h, w;

Rectangle(int h, int w) {
this.h=h; this.w=w;

}
//@ requires factor > 0;
void scale(int factor) {

w=w*factor;
h=h*factor;

}
//@ requires neww > 0;
void setWidth(int neww) {

w=neww;
}

}

class Square extends Rectangle {
//@ invariant h>0 && w>0;
//@ invariant h==w;
Square(int w) {

super(w, w);
}

}

Technically yes! But: Square is not a square :(

class GraphicProgram {
 void scale(Rectangle r, int factor) {
 r.setWidth(r.getWidth() * factor);
 }
}

6517-214/514

Reuse does not require Inheritance,
Delegation is enough
public interface PaymentCard {
 CardData getCardData();
 int getValue();
 boolean pay(int amount);
}

class CardData {
 private final String cardHolderName;
 private final BigInteger digits;
 private final Date expirationDate;

 public CardData(String cardHolderName,
 BigInteger digits, Date expirationDate) {
 this.cardHolderName = cardHolderName;
 this.digits = digits;
 this.expirationDate = expirationDate;
 }

 @Override
 public String getCardHolderName() {
 return this.cardHolderName;
 }

 @Override
 public BigInteger getDigits() {
 return this.digits;
 }

 @Override
 public Date getExpiration() {
 return this.expirationDate;
 }
}

PaymentCard

CardData

CreditCard DeditCard

Is this better?

6617-214/514

Inheritance limits information hiding!
public class InstrumentedHashSet<E> extends HashSet<E> {

 public int addCount = 0;

 @Override
 public boolean add(E a) {
 addCount += 1;
 return super.add(a);
 };

 @Override
 public boolean addAll(Collection<? extends E> c) {
 addCount += c.size();
 return super.addAll(c);
 }
}

public static void main(String[] args) {
 InstrumentedHashSet<String> set = new
InstrumentedHashSet<String>();

 set.addAll(List.of("A", "B", "C"));

 System.out.println(set.addCount);
}

What will this print?

6717-214/514

Principles of Software Construction:
Objects, Design, and Concurrency

Design Patterns

Claire Le Goues Bogdan Vasilescu

6817-214/514

Where we are

Subtype
Polymorphism ✓

Information Hiding,
Contracts ✓

Immutability ✓

Types ✓
Static Analysis ✓

Unit Testing ✓

Domain Analysis ✓

Inheritance & Del. ✓

Responsibility
Assignment,

Design Patterns,
Antipattern ✓

Promises/
Reactive P. ✓

Integration Testing ✓

GUI vs Core ✓

Frameworks and
Libraries ✓, APIs ✓

Module systems,
microservices ✓

Testing for
Robustness ✓

CI ✓, DevOps ✓,
Teams

Design for

understanding

change/ext.

reuse

robustness

...

Small scale:
One/few objects

Mid scale:
Many objects

Large scale:
Subsystems

6917-214/514

Discussion with design patterns
● Carpentry:

○ "Is a dovetail joint or a miter joint better here?"

● Software Engineering:
○ "Is a strategy pattern or a template method better here?"

7017-214/514

History:
Design Patterns
(1994)

7117-214/514

Context

Strategy
execute()

ConcreteStrA ConcreteStrB

algorithm()

execute() execute()

7217-214/514

One design scenario
● Amazon.com processes millions of orders each

year, selling in 75 countries, all 50 states, and
thousands of cities worldwide. These countries,
states, and cities have hundreds of distinct sales tax
policies and, for any order and destination,
Amazon.com must be able to compute the correct
sales tax for the order and destination.

7317-214/514

(function () {
// ... all vars and functions are in this scope only
// still maintains access to all globals

}());

Module pattern: Hide internals in closure

Function provides local scope, internals not accessible

Function directly invoked to execute it once

Wrapped in parentheses to make it expression

Discovered around 2007, became very popular, part of Node

7417-214/514

The Composite Design Pattern

7517-214/514

Principles of Software Construction:
Objects, Design, and Concurrency

Refactoring & Anti-patterns

Claire Le Goues Bogdan Vasilescu

7617-214/514

Where we are

Subtype
Polymorphism ✓

Information Hiding,
Contracts ✓

Immutability ✓

Types ✓
Static Analysis ✓

Unit Testing ✓

Domain Analysis ✓

Inheritance & Del. ✓

Responsibility
Assignment,

Design Patterns,
Antipattern ✓

Promises/
Reactive P. ✓

Integration Testing ✓

GUI vs Core ✓

Frameworks and
Libraries ✓, APIs ✓

Module systems,
microservices ✓

Testing for
Robustness ✓

CI ✓, DevOps ✓,
Teams

Design for

understanding

change/ext.

reuse

robustness

...

Small scale:
One/few objects

Mid scale:
Many objects

Large scale:
Subsystems

7717-214/514

The Decorator Pattern
You have a complex drawing that consists of many shapes and want to save it. Some logic of the
saving functionality is always the same (e.g., going through all shapes, reducing them to drawable
lines), but others you want to vary to support saving in different file formats (e.g., as png, as svg,
as pdf). You want to support different file formats later.

Why is this not:

https://refactoring.guru/design-patterns/decorator

7817-214/514

Anti-patterns
● We have talked a fair bit about bad design heuristics

○ High coupling, low cohesion, law of demeter, …
● You will see a much larger vocabulary of related

issues
○ Commonly called code/design “smells”
○ Worthwhile reads:

■ A short overview: https://refactoring.guru/refactoring/smells
■ Wikipedia: https://en.wikipedia.org/wiki/Anti-pattern#Software_engineering
■ Book on the topic (no required reading): Refactoring for Software Design Smells:

Managing Technical Debt, Suryanarayana, Samarthyam and Sharma
● S.O. summary: https://stackoverflow.com/a/27567960

https://refactoring.guru/refactoring/smells
https://en.wikipedia.org/wiki/Anti-pattern#Software_engineering
https://stackoverflow.com/a/27567960

7917-214/514

Refactoring: IDE support
● Rename class, method, variable to something not

in-scope
● Extract method/inline method
● Extract interface
● Move method (up, down, laterally)
● Replace duplicates

8017-214/514

True or false?

int i = 5;

int j = 5;

System.out.println(i == j);

true

String s = "foo";

String t = s;

System.out.println(s == t);

true

String u = "iPhone";

String v = u.toLowerCase();

String w = "iphone";

System.out.println(v == w);

false (in practice)

5j

"foo"

t

v

u

w

"iPhone"

si 5

"iphone"

"iphone"
?

8117-214/514

Liquid APIs
Each method changes
state,
then returns this

(Immutable version:
Return modified copy)

class OptBuilder {
private String argName = "";
private boolean hasArg = false;
...
OptBuilder withArgName(String n) {

this.argName = n;
return this;

}
OptBuilder hasArg() {

this.hasArg = true;
return this;

}
...
Option create() {

return new Option(argName,
 hasArgs, ...)

}
}

8217-214/514

Traversing a collection
● Since Java 1.0:

 Vector arguments = …;

 for (int i = 0; i < arguments.size(); ++i) {

 System.out.println(arguments.get(i));

 }

● Java 1.5: enhanced for loop
List<String> arguments = …;

for (String s : arguments) {

 System.out.println(s);

}

● Works for every implementation of Iterable
public interface Iterable<E> {

 public Iterator<E> iterator();

}

public interface Iterator<E> {

 boolean hasNext();

 E next();

 void remove();

}

● In JavaScript (ES6)
let arguments = …

for (const s of arguments) {

 console.log(s)

}

● Works for every implementation with a “magic”
function [Symbol.iterator] providing an iterator
interface Iterator<T> {

 next(value?: any): IteratorResult<T>;

 return?(value?: any): IteratorResult<T>;

 throw?(e?: any): IteratorResult<T>;

}

interface IteratorReturnResult<TReturn> {

 done: true;

 value: TReturn;

}

8317-214/514

HW4: Refactoring of
Static Website Generator

8417-214/514

Principles of Software Construction:
Objects, Design, and Concurrency

Asynchrony and Concurrency

Claire Le Goues Bogdan Vasilescu

8517-214/514

Where we are

Subtype
Polymorphism ✓

Information Hiding,
Contracts ✓

Immutability ✓

Types ✓
Static Analysis ✓

Unit Testing ✓

Domain Analysis ✓

Inheritance & Del. ✓

Responsibility
Assignment,

Design Patterns,
Antipattern ✓

Promises/
Reactive P. ✓

Integration Testing ✓

GUI vs Core ✓

Frameworks and
Libraries ✓, APIs ✓

Module systems,
microservices ✓

Testing for
Robustness ✓

CI ✓, DevOps ✓,
Teams

Design for

understanding

change/ext.

reuse

robustness

...

Small scale:
One/few objects

Mid scale:
Many objects

Large scale:
Subsystems

8617-214/514

Scanner input = new Scanner(System.in);
while (questions.hasNext()) {
 Question q = question.next();
 System.out.println(q.toString());
 String answer = input.nextLine();
 q.respond(answer);
}

Interaction with CLI

8717-214/514

Event-based programming

● Style of programming where control-flow is driven by (usually
external) events

public void performAction(ActionEvent e) {
 List<String> lst = Arrays.asList(bar);
 foo.peek(42)
}

public void performAction(ActionEvent e) {
 bigBloatedPowerPointFunction(e);
 withANameSoLongIMadeItTwoMethods(e);
 yesIKnowJavaDoesntWorkLikeThat(e);
}

public void performAction(ActionEvent e) {
 List<String> lst = Arrays.asList(bar);
 foo.peek(40)
}

8817-214/514

Concurrency with file I/O
Asynchronous code requires Promises

● Captures an intermediate state
○ Neither fetched, nor failed; we’ll find out eventually

let imageToBe: Promise<Image> = fetch('myImage.png');
imageToBe.then((image) => display(image))
 .catch((err) => console.log('aw: ' + err));

8917-214/514

1. Safety Hazard
● The ordering of operations in multiple threads is unpredictable.

● Unlucky execution of UnsafeSequence.getNext
value→9 9+1→10 value→10

value→9 9+1→10 value→10

A
B

Not atomic

@NotThreadSafe
public class UnsafeSequence {
 private int value;

 public int getNext() {
 return value++;
 }
}

9017-214/514

Amdahl’s law
● The speedup is

limited by the
serial part of the
program.

9117-214/514

Recall the Observer

https://refactoring.guru/design-patterns/observer

9217-214/514

An architectural pattern:
Model-View-Controller (MVC)

Manage inputs from user:
mouse, keyboard, menu, etc.

Manage display of
information on the screen

Manage data related to the
application domain

9317-214/514

Principles of Software Construction:
Objects, Design, and Concurrency

Basic GUI concepts, HTML

Claire Le Goues Bogdan Vasilescu

9417-214/514

Where we are

Subtype
Polymorphism ✓

Information Hiding,
Contracts ✓

Immutability ✓

Types ✓
Static Analysis ✓

Unit Testing ✓

Domain Analysis ✓

Inheritance & Del. ✓

Responsibility
Assignment,

Design Patterns,
Antipattern ✓

Promises/
Reactive P. ✓

Integration Testing ✓

GUI vs Core ✓

Frameworks and
Libraries ✓, APIs ✓

Module systems,
microservices ✓

Testing for
Robustness ✓

CI ✓, DevOps ✓,
Teams

Design for

understanding

change/ext.

reuse

robustness

...

Small scale:
One/few objects

Mid scale:
Many objects

Large scale:
Subsystems

9517-214/514

Anatomy of an HTML Page
Nested elements

● Sizing
● Attributes
● Text

9617-214/514

Strategy or Observer?
Either could apply

● Both involve callback
● Strategy:

○ Typically single
○ Often involves a return

● Observer:
○ Arbitrarily many
○ Involves external updates

9717-214/514

Static Web Pages
● Delivered as-is, final

○ Consistent, often fast
○ Cheap, only storage needed

● “Static” a tad murky with JavaScript
○ We can still have buttons, interaction
○ But it won’t “go” anywhere -- the server is mum

https://developer.mozilla.org/en-US/docs/Learn/Server-side/First_steps/Client-Server_overview#anatomy_of_a_dynamic_request

9817-214/514

Web Servers
Dynamic sites can do more work

https://developer.mozilla.org/en-US/docs/Learn/Server-side/First_steps/Client-Server_overview#anatomy_of_a_dynamic_request

9917-214/514

Separating application core and GUI
● Reduce coupling: do not allow core to depend on UI

● Create and test the core without a GUI
○ Use the Observer pattern to communicate information from the core

(Model) to the GUI (View)

Core

GUI

Core Tests

GUI Tests

10017-214/514

Principles of Software Construction:
Objects, Design, and Concurrency

Concurrency: Safety & Immutability

Claire Le Goues Bogdan Vasilescu

10117-214/514

Where we are

Subtype
Polymorphism ✓

Information Hiding,
Contracts ✓

Immutability ✓

Types ✓
Static Analysis ✓

Unit Testing ✓

Domain Analysis ✓

Inheritance & Del. ✓

Responsibility
Assignment,

Design Patterns,
Antipattern ✓

Promises/
Reactive P. ✓

Integration Testing ✓

GUI vs Core ✓

Frameworks and
Libraries ✓, APIs ✓

Module systems,
microservices ✓

Testing for
Robustness ✓

CI ✓, DevOps ✓,
Teams

Design for

understanding

change/ext.

reuse

robustness

...

Small scale:
One/few objects

Mid scale:
Many objects

Large scale:
Subsystems

10217-214/514

The Event Loop
console.log('Hi');
setTimeout(function cb1() {
 console.log('cb1');
}, 5000);
console.log('Bye');

setTimeout(function cb1() {...});
is executed.

The browser creates a timer as part of
the Web APIs. It will handle the
countdown for you.

10317-214/514

“Callback Hell”?
● Issue caused by coding

with complex nested
callbacks.

● Every callback takes an
argument that is a result of
the previous callbacks.

const makeBurger = nextStep => {
 getBeef(function (beef) {
 cookBeef(beef, function (cookedBeef) {
 getBuns(function (buns) {
 putBeefBetweenBuns(buns, beef, function(burger) {
 nextStep(burger)
 })
 })
 })
 })
}

// Make and serve the burger
makeBurger(function (burger) => {
 serve(burger)
})

If asynchronous:

10417-214/514

public static void main(String[] args) throws InterruptedException {
 BankAccount bugs = new BankAccount(1_000_000);
 BankAccount daffy = new BankAccount(1_000_000);

 Thread bugsThread = new Thread(()-> {
 for (int i = 0; i < 1_000_000; i++)
 transferFrom(daffy, bugs, 1);
 });

 Thread daffyThread = new Thread(()-> {
 for (int i = 0; i < 1_000_000; i++)
 transferFrom(bugs, daffy, 1);
 });

 bugsThread.start(); daffyThread.start();
 bugsThread.join(); daffyThread.join();
 System.out.println(bugs.balance() - daffy.balance());
}

Remember the money-grab example?

10517-214/514

Making a Class Immutable
public final class Complex {
 private final double re, im;

 public Complex(double re, double im) {
 this.re = re;
 this.im = im;
 }

 // Getters without corresponding setters
 public double getRealPart() { return re; }
 public double getImaginaryPart() { return im; }

 // subtract, multiply, divide similar to add
 public Complex add(Complex c) {
 …
 }

10617-214/514

What will Happen:
Where does this fail?

What if single threaded?

Could we make it work
with 2 threads?

10717-214/514

Principles of Software Construction:
Objects, Design, and Concurrency

Events Everywhere!

Claire Le Goues Bogdan Vasilescu

10817-214/514

Model View Controller in Santorini?

https://overiq.com/django-1-10/mvc-pattern-and-django/

10917-214/514

TicTacToe

Backend
(Java/Node):
Data, logic,
rendering

Frontend
(Browser, HTML,
JavaScript):
Text, buttons

http calls

JSON

NanoHTTPd

/newgame

11017-214/514

Useful analogy: Spreadsheets
Cells contain data or
formulas

Formula cells are
computed automatically
whenever input data
changes

11117-214/514

Reactive Programming and GUIs
Store state in observable cells, possibly derived
Have GUI update automatically on state changes
Have buttons perform state changes on cells

Mirrors active model-view-controller
pattern, discussed later
(model is observable cell)

11217-214/514

https://refactoring.guru/design-patterns/adapter

11317-214/514

Adapters for Collections/Streams/Observables

Any others?

var lines = IOHelper.readLinesFromFile(file);
var linesObs = Observable.fromIterable(lines);
linesObs.
 map(Parser::getURLColumn).
 groupBy(...).
 sorted(comparator).
 subscribe(IOHelper.writeToFile(outFile));

11417-214/514

Principles of Software Construction:
Objects, Design, and Concurrency

Immutability, Promises, Patterns

Claire Le Goues Bogdan Vasilescu

11517-214/514

Where we are

Subtype
Polymorphism ✓

Information Hiding,
Contracts ✓

Immutability ✓

Types ✓
Static Analysis ✓

Unit Testing ✓

Domain Analysis ✓

Inheritance & Del. ✓

Responsibility
Assignment,

Design Patterns,
Antipattern ✓

Promises/
Reactive P. ✓

Integration Testing ✓

GUI vs Core ✓

Frameworks and
Libraries ✓, APIs ✓

Module systems,
microservices ✓

Testing for
Robustness ✓

CI ✓, DevOps ✓,
Teams

Design for

understanding

change/ext.

reuse

robustness

...

Small scale:
One/few objects

Mid scale:
Many objects

Large scale:
Subsystems

11617-214/514

Immutable?
class Stack {
 readonly #inner: any[]
 constructor (inner: any[]) {
 this.#inner=inner
 }
 push(o: any): Stack {
 const newInner = this.#inner.slice()
 newInner.push(o)
 return new Stack(newInner)
 }
 peek(): any {
 return this.#inner[this.#inner.length-1]
 }
 getInner(): any[] {
 return this.#inner
 }
}

Inner mutable state
(List in Java)

Create copy of
mutable object
(new ArrayList(old)
in Java)

Return new
immutable object

11717-214/514

A simple function
...in sync world

11817-214/514

Event Handling in JS: Callback Hell
What if our callbacks need callbacks?

11917-214/514

Tradeoffs?

12017-214/514

Observer vs. Generator
Push vs. Pull

● In Observer, the publisher controls information flow
○ When it pushes, everyone must listen

● In generators, the listener “pulls” elements
○ Generator may only prepare the next element upon/after pull

● Which is better?
○ Generators are in a sense ‘observers’ to their clients.
○ This inversion of control can make flow management easier

12117-214/514

HW5: Santorini with God Cards and GUI

12217-214/514

Principles of Software Construction:
Objects, Design, and Concurrency

Libraries and Frameworks
(Design for large-scale reuse)

Claire Le Goues Bogdan Vasilescu

12317-214/514

Where we are

Subtype
Polymorphism ✓

Information Hiding,
Contracts ✓

Immutability ✓

Types ✓
Static Analysis ✓

Unit Testing ✓

Domain Analysis ✓

Inheritance & Del. ✓

Responsibility
Assignment,

Design Patterns,
Antipattern ✓

Promises/
Reactive P. ✓

Integration Testing ✓

GUI vs Core ✓

Frameworks and
Libraries ✓, APIs ✓

Module systems,
microservices ✓

Testing for
Robustness ✓

CI ✓, DevOps ✓,
Teams

Design for

understanding

change/ext.

reuse

robustness

...

Small scale:
One/few objects

Mid scale:
Many objects

Large scale:
Subsystems

12417-214/514

Earlier in this course: Class-level reuse
Language mechanisms supporting reuse

● Inheritance
● Subtype polymorphism (dynamic dispatch)
● Parametric polymorphism (generics)*

Design principles supporting reuse
● Small interfaces
● Information hiding
● Low coupling
● High cohesion

Design patterns supporting reuse
● Template method, decorator, strategy, composite, adapter, …

* Effective Java items 26, 29, 30, and 31

12517-214/514

Reuse and variation:
Family of development tools

12617-214/514

General distinction: Library vs. framework

Library

Framework

public MyWidget extends JContainer {

ublic MyWidget(int param) {/ setup
internals, without rendering
}

/ render component on first view and
resizing
protected void
paintComponent(Graphics g) {
// draw a red box on his
componentDimension d = getSize();
g.setColor(Color.red);
g.drawRect(0, 0, d.getWidth(),
d.getHeight());}
}

public MyWidget extends JContainer {

ublic MyWidget(int param) {/ setup
internals, without rendering
}

/ render component on first view and
resizing
protected void
paintComponent(Graphics g) {
// draw a red box on his
componentDimension d = getSize();
g.setColor(Color.red);
g.drawRect(0, 0, d.getWidth(),
d.getHeight());}
}

your code

user
interacts

your code

user
interacts

12717-214/514

Is this a whitebox or blackbox framework?
public abstract class Application extends JFrame {
 protected String getApplicationTitle() { return ""; }
 protected String getButtonText() { return ""; }
 protected String getInitialText() { return ""; }
 protected void buttonClicked() { }
 private JTextField textField;
 public Application() {
 JPanel contentPane = new JPanel(new BorderLayout());
 contentPane.setBorder(new BevelBorder(BevelBorder.LOWERED));
 JButton button = new JButton();
 button.setText(getButtonText());
 contentPane.add(button, BorderLayout.EAST);
 textField = new JTextField("");
 textField.setText(getInitialText());
 textField.setPreferredSize(new Dimension(200, 20));
 contentPane.add(textField, BorderLayout.WEST);
 button.addActionListener((e) -> { buttonClicked(); });
 this.setContentPane(contentPane);
 this.pack();
 this.setLocation(100, 100);
 this.setTitle(getApplicationTitle());
 ...
 }

public class Calculator extends Application {
 protected String getApplicationTitle() { return "My Great Calculator"; }
 protected String getButtonText() { return "calculate"; }
 protected String getInititalText() { return "(10 – 3) * 6"; }
 protected void buttonClicked() {
 JOptionPane.showMessageDialog(this, "The result of " + getInput() +
 " is " + calculate(getInput()));
 }
 private String calculate(String text) { ... }
}
public class Ping extends Application {
 protected String getApplicationTitle() { return "Ping"; }
 protected String getButtonText() { return "ping"; }
 protected String getInititalText() { return "127.0.0.1"; }
 protected void buttonClicked() { ... }
}

12817-214/514

Tangrams

12917-214/514

The use vs. reuse dilemma
● Large rich components are very useful, but rarely fit

a specific need
● Small or extremely generic components often fit a

specific need, but provide little benefit

“maximizing reuse minimizes use”
C. Szyperski

13017-214/514

public class Application extends JFrame {
private JTextField textfield;
private Plugin plugin;
public Application(Plugin p) { this.plugin=p; p.setApplication(this); init(); }
protected void init() {

JPanel contentPane = new JPanel(new BorderLayout());
contentPane.setBorder(new BevelBorder(BevelBorder.LOWERED));
JButton button = new JButton();
if (plugin != null)

button.setText(plugin.getButtonText());
else

button.setText("ok");
contentPane.add(button, BorderLayout.EAST);
textfield = new JTextField("");
if (plugin != null)

textfield.setText(plugin.getInititalText());
textfield.setPreferredSize(new Dimension(200, 20));
contentPane.add(textfield, BorderLayout.WEST);
if (plugin != null)

button.addActionListener(/* … plugin.buttonClicked();… */);
this.setContentPane(contentPane);
…

}
 public String getInput() { return textfield.getText();}

}

The cost of changing a framework

public class CalcPlugin implements Plugin {
private Application application;
public void setApplication(Application app) { this.application = app; }
public String getButtonText() { return "calculate"; }
public String getInititalText() { return "10 / 2 + 6"; }
public void buttonClicked() {
JOptionPane.showMessageDialog(null, "The result of "

+ application.getInput() + " is "
+ calculate(application.getText())); }

public String getApplicationTitle() { return "My Great Calculator"; }
}

public interface Plugin {
 String getApplicationTitle();
 String getButtonText();
 String getInititalText();
 void buttonClicked() ;
 void setApplication(Application app);
}

class CalcStarter { public static void main(String[] args) {
new Application(new CalcPlugin()).setVisible(true); }}

Consider adding an extra method.
Requires changes to all plugins!

13117-214/514

GUI-based plugin management

13217-214/514

Principles of Software Construction

API Design

Claire Le Goues Bogdan Vasilescu
(Many slides originally from Josh Bloch)

13317-214/514

Where we are

Subtype
Polymorphism

Information Hiding,
Contracts

Immutability

Types

Unit Testing

Domain Analysis

Inheritance & Deleg.

Responsibility
Assignment,

Design Patterns,
Antipattern

Promises/Reactive P.

Integration Testing

GUI vs Core

Frameworks and
Libraries, APIs

Module systems,
microservices

Testing for
Robustness

CI, DevOps, Teams

Design for

understanding

change/ext.

reuse

robustness

...

Small scale:
One/few objects

Mid scale:
Many objects

Large scale:
Subsystems

13417-214/514

API: Application Programming Interface
● An API defines the boundary between components/modules in a

programmatic system

13517-214/514

Hyrum’s Law
“With a sufficient number of users of
an API, it does not matter what you
promise in the contract: all
observable behaviors of your
system will be depended on by
somebody.”

https://xkcd.com/1172/

https://www.hyrumslaw.com/

https://xkcd.com/1172/
https://www.hyrumslaw.com/

13617-214/514

The process of API design – 1-slide version
Not sequential; if you discover shortcomings, iterate!

1. Gather requirements skeptically, including use cases
2. Choose an abstraction (model) that appears to address use

cases
3. Compose a short API sketch for abstraction
4. Apply API sketch to use cases to see if it works

○ If not, go back to step 3, 2, or even 1
5. Show API to anyone who will look at it
6. Write prototype implementation of API
7. Flesh out the documentation & harden implementation
8. Keep refining it as long as you can

13717-214/514

Sample Early API Draft
// A collection of elements (root of the collection hierarchy)
public interface Collection<E> {

 // Ensures that collection contains o
 boolean add(E o);

 // Removes an instance of o from collection, if present
 boolean remove(Object o);

 // Returns true iff collection contains o
 boolean contains(Object o);

 // Returns number of elements in collection
 int size();

 // Returns true if collection is empty
 boolean isEmpty();

 ... // Remainder omitted
}

13817-214/514

Aside: The Factory Method Design Pattern

From: https://refactoring.guru/design-patterns/factory-method

+ Object creation separated from object
+ Able to hide constructor from clients,

control object creation
+ Able to entirely hide implementation

objects, only expose interfaces + factory
+ Can swap out concrete class later
+ Can add caching (e.g. Integer.from())
+ Descriptive method name possible

- Extra complexity
- Harder to learn API and write code

https://refactoring.guru/design-patterns/factory-method

13917-214/514

Principles of Software Construction

API Design (Part 2)

Claire Le Goues Bogdan Vasilescu
(With slides from Josh Bloch & Christian Kästner)

14017-214/514

Principle: Minimize conceptual weight
● API should be as small as possible but no smaller

○ When in doubt, leave it out

● Conceptual weight: How many concepts must a
programmer learn to use your API?

○ APIs should have a "high power-to-weight ratio"

14117-214/514

Boilerplate Code
 import org.w3c.dom.*;
 import java.io.*;
 import javax.xml.transform.*;
 import javax.xml.transform.dom.*;
 import javax.xml.transform.stream.*;

 /** DOM code to write an XML document to a specified output stream. */
 static final void writeDoc(Document doc, OutputStream out) throws IOException{
 try {
 Transformer t = TransformerFactory.newInstance().newTransformer();
 t.setOutputProperty(OutputKeys.DOCTYPE_SYSTEM, doc.getDoctype().getSystemId());
 t.transform(new DOMSource(doc), new StreamResult(out)); // Does actual writing
 } catch(TransformerException e) {
 throw new AssertionError(e); // Can’t happen!
 }
 }

• Generally done via cut-and-paste
• Ugly, annoying, and error-prone

14217-214/514

14317-214/514

Principle: Favor composition over inheritance
// A Properties instance maps Strings to Strings

public class Properties extends HashTable {

 public Object put(Object key, Object value);

 …

}

public class Properties {

 private final HashTable data = new HashTable();

 public String put(String key, String value) {

 data.put(key, value);

 }

 …

14417-214/514

REST API
API of a web service

Uniform interface over HTTP requests

Send parameters to URL, receive data
(JSON, XML common)

Stateless: Each request is self-contained

Language independent, distributed

14517-214/514

Software Ecosystem

14617-214/514

Upstream Downstream

Extra Work

Avoiding dependencies
Encapsulating from change

14717-214/514

HW6: Data Analytics Framework

14817-214/514

Principles of Software Construction

Version Control with Git

Claire Le Goues Bogdan Vasilescu

14917-214/514

Highly recommended

https://git-scm.com/book/en/v2

• (second) most useful life skill you
will have learned in 214/514

15017-214/514

Distributed version control
● Clients fully mirror the

repository
○ Every clone is a full backup of

all the data

● E.g., Git, Mercurial, Bazaar

https://git-scm.com/book/en/v2/Getting-Started-About-Version-Control

15117-214/514

Aside: Git process

© Scott Chacon “Pro Git”

15217-214/514

Principles of Software Construction

Version Control in the Wild

Claire Le Goues Bogdan Vasilescu

15317-214/514

error: failed to push some refs to '/path/to/repo.git'
hint: Updates were rejected because the tip of your current branch is behind its
remote counterpart. Merge the remote changes (e.g. 'git pull') before pushing again.
See the 'Note about fast-forwards' in 'git push --help' for details.

git push origin main

15417-214/514

Semantic Versioning
Given a version number MAJOR.MINOR.PATCH,
increment the:
1. MAJOR version when you make incompatible API changes,
2. MINOR version when you add functionality in a backwards

compatible manner, and
3. PATCH version when you make backwards compatible bug

fixes.

15517-214/514

Diff lifecycle: local testing

15617-214/514

Release every two weeks

15717-214/514

15817-214/514

Monorepos in industry

15917-214/514

Common build system

16017-214/514

Principles of Software Construction: Objects,
Design, and Concurrency

{Static & Dynamic} x {Typing & Analysis}

Claire Le Goues Bogdan Vasilescu

16117-214/514

How Do You Find Bugs?
● Run it?

16217-214/514

Static vs. Dynamic Typing
Okay, but:

https://octoverse.github.com/#geographical-distribution-of-active-users

16317-214/514

Static Analysis
● How?

○ Program analysis +
Vocabulary of patterns

https://deepsource.io/blog/introduction-static-code-analysis/

16417-214/514

Soundness & Precision
● Since we can’t perfectly analyze behavior statically

○ We may miss things by being cautious (unsound; false
negative)

○ We might identify non-problems (imprecision, false positive)

16517-214/514

TriCorder

16617-214/514

● Use more complicated logic
○ One example: Infer, at Facebook
○ (Google claims this won’t (easily)

scale to their mono-repo.)
● Use AI?

○ Facebook: Getafix, also integrates
with SapFix

○ Amazon: CodeGuru
○ Microsoft: IntelliSense in VSCode,

mostly refactoring/code
completion, trained on large
volumes of code

○ Mostly fairly simple ML (details
limited)

What else could we do?

16717-214/514

Principles of Software Construction:
Objects, Design, and Concurrency

A Quick Tour of all
23 GoF Design Patterns

Claire Le Goues Bogdan Vasilescu

16817-214/514

Where we are

Subtype
Polymorphism ✓

Information Hiding,
Contracts ✓

Immutability ✓

Types

Unit Testing ✓

Domain Analysis ✓

Inheritance & Del. ✓

Responsibility
Assignment,

Design Patterns,
Antipattern ✓

Promises/
Reactive P. ✓

Integration Testing ✓

GUI vs Core ✓

Frameworks and
Libraries ✓, APIs ✓

Module systems,
microservices ✓

Testing for
Robustness ✓

CI ✓, DevOps,
Teams

Design for

understanding

change/ext.

reuse

robustness

...

Small scale:
One/few objects

Mid scale:
Many objects

Large scale:
Subsystems

16917-214/514

● Published 1994

● 23 Patterns

● Widely known

17017-214/514

I. Creational Patterns

1. Abstract factory

2. Builder

3. Factory method

4. Prototype

5. Singleton

17117-214/514

Singleton Illustration
public class Elvis {
 private static final Elvis ELVIS = new Elvis();
 public static Elvis getInstance() { return ELVIS; }
 private Elvis() { }
 ...
}

const elvis = { … }
function getElvis() {

export { getElvis }

17217-214/514

II. Structural Patterns
1. Adapter

2. Bridge

3. Composite

4. Decorator

5. Façade

6. Flyweight

7. Proxy

17317-214/514

Decorator vs Strategy?
interface GameLogic {

isValidMove(w, x, y)

move(w, x, y)

}

class BasicGameLogic

implements GameLogic { … }

class AbstractGodCardDecorator

implements GameLogic { … }

class PanDecorator

extends AbstractGodCardDecorator

implements GameLogic { … }

interface GameLogic {

isValidMove(w, x, y)

move(w, x, y)

}

class BasicGameLogic

implements GameLogic {

constructor(board) { … }

isValidMove(w, x, y) { … }

move(w, x, y) { … }

}

class PanDecorator

extends BasicGameLogic {

move(w, x, y} { /* super.move(w,

x, y) + checkWinner */ }

}

17417-214/514

III. Behavioral Patterns
1. Chain of Responsibility
2. Command
3. Interpreter
4. Iterator
5. Mediator
6. Memento
7. Observer
8. State
9. Strategy

10. Template method
11. Visitor

17517-214/514

Principles of Software Construction:
Objects, Design, and Concurrency

Design for Robustness:
Distributed Systems

Bogdan Vasilescu Claire Le Goues

17617-214/514

Where we are

Subtype
Polymorphism ✓

Information Hiding,
Contracts ✓

Immutability ✓

Types ✓

Unit Testing ✓

Domain Analysis ✓

Inheritance & Del. ✓

Responsibility
Assignment,

Design Patterns,
Antipattern ✓

Promises/
Reactive P. ✓

Integration Testing ✓

GUI vs Core ✓

Frameworks and
Libraries ✓, APIs ✓

Module systems,
microservices

(Testing for)
Robustness

CI ✓, DevOps ✓,
Teams

Design for

understanding

change/ext.

reuse

robustness

...

Small scale:
One/few objects

Mid scale:
Many objects

Large scale:
Subsystems

17717-214/514

Where did we start?

17817-214/514

Database Server

Credit card server

Android Phone

17917-214/514

18017-214/514

Proxy Design Pattern
● Local representative for remote object

○ Create expensive obj on-demand
○ Control access to an object

● Hides extra “work” from client
○ Add extra error handling, caching
○ Uses indirection

https://refactoring.guru/design-patterns/proxy

18117-214/514

For example:

● 3rd party Facebook apps
○ Android user interface
○ Backend uses Facebook data

How do we test this?

18217-214/514

Test Doubles
● Stand in for a real object under test
● Elements on which the unit testing depends (i.e.

collaborators), but need to be approximated because
they are
○ Unavailable
○ Expensive
○ Opaque
○ Non-deterministic

● Not just for distributed systems!

http://www.kickvick.com/celebrities-stunt-doubles

http://www.kickvick.com/celebrities-stunt-doubles

18317-214/514

Design: Testability
● Single responsibility principle
● Dependency Inversion Principle (DIP)

○ High-level modules should not depend on low-level modules; both should
depend on abstractions. Abstractions should not depend on details. Details
should depend upon abstractions.

● Law of Demeter: Don’t acquire dependencies through
dependencies.

○ avoid: this.getA().getB().doSomething()
● Use factory pattern to instantiate new objects, rather than new.
● Use appropriate tools, e.g., dependency injection or mocking

frameworks

18417-214/514

Principles of Software Construction:
Objects, Design, and Concurrency

DevOps

Claire Le Goues Bogdan Vasilescu

18517-214/514

Where we are

Subtype
Polymorphism ✓

Information Hiding,
Contracts ✓

Immutability ✓

Types ✓
Static Analysis ✓

Unit Testing ✓

Domain Analysis ✓

Inheritance & Del. ✓

Responsibility
Assignment,

Design Patterns,
Antipattern ✓

Promises/
Reactive P. ✓

Integration Testing ✓

GUI vs Core ✓

Frameworks and
Libraries ✓, APIs ✓

Module systems,
microservices ✓

Testing for
Robustness ✓

CI ✓, DevOps,
Teams

Design for

understanding

change/ext.

reuse

robustness

...

Small scale:
One/few objects

Mid scale:
Many objects

Large scale:
Subsystems

18617-214/514

18717-214/514

Aside: The role of signaling

https://blog.devops4me.com/status-badges-in-azure-devops-pipelines/

18817-214/514

Release management
with branches

18917-214/514

19017-214/514

19117-214/514

Heavy Tooling and Automation

19217-214/514

A/B Testing

19317-214/514

Looking Forward:
Beyond Code-Level Concerns

19417-214/514

Where we are

Subtype
Polymorphism ✓

Information Hiding,
Contracts ✓

Immutability ✓

Types ✓
Static Analysis ✓

Unit Testing ✓

Domain Analysis ✓

Inheritance & Del. ✓

Responsibility
Assignment,

Design Patterns,
Antipattern ✓

Promises/
Reactive P. ✓

Integration Testing ✓

GUI vs Core ✓

Frameworks and
Libraries ✓, APIs ✓

Module systems,
microservices ✓

Testing for
Robustness ✓

CI ✓, DevOps ✓,
Teams

Design for

understanding

change/ext.

reuse

robustness

...

Small scale:
One/few objects

Mid scale:
Many objects

Large scale:
Subsystems

19517-214/514

This Course
We focused on code-level concerns

Writing maintainable, extensible, robust, and correct
code

Design from classes to subsystems

Testing, concurrency, basic user interfaces

19617-214/514
196

19717-214/514

19817-214/514

19917-214/514

“But we’re CMU students and we
are really, really smart!”

20017-214/514

Software Engineering?

What is engineering? And how is it different from
hacking/programming?

20117-214/514

“Software Engineering” was a provocative term

1968 NATO Conference on Software
Engineering

20217-214/514

Compare to other forms of engineering
● e.g., Producing a car or bridge

○ Estimable costs and risks

○ Well-defined expected results

○ High quality

● Separation between plan and production

● Simulation before construction

● Quality assurance through measurement

● Potential for automation

20317-214/514

From Programming to Software Engineering

20417-214/514

20517-214/514

What happened with HealthCare.gov?
● Poor team and process coordination.

● Changing requirements.

● Inadequate quality assurance infrastructure.

● Architecture unsuited to the ultimate system load.

But….why??

20617-214/514

Boeing 737 MAX

20717-214/514

Software is written by humans
Sociotechnical system: interlinked system of people,
technology, and their environment
Key challenges in how to
● identify what to build (requirements)
● coordinate people building it (process)
● assure quality (speed, safety, fairness)
● contain risk, time and budget (management)
● sustain a community (open source, economics)

20817-214/514

Requirements

20917-214/514

Requirements
● What does the customer want?

● What is required, desired, not necessary? Legal, policy constraints?

● Customers often do not know what they really want; vague, biased
by what they see; change their mind; get new ideas…

● Difficult to define requirements precisely

● (Are we building the right thing? Not: Are we building the thing
right?)

209

21017-214/514
210

21117-214/514

21217-214/514

Interviews

21317-214/514

21417-214/514

Process

21517-214/514

How to develop software?
1. Discuss the software that needs to be written

2. Write some code

3. Test the code to identify the defects

4. Debug to find causes of defects

5. Fix the defects

6. If not done, return to step 1

21617-214/514

Software Process
“The set of activities and associated results that
produce a software product”

What makes a good process?

Sommerville, SE, ed. 8

21717-214/514

Percent
of
Effort

TimeProject
beginning

Project
end

100%

0%

21817-214/514

Percent
of
Effort

TimeProject
beginning

Project
end

100%

0%

Trashing / Rework

Productive Coding

21917-214/514

Percent
of
Effort

TimeProject
beginning

Project
end

100%

0%

Trashing / Rework

Productive Coding

Process: Cost and Time estimates, Writing Requirements, Design,
Change Management, Quality Assurance Plan,

Development and Integration Plan

22017-214/514

Percent
of
Effort

TimeProject
beginning

Project
end

100%

0%

Productive Coding

 Trashing / Rework

 Process

22117-214/514

Percent
of
Effort

TimeProject
beginning

Project
end

100%

0%

Productive Coding

Process

Trashing / Rework

22217-214/514

Example process issues
● Change Control: Mid-project informal agreement to changes suggested by customer or

manager. Project scope expands 25-50%

● Quality Assurance: Late detection of requirements and design issues. Test-debug-reimplement
cycle limits development of new features. Release with known defects.

● Defect Tracking: Bug reports collected informally, forgotten

● System Integration: Integration of independently developed components at the very end of the
project. Interfaces out of sync.

● Source Code Control: Accidentally overwritten changes, lost work.

● Scheduling: When project is behind, developers are asked weekly for new estimates.

22317-214/514

Process Costs

n(n − 1) / 2
communication links

22417-214/514

Process Costs

22517-214/514

Large teams (29 people) create around six times
as many defects as small teams (3 people) and
obviously burn through a lot more money. Yet,
the large team appears to produce about the
same mount of output in only an average of 12
days’ less time. This is a truly astonishing finding,
through it fits with my personal experience on
projects over 35 years.

- Phillip Amour, 2006, CACM 49:9

22617-214/514

Conway’s Law

“Any organization that designs a system (defined
broadly) will produce a design whose structure is a
copy of the organization's communication
structure.”

— Mel Conway, 1967

“If you have four groups working on a compiler,
you'll get a 4-pass compiler.”

22717-214/514

Module C

Module A

Module B

Congruence

22817-214/514

The Manifesto for Agile Software
Development (2001)

228

Value

Individuals and
interactions

over Processes and tools

Working software over
Comprehensive
documentation

Customer collaboration over Contract negotiation

Responding to change over Following a plan

22917-214/514

Pair Programming

Driver

Navigator

23017-214/514

Scrum Process

230

23117-214/514

Planning

23217-214/514

Measuring Progress?
“I’m almost done with the X. Component A is almost
fully implemented. Component B is finished except
for the one stupid bug that sometimes crashes the
server. I only need to find the one stupid bug, but
that can probably be done in an afternoon?”

23317-214/514

Almost Done Problem

● Last 10% of work -> 40%
of time
(or 20/80)

● Make progress
measureable

● Avoid depending entirely
on developer estimations

233
time

%
 c

o
m

p
le

te
d

90
%

10

0%

reported
progress

planned actual

23417-214/514

Measuring Progress?
● Developer judgment: x% done

● Lines of code?

● Functionality?

● Quality?

23517-214/514

Project Planning
Identify constraints

Estimate project
parameters

Define milestones

Create schedule

activities begin

Check progress

Reestimate project
parameter

Refine schedule

renegotiate
constraints

Technical review

Problem?

no

yes

Done?
yes

no

Abort?

Budget,
Personal,
Deadlines

eve
ry 2-3

weeks
new

feature
requests

23617-214/514

Reasons for Missed Deadlines
● Insufficient staff (illnesses, staff turnover, ...)

● Insufficient qualitication

● Unanticipated difficulties

● Unrealistic time estimations

● Unanticipated dependencies

● Changing requirements, additional requirements

● Especially in student projects

○ Underestimated time for learning technologies

○ Uneven work distribution

○ Last-minute panic.

23717-214/514

Team productivity

237

● Brook's law: Adding people to a late software project
makes it later.

23817-214/514

π
Estimating effort

23917-214/514

Software Architecture

24017-214/514

Requirements

Miracle /
genius developers

Implementation

Architecture

24117-214/514

Software Architecture
"The software architecture of a computing system is
the set of structures needed to reason about the
system, which comprise software elements, relations
among them, and properties of both."

[Clements et al. 2010]

24217-214/514

Design vs. Architecture
Design Questions

● How do I add a menu item in Eclipse?

● How can I make it easy to add menu
items in Eclipse?

● What lock protects this data?

● How does Google rank pages?

● What encoder should I use for secure
communication?

● What is the interface between objects?

Architectural Questions

● How do I extend Eclipse with a plugin?

● What threads exist and how do they
coordinate?

● How does Google scale to billions of
hits per day?

● Where should I put my firewalls?

● What is the interface between
subsystems?

24317-214/514

Case Study:
Architecture Changes at Twitter

24417-214/514

24517-214/514

24617-214/514

Caching

24717-214/514

Redesign Goals
● Improve median latency; lower outliers

● Reduce number of machines 10x

● Isolate failures

● "We wanted cleaner boundaries with “related” logic being in one place"

○ encapsulation and modularity at the systems level (rather than at the class, module, or
package level)

● Quicker release of new features

○ "run small and empowered engineering teams that could make local decisions and ship
user-facing changes, independent of other teams"

performance

modifiability

maintainability

reliability

24817-214/514

Outcome: Rearchitecting Twitter
"This re-architecture has not only made the service more
resilient when traffic spikes to record highs, but also
provides a more flexible platform on which to build more
features faster, including synchronizing direct messages
across devices, Twitter cards that allow Tweets to become
richer and contain more content, and a rich search experience
that includes stories and users."

24917-214/514

Was the original architect wrong?

25017-214/514

Beyond testing: QA and Process
Many QA approaches

Code review, static analysis, formal verification, …

Which to use when, how much?

25117-214/514

How to get students to write tests?

25217-214/514

“We had initially scheduled time to write tests for both
front and back end systems, although this never

happened.”

25317-214/514

“Due to the lack of time, we could only conduct
individual pages’ unit testing. Limited testing was done
using use cases. Our team felt that this testing process

was rushed and more time and effort should be
allocated.”

25417-214/514

Time estimates (in hours):

Activity Estimated Actual

testing plans 3 0

unit testing 3 1

validation testing 4 2

test data 1 1

25517-214/514

How to get developers to write tests?

25617-214/514

Test Driven Development
● Tests first!

● Popular agile technique

● Write tests as specifications before code

● Never write code without a failing test

● Claims:

• Design approach toward testable design

• Think about interfaces first

• Avoid writing unneeded code

• Higher product quality (e.g. better code, less defects)

• Higher test suite quality

• Higher overall productivity
(CC BY-SA 3.0)
Excirial

http://en.wikipedia.org/wiki/User:Excirial

25717-214/514

25817-214/514

How to get developers to use static analysis?

25917-214/514

15-313 Software Engineering259

https://help.github.com/articles/using-pull-requests/

26017-214/514

26117-214/514

How to get developers to use static analysis?

26217-214/514

Are code reviews worth it?

26317-214/514

Advertisement: SE @ CMU
Many courses

Spring: SE for Startups, ML in Production, Program Analysis, WebApps, Foundations of SE
Fall: Foundations of SE, (sometimes) API Design

Master level: Formal methods, Requirements, Architecture, Agile, QA, DevOps,
Software Project Mgmt, Scalable Systems, Embedded Sys., …

Technical foundations: ML, Distributed Systems

Many research opportunities -- contact us for pointers

https://www.cmu.edu/scs/isr/reuse/
https://se-phd.isri.cmu.edu/

Software Engineering Concentration / Minor

https://www.cmu.edu/scs/isr/reuse/
https://se-phd.isri.cmu.edu/

26417-214/514

Summary
Looking back at one semester of code-level design,
testing, and concurrency

Looking forward to human aspects of software
engineering, including process and requirements

