Principles of Software Construction:
Objects, Design, and Concurrency

The Last One:
Locking Back & Looking Forward

Claire Le Goues Bogdan Vasilescu

Carnegie Mellon University
School of Computer Science

institute for
I S SOFTWARE
RESEARCH

17-214/514 1 [s

Looking Back at the Semester

17-214/514 2 [|g s

RRRRRRRR

Principles of Software Construction:
Objects, Design, and Concurrency

Introduction, Overview, and Syllabus

Claire Le Goues Bogdan Vasilescu

Carnegie Mellon University
School of Computer Science

institute for
I S SOFTWARE
RESEARCH

17-214/514 | S

RRRRRRRR

Welcome to the era of "big code”

Software Size (million Lines of Code)

Moder High-end Car | ——

Facebook

Windows Vista

Large Hadron Collider
Boeing 787

Android

Google Chrome
Linux Kernel 2.6.0
Mars Curiosity Rover
Hubble Space Telescope
F-22 Raptor

Space Shuttle

17-214/514

10

20

30

40

50

60

70

80

90

100

(informal reports)

4 i

institute for
SOFTWARE
RESEARCH

From Programs to Applications and

Systems
Writing algorithms, data

structures from scratch

Functions with inputs
and outputs

Sequential and local computa

Full functional specifications

—

—
o
—

Reuse of libraries,
frameworks

Asynchronous and
reactive designs

Parallel and distributed
computation

Partial, composable,
targeted models

Our goal: understanding both the building blocks and also the

17014 design principles for construction of software systems at scale

Top languages over the years 2021 GitHub State of the Octoverse report

2014 2015 2016 2017 2018 2019 2020 2021

Java

i

TypeScript

Q
(]

74 ﬁ C++

8 E She”
9 C

10

2014 2015 2016 2017 2018 2019 2020 2021

17-214/514 6 sl

RESEARCH

-

o

User needs

~

(Requirements)

Miracle?

/

17-214/514

o

Code

Maintainable?

Testable?
Extensible?
Scalable?
Robust? ...

Which version is better?

Version A:

static void sort(int[] list, boolean ascending) {

boolean mustSwap; interface Order {
if (ascending) { boolean lessThan(int i1, int j);
mustSwap = list[i] > 119}
} else { class AscendingOrder implements Order {
mustSwap = list[i] < lid public boolean lessThan(int i, int j) { return i1 < j; .
} }
. class DescendingOrder implements Order {
} public boolean lessThan(int i, int j) { return 1 > j;
}

static void sort(int[] list, Order order) {

Version B': boolean mustSwap =
order.lessThan(list[j], list[i]);

17-214/514

It depends

Depends on what? In this specific case, what
What are scenarios? would you recommend?
What are tradeoffs? (Engineering judgement)

17‘2 14/5 14 9 Sr institute for

SSSSSSSS
RRRRRRRR

Some qualities of interest, i.e., design goals

Functional
correctness

Adherence of implementation to the specifications

Robustness
Flexibility
Reusability
Efficiency
Scalability

Security

17-214/514

Ability to handle anomalous events

Ability to accommodate changes in specifications

Ability to be reused in another application

Satisfaction of speed and storage requirements

Ability to serve as the basis of a larger version of the application

Level of consideration of application security

Source: Braude, Bernstein,
Software Engineering. Wiley
2011

Semester overview

e Introduction to Object-Oriented
Programming
e Introduction to design
o Design goals, principles, patterns
e Designing objects/classes
o Design for change
o Design for reuse
e Designing (sub)systems
o Design for robustness
o Design for change (cont.)

e Design for large-scale reuse

17-214/514

Crosscutting topics:

Building on libraries and frameworks
Building libraries and frameworks
Modern development tools: IDEs,
version control, refactoring, build
and test automation, static analysis
Testing, testing, testing
Concurrency basics

SENIOR CENTER
SENIOR LENTER

WEAR A MASK
WASH YOUR HANDS
SOCIAL DISTANCE

STAY SAFE

Trying to get back to normal with ...
gestures widely™ everything

Talk to us about concerns and
accommodations

Principles of Software Construction
(Design for change, class level)

Starting with Objects
(dynamic dispatch, encapsulation, entry points)

Claire Le Goues Bogdan Vasilescu

“arnegie Mellon University
School of Computer Science

institute for
I S SOFTWARE
RESEARCH

17-214/514 13 [s

Where we are

Design for
understanding
change/ext.
reuse

robustness

17-214/514

Small scale: Mid scale: Large scale:
One/few objects Many objects Subsystems
Subtype Domain Analysis v GUI vs Core v

Polymorphism v/

Information Hiding,
Contracts v

Immutability v

Types v
Static Analysis v/

Unit Testing v/

Inheritance & Del. v

Responsibility
Assignment,
Design Patterns,
Antipattern v

Promises/
Reactive P. v

Integration Testing v/

Frameworks and
Libraries v, APIs v

Module systems,
microservices v/

Testing for
Robustness v

Cl v, DevOps v,
Teams

This is C code!

Data structures and procedures

struct {
int X3
int v;
};
void (struct , int deltax, int deltay) { p.x = ..; }
int O {
struct ={1, 3}

int deltaX = 5;
movePoint(p, 0, deltaX);

FTacse Cuuli v o

Yellow background is Java, Black is Typescript v: number;
inc(): void;

Interfaces and Objects in JasaSEaieas

add(y: number): number;

interface Counter { }
int O const_obj: Counter = {
int add(int y); v:i 1, | .
vold 0O {nc: TUﬂC'E'.l_On() { th'LS.V++;.},
get: function() { return this.v; },
} add: function(y) { return this.v + y; }
= new () {

int v = 1; _l

public int () { return this.v; }

This uses anonymous

public int (int y) { return this.v + y; } classes to create an
public void () { this.v++; } object without a class.
}; This isn’'t very common, it
’ just looks a lot like the
TS.

.out. (obj.add(obj.get()));
/] 2 y,
17-214/514 16 [o

This is Java code!

Multiple Implementations of Interface

4 I
interface Point {

int getX();

int getY(); ya
} " > R
class PolarPoint implements Point {

double len, angle;

PolarPoint(double len, double angle)

{this.len=1len; this.angle=angle;}

int getX() { return this.len * cos(this.angle);}

int getY() { return this.len * sin(this.angle); }

double getAngle() {..}

}
\Point p = new PolarPoint(5, .245);

17-214/514 17 [Jl &

Left is Java, right is Typescript

How to hide information?

class CartesianPoint {

int x,y;
(int x, int y) {
this.x=x;
this.y=y;
}
int () { return this.x; }
int () { return this.y; }
int ();
}
17-214/514

const point = {
Xx: 1, y: 0,
getX: function() {.
helper_getAngle:
function() {..}

-}

This is Typescript code! Typescript compiles to
Javascript, by the way. There

Sta rting d PI’Og ram \ are several ways to run it.

Objects do not do anything on their own, they wait for method calls

Every program needs a starting point, or waits for events

function createPrinter() {

return { Defining interfaces,
print: function() { console.log("hi"); } functions, classes

}

const printer = createPrinter(); Starting:

Creating objects and

printer.print()
calling methods

17-214/514 19 [Hl &

Principles of Software Construction:
Objects, Design, and Concurrency

IDEs, Build system, Continuous
Integration, Libraries

Bogdan Vasilescu Claire Le Goues

Carnegie Mellon University
School of Computer Science

institute for
I S SOFTWARE
RESEARCH

17-214/514 20 [s

RRRRRRRR

Abstraction, Reuse, and Programming Tools

e For each in {IDE, Build systems, libraries, Cl}:
o Whatis it today?
o What is under the hood?

e What is next?

17-214/514 21 iy

Under the Hood: IDEs

Automate common programming actions, like debugging, which is often the
default mode when you run in the IDE (like in VSCode)

@ IntelliJIDEA File Edit View Navigate Code Refactor Build Run Tools Git Window Help s © ¢C O € 3 =] Mon Jan 24 7:30 PM
@ java - Main.java
java = src) main) java) edu) cmu) cs214) hw1) &5 Main &) main L~ Add Configuration Git: © O Q%@
g Project « DI & — README.md pom.xml (FlashCards) 3 Main.java 'm
g ajava [FlashCards] edu.cmu.cs214. hwl 1A v 8
Em > g
” > cards \
: v src
3 > main i
Main {
~ v IEVE] ©
" N edu.cmu.cs214.hw1 =
3 > cards Main() {
o
> > cli
E > data UnsupportedOperationException()
] > ordering }
2 Main
v .) String[] args) I0Exception {
> Run 'Main.main()" ~OR _ :
20 . 2)ns, extract command line arguments, fill in the relevant objects based on it.
Debug 'Main.main()' ~AOD . -
v REC X CardLoader() .loadCardsFromFile(File()
€, Run 'Main.main()' with Coverage
Modity Run Configuration.s CardDeck(cards.getAllCards() CardShuffler())
o . ; .cardDeck)
i .gitignore

checkstyle.xml ¥

pom.xml 9

README.md ¥

> s External Libraries ‘
17-2 “p Scratches and Consoles y- &A,?Er

Quick overview of today’s toolchain: Build Systems

How does this happen?

| C++source#1 O | #1with MSP430gcc 453 x|

LIESESESEY | MsPasgec 453 = | compleroptons.
/7 H de here, 1 d 1=, o o
= ’4 ype your code here, or losd an 2xampls ‘ 11010 X = g == j m A ‘ A ’ + I‘

3 return num * num; f{ 1

+

2 /C*‘.‘..*.‘.‘l.‘........

3 * Function ‘square(int)’'

4 -“.‘..“t.ttlttﬂ.ll#‘l/
5 square(int):

6

7

8

9

10

11

12| mov -6(ra), rie
13 mov -6(r4), ri2
14 call # mulhi3
15 ris, ris

17-21¢ T TN < 1

institute for
SOFTWARE
RESEARCH

™ <?xml version encoding
<project xmlns
xmins:

2 :schemalLocation

p <modelVersion>4.0.0</modelVersion>

Maven Phases

Although hardly a comprehensive list, these are the most common default lifecycle phases executed.

= validate: validate the project is correct and all necessary information is available

= compile: compile the source code of the project

= test: test the compiled source code using a suitable unit testing framework. These tests should not require the codg

= package: take the compiled code and package it in its distributable format, such as a JAR.

= [ntegration-test: process and deploy the package if necessary into an environment where integration tests can be
= any checks to verify the package is valid and meets quality criteria

stall the package into the local repository, for use as a dependency in other projects locally

=tone in an integration or release environment, copies the final package to the remote repository for sharing

There are two other Maven lifecycles of note beyond the default list above. They are
= clean: cleans up artifacts created by prior builds

= site: generates site documentation for this project

<scope>test</scope>

https://maven.apache.org/guides/getting- </dependency>
started/maven-in-five-minutes.htmi A P T,

pal 4 Build € Dependencies

17-214/514 24 [s

RESEARCH

Under the Hood: Libraries & Frameworks

Which kind is a command-line parsing package?
Which kind is Android?

How about a tool that runs tests based on annotations you add in your code?

Framework Library |

Library 2
Application

c
ke,
)
(q°]
Y
a
‘oL
<

Library 3

17-214/514 http://tom.lokhorst.eu/2010/09/why-libraries-are-better-than-frameworks’

SOF’ E
RRRRRRRR

HW1: Extending the Flash Card System

17-214/514 26 [v

RRRRRRRR

Principles of Software Construction:
Objects, Design, and Concurrency

Specifications and unit testing,

|
exceptions
Claire Le Goues Bogdan Vasilescu
glurm‘gic Mellon University
School of Computer Science

institute for
I S SOFTWARE
RESEARCH

17-214/514 27 [i

Where we are

Design for
understanding
change/ext.
reuse

robustness

17-214/514

Small scale: Mid scale: Large scale:
One/few objects Many objects Subsystems
Subtype Domain Analysis v GUI vs Core v

Polymorphism v

Information Hiding,
Contracts v

Immutability v

Types v
Static Analysis v/

Unit Testing v

Inheritance & Del. v

Responsibility
Assignment,
Design Patterns,
Antipattern v

Promises/
Reactive P. v

Integration Testing v/

Frameworks and

Libraries v, APIs v

Module systems,
microservices v/

Testing for
Robustness v

Cl v, DevOps v,
Teams

institut r
SSSSSSSS
RRRRRRRR

Who's to blame?

()

Algorithms.shortestDistance(g, “Tom”, “Anne”);

> ArrayOutOfBoundsException

17-214/514 29 Lo

Most real-world code has a contract

o Imperative to build systems that scale!

e Thisis why we:
o Encode specifications
o Tlest

Hidden from Hidden from
service* client service* provider

Service* interface

Service*
implementation

* service = object,
subsystem, ...

17-2 14/5 14 30 Sf gégi{%

Java’s exception hierarchy (messy)

Object

/
Throwable

— T

Exception Error

\

StackOverflowError

RuntimeException

I0Except iched Exceptions

.- ClassNotFoundException
EOFException

FileNotFoundException

NullPointerException

IndexOutOfBoundsException

17-214/514 31 [e

RRRRRRRR

Testing

How do we know
this works?

Testing

Are we done?

17-214/514

int isPos(int x) {
return x >= 1;

}

@Test
void testIsPos() {
assertTrue(isPos(1));

}

@Test
void testNotPos() {
assertFalse(isPos(-1));

}

This is Java code

32 [Hi

institute for
SOFTWARE
RESEARCH

Docstring Specification

class RepeatingCardOrganizer {

/**
* Checks if the provided card has been answered correctly the required
number of times.
* @param card The {@link CardStatus} object to check.
* @return {@code true} if this card has been answered correctly at least
{@code this.repetitions} times.
*/
public boolean isComplete(CardStatus card) {
// IGNORE THIS WHEN SPECIFICATION TESTING!
}
}

17-214/514 33 Lo

This is Java code

Boundary Value Testing

We cannot test for every integer. int isPos(int x) {
return x >= 0; // What i1f?
}
Choose representative values: @Test
1 for positives, -1 for negatives voild testiIsPos() {
assertTrue(isPos(1));
}
And boundary cases: 0 is a likely @Test
candidate for mistakes void testOIsNotPos() {
assertFalse(isPos(0)); // Fails
e Think like an attacker }

17-214/514 34 [s

Principles of Software Construction:
Objects, Design, and Concurrency

Test case design

Claire Le Goues Bogdan Vasilescu

Carnegie Mellon University
School of Computer Science

institute for
I S SOFTWARE
RESEARCH

17-214/514 35 [

Specification vs. Structural Testing

o Specification-based testing: test solely the
specification
o Ignores implementation, use inputs/outputs only
o Typical objective: Cover all specified behavior

o Structural Testing: consider implementation
o Typical objective: Optimize for various kinds of code
coverage

B Line, Statement, Data-flow, etc.

17-214/514

CreditWallet.pay()

public boolean pay(int cost, boolean useCredit) {
if (useCredit) {
if (enoughCredit) {
return true;
}
}

Enough [Enoug
Credit Coverage
if (enoughCash) { .M

return true;

) Pass
; return false; 2 =) n Pass B
3 F - F Fails Statement

17-214/514 37 Lo

Control-Flow of CreditCard.pay()

Paths:

{true, true}: pay w/credit
{false, true}: pay w/cash
{false, false}: falil

{true, false, true}: pay w/cash
after failing credit

e {true, false, false}: try credit,
but

fail, and no cash

17-214/514 38 [j o

RRRRRRRR

Writing Testable Code

Aim to write easily testable code

e \Which is almost by definition more modular

public List<String> getlLines(String path) throws IOException {
return Files.readAllLines(Path.of(path));
}

public boolean hasHeader(List<String> lines) {
return !lines.get(0).isEmpty()
}

// Test:
// - hasHeader with empty, non-empty first line
// - getLines (if you must) with null, real path

17-214/514 39 Lo

Boundary Value Testing

We need a strategy to identify plausible mistakes

e Boundary Value Testing: errors often occur at boundary conditions
o ldentify equivalence partitions: regions where behavior should be the same
m cost <= money: true, cost > money: false
m Boundary value: cost == money

/** Returns true and subtracts cost if enough
* money is available, false otherwise.
%)
public boolean pay(int cost) {
if (cost | this.money) {
this.money -= cost;
return true;

}

return false;

17-214/514 40 sl

RESEARCH

HW 2: Testing the Flash Card System

17-214/514 a1 | s

RRRRRRRR

Principles of Software Construction:
Objects, Design, and Concurrency

Object-oriented Analysis

Claire Le Goues Bogdan Vasilescu

glﬂrm‘gic Mellon University
School of Computer Science
. . .
institute for
I S SOFTWARE
RESEARCH

17-214/514 a2 [y

Where we are

Design for
understanding
change/ext.
reuse

robustness

17-214/514

Small scale: Mid scale: Large scale:
One/few objects Many objects Subsystems
Subtype Domain Analysis v GUI vs Core v

Polymorphism v

Information Hiding,
Contracts v

Immutability v

Types v
Static Analysis v/

Unit Testing v/

Inheritance & Del. v

Responsibility
Assignment,
Design Patterns,
Antipattern v

Promises/
Reactive P. v

Integration Testing v/

Frameworks and

Libraries v, APIs v

Module systems,
microservices v/

Testing for
Robustness v

Cl v, DevOps v,
Teams

nstitute for
SSSSSSSS
RRRRRRRR

Solution
Space

Problem
Space

| O LInE | (Object Model) |
MOdeI) v
e Real-world concepts e System implementation
e Requirements, Concepts e (lasses, objects
e Relationships among concepts e References among objects and
e Solving a problem inheritance hierarchies
e Building a vocabulary e Computing a result

e Finding a solution
17-214/514 a4 g o

RRRRRRRR

An object-oriented design process

—

Model / diagram the problem, define concepts

e Domain model (a.k.a. conceptual model), glossary OO Analysis:
Define system behaviors - Understanding
e System sequence diagram the problem

e System behavioral contracts

J \

Assign object responsibilities, define interactions

e Object interaction diagrams OO Design:
Model / diagram a potential solution - Defining d
e Object model solution

17'2 14/5 14 45 Sf ms:tuteior

SSSSSSSS

Visual notation: UML

Name of
real-world
concept

(not software class)

Properties
of concept

17-214/514

Library Account

accountlD
lateFees

Book
borrow title
1 * | author
Associations
between Multiplicities/cardinalities
concepts indicate “how many”

o
institute for
4 6 SOFTWARE
RESEARCH

One domain model for the library system
I

l
L\me——’“\b hag man I;:?
©n (<8 100(
\{’/w_——’——_‘} ‘a+(F€<
i . s a

6. %] AMDJW

.
\\M o e
\ \03 M_N\\)e‘/_ S5 ecdl T

17-214/514 47 [s

RRRRRRRR

UML Sequence Diagram Notation

User System
login(card)
>
<. _________________
borrow(book)
-

success?, due date

17-214/514

\

Actors in this
use case
(systems and
real-world
objects/people)

Time proceeds
from top to
bottom

Messages and
responses for
interactions,

text describes what
happens conceptually

o
48 institute for
SOFTWARE
RESEARCH

Principles of Software Construction:
Objects, Design, and Concurrency

Object-oriented Design

Claire Le Goues Bogdan Vasilescu

gl; lllllll gie Mellon University
School of Computer Science
. . .
institute for
I S SOFTWARE
RESEARCH

17-214/514 49 [y

Where we are

Design for
understanding
change/ext.
reuse

robustness

17-214/514

Small scale: Mid scale: Large scale:
One/few objects Many objects Subsystems
Subtype Domain Analysis v GUI vs Core v

Polymorphism v

Information Hiding,
Contracts v

Immutability v

Types v
Static Analysis v/

Unit Testing v/

Inheritance & Del. v

Responsibility
Assignment,
Design Patterns,
Antipattern v

Promises/
Reactive P. v

Integration Testing v/

Frameworks and

Libraries v, APIs v

Module systems,
microservices v/

Testing for
Robustness v

Cl v, DevOps v,
Teams

institut r
SSSSSSSS
RRRRRRRR

Topologies with different coupling

Types of module
interconnection

Structures

(A) (B) (C)

17-214/514 51 Sf :?}Eﬁ{z{%

Design Heuristic: Law of Demeter

® EFach module should have only limited knowledge

about other units: only units "closely” related to the
current unit

® |n particular: Don't talk to strangers!

® Forinstance, no a.getB().getC().foo()

for (let 1 of shipment.getBox().getItems())

shipmentWeight += i.getWeight() ..

17-214/514

Object Diagrams

Objects/classes with
fields and methods

Interfaces with
methods

Associations,
visibility, types

17-214/514

—
L ”C)(<F7 §7ﬂlcr"\ {~

- C‘Arf\d* S“Sl\oﬂ‘ Lf‘)ﬁ(‘y A(m«r\‘\'

+ login Memker{ ey Cedl ke
+ bocrow (Them ¢ L‘Lrﬁr\/nm)
+)og,ou'\- f‘\em\zef‘()

& poflete Fee [corls: k)

LS
L;L“‘?WAc(mﬁ}’

—~bo ﬁ'ow\r‘\'ﬂ\g

0%

B ,;L“ (crd Number: '\"*
- L\rshv ane 1 gsm\,a/

~ JasHNeoe = St

— lade Foes Owal I\{ﬁ_

5,Q,+ F)\r ﬁ'Nu\ (_) 4 S‘}y‘r

~ o Per(od
- late Fee

—dueD«‘)‘(v Dade
~ felurred © Date

+ éasgaah Pobuned): beokesy

+ 1§ Overdlue (correntDie: Dife)
. \ book<n

SSSSSSSS
H

Low Representational Gap

|dentified concepts provide inspiration for classes in the implementation

Classes mirroring domain concepts often
intuitive to understand, rarely change
(low representational gap)

Library Account

accountlD
lateFees

borrow

Book

17-214/514

*

title
author

class LibraryDatabase {

Map<Int, List<Int>>
borrowedBookIds;
Map<Int, Int> lateFees;
Map<Int, String>
bookTitles;
}

class DatabaseRow { .. }

Who should be responsible for
knowing the grand total of a sale?

Sale ~Captured-on Register © TARGET

07720702 10:40 AN
RETURN BEFORE 10/18/02

time id | U100

GIVING R GIFT? Include » 317t receirt!

Pa d by ‘ A receipt detad vithin 50 days is

required for all refurns § exchanses

Customer TO1 21246034! GENERAL MILL PN 2 B9

202 071100015 RIT2 CRNERS PN 2 54
S0) 212480045 PILLSBLRY PN 1 29

1 304 212140335 BC CHCN HUPR N) 69
Contains o5 071100009 WEAT DX £ 1 99
206 203700125 DCEAN SPRAY FN 189

00T 212080143 ¥ BONE DRSNG FN L]
Q08 204010136 DIDIORNO N 2.54
. . ' 909 003060057 DAUN T 1.95
Design Class Responsibility 010 071090122 HIPS WY FH 254
SUBTOTAL Q.18

Te 5.000% TAx A8

TOTAL 2.5

Sale knows sale total

Linelter] [SalesLineltem knows line item subtotal

quantity J |ProductSpecification knows product price

17-214/514 55 i

RESEARCH

| class Chat {

Antl_Pattern List<String> channels;
GOd ObJeCt Map<String, List<Msg>> messages;

Map<String, String> accounts;

class Chat { Set<String> bannedUsers;
Content content;

AccountMgr accounts;

File logFile;

File logFile; File bannedWords;
ConnectionMgr conns; URL serverAddress;

ilass ChatUT { Map<String, Int> globalSettings;
Chat chat: Map<String, Int> userSettings;
Widget sendButton, ..; Map<String, Graphic> smileys;

} CryptStrategy encryption;

class AccountMgr {

. acounts, bannedUsr.. Widget sendButton, messagelist;

}

17-29

Information Expert ->
"Do It Myself Strategy”

Expert usually leads to designs where a software object
does those operations that are normally done to the
iInanimate real-world thing it represents

o a sale does not tell you its total; it is an inanimate thing

In OO design, all software objects are "alive" or "animated,”
and they can take on responsibilities and do things.

They do things related to the information they know.

17-214/514 57 Lo

Design Goals, Principles, and Patterns

o Design Goals

o Design for change, understanding, reuse, division of labor, ...
o Design Principle

o Low coupling, high cohesion

o Low representational gap

« Design Heuristics Goals

o Law of demeter A

o Information expert Pl‘inCipleS
o Creator /\
o Controller
Heuristics Patterns

58 - ;
17-214/514 58 [H] o

RRRRRRRR

HW3: Santorini (Base game)

. HowToPlay |

Players take turns, starting with the Start Player, who first If one of your Workers moves
placed their Workers. On your turn, select one of your up on top of level 3 during
Workers. You must move and then build with the selected your turn, you instantly

Video Tulotiqls More of a visual learner? We've got
you covered! Head over to roxley.com/santorini-video
for video tutorials on how to play, as well as complete

visual demonstrations of all God Powers! Worker. win!
Sqnlorini App Can't decide which God Powers to Move your selected Q*& (2] :;?ﬁ m i:fmu':a
match up? Head over to Google Play Store or the Apple Worker into one of the (up \‘ & e s unabyl:
| App Store and download the Santorini App absolutely to) eight leIi)mng L" - < - ! lz:e
free. Complete with video tutorials, match randomizer spaces <G> you lose.

and much more! A Worker may move up a maximum of one level higher,
move down any number of levels
lower, or move along the same
level. A Worker may not move up

more than one level

\ Place the smaller side of the Cliff Pedestal {J) on
the Ocean Board), using the long and short
tabs on the Cliff Pedestal to guide assembly.

0\ Place the Island Board @ on top of the Cliff
Pedestal {J), again using the long and short tabs

18 X Domel] (22 X dewel) |15 X lovel2 14 X level 3

to guide assembly. a\
o‘ The youngest player is the Start Player, who The space your Worker moves into must be unoccupied
) begins by placing 2 Workers 0 S thosen (not containing a Worker or Dome).

color into any unoccupied spaces on the board. b -

The other player(s) then places their Workers (3. Build, ablock &) or ‘

| IX cugg Pedestal W

dome (4.) on an unoccupied
space neighboring the moved =

— <
% .‘\‘m - Worker. AN

institute for
SOFTWARE
RESEARCH

Principles of Software Construction:
Objects, Design, and Concurrency

Inheritance and delegation

Claire Le Goues Bogdan Vasilescu

Carnegie Mellon University
School of Computer Science

institute for
I S SOFTWARE
RESEARCH

17-214/514 60 [If s

Where we are

Design for
understanding
change/ext.
reuse

robustness

17-214/514

Small scale: Mid scale: Large scale:
One/few objects Many objects Subsystems
Subtype Domain Analysis v GUI vs Core v

Polymorphism v

Information Hiding,
Contracts v

Immutability v

Types v
Static Analysis v/

Unit Testing v/

Inheritance & Del.
v

Responsibility
Assignment,
Design Patterns,
Antipattern v

Promises/
Reactive P. v

Frameworks and
Libraries v, APls v

Module systems,
microservices v/

Testing for
Robustness v

Cl v, DevOps v,
Teams

ntegration Testing v

Class Hierarchy

In Java:

%{
Error [Collection]

\
[RuntimeError] [List]

[Exception]

17'214/514 62 Sf gég?ﬁ%

Inheritance enables Extension & Reuse

class Animal { class Dog extends Animal {
final String name; public Dog() A
super("dog");
public Animal(String name) { }
this.name = name; }
b

Animal animal = new Dog();
public String identify() { animal.identify(); //&k‘dog”
return this.name;
b

}

Declared Type

Compile-time Instantiated Type

Check (Java)

17-214/514

Is this Square a behavioral subtype of Rectangle?

class Rectangle { class Square extends Rectangle {
//@ invariant h>0 && w>0; //@ invariant h>0 && w>0;
int h, w; //@ invariant h==w;
Square(int w) {
Rectangle(int h, int w) { super(w, w);
this.h=h; this.w=w; }
} }

//@ requires factor > 0;
void scale(int factor) {

w=w*factor; class GraphicProgram {

h=h*factor; voild scale(Rectangle r, int factor) {
} r.setWidth(r.getWidth() * factor);
//@ requires neww > 0; }
void setWidth(int neww) { }

W=NEWW;

}

Technically yes! But: Square is not a square :(

17-214/514 64 o

RESEARCH

Reuse does not require Inheritance,
Delegation is enough

public interface PaymentCard ({ class CardData {
CardData getCardData(); private final String cardHolderName;
int getValue(); private final BigInteger digits;

boolean pay(1nt amount); private final Date expirationDate;

o

ardData(String cardHolderName,

IS this better? Integer digits, Date expirationDate) {

PaymentCard .cardHolderName = cardHolderName;

this.digits = digits;
this.expirationDate = expirationDate;

CreditCard DeditCard

S S 1 @0verride
~ \

Seo public String getCardHolderName() {
CardData return this.cardHolderName;
17-214/514 b 65 [Bff s

RESEARCH

Inheritance limits information hiding!

public class InstrumentedHashSet<E> extends HashSet<E> {
public int addCount = 0;

@verride

public boolean add(E a) {
addCount += 1;
return super.add(a);

I

@verride

public boolean addAll(Collection<? extends E> c) {
addCount += c.size();
return super.addAll(c);

public static void main(String[] args) {
InstrumentedHashSet<String> set = new

InstrumentedHashSet<String>();
set.addAll(List.of("A", "B", "C"));

System.out.println(set.addCount);

17-214/514

What will this print?

o
6 6 institute for
I S SOFTWARE
RESEARCH

Principles of Software Construction:
Objects, Design, and Concurrency

Design Patterns

Claire Le Goues Bogdan Vasilescu

Carnegie Mellon University
School of Computer Science

. . .
Institute For

I S r SOFTWARE
RESEARCH

17-214/514 67 [

Where we are

Design for
understanding
change/ext.
reuse

robustness

17-214/514

Small scale: Mid scale: Large scale:
One/few objects Many objects Subsystems
Subtype Domain Analysis v GUI vs Core v

Polymorphism v

Information Hiding,
Contracts v

Immutability v

Types v
Static Analysis v/

Unit Testing v/

Inheritance & Del. v

Responsibility
Assignment,
Design Patterns,
Antipattern v

Promises/
Reactive P. v

Integration Testing v/

Frameworks and

Libraries v, APIs v

Module systems,
microservices v/

Testing for
Robustness v

Cl v, DevOps v,
Teams

institut r
SSSSSSSS
RRRRRRRR

Discussion with design patterns

e Carpentry:
o "ls a dovetail joint or a miter joint better here?"

e Software Engineering:

o "ls a strategy pattern or a template method better here?"
=
E N

=
-

17-214/514 69 Lo

History:
Design Patterns %;'
(1994)]

SIS ONILOdWOD TWNOISSTIOND ATISIM-NOSIAQY. « b

SOPISSIA e uosuyof
wWiap ewwen

17-214/514

17-214/514

Context

Y

algorithm()

Strategy

execute()

T

ConcreteStrA

ConcreteStrB

execute()

execute()

One design scenario

e Amazon.com processes millions of orders each
year, selling in 75 countries, all 50 states, and
thousands of cities worldwide. These countries,
states, and cities have hundreds of distinct sales tax
policies and, for any order and destination,
Amazon.com must be able to compute the correct
sales tax for the order and destination.

17-214/514 72 [o

RRRRRRRR

Module pattern: Hide internals in closure

(function () {

HOME

Function provides local scope, internals not accessible
Function directly invoked to execute it once
Wrapped in parentheses to make it expression

Discovered around 2007, became very popular, part of Node

17-214/514 73 [

||||||||||||
SSSSSSSS
RRRRRRRR

The Composite Design Pattern

Context

«interface»)
Component
+operation () -children
Leaf Composite

+operation()

operation() {
for (cin children)
c.operation();

}

17-214/514

_[Froperation()
+add(in c : Component)
+remove(in c : Component

-parent

74 [Hi

institute for
SOFTWARE
RESEARCH

Principles of Software Construction:
Objects, Design, and Concurrency

Refactoring & Anti-patterns

Claire Le Goues Bogdan Vasilescu

Carnegie Mellon University
School of Computer Science

institute for
I S SOFTWARE
RESEARCH

17-214/514 75 [

Where we are

Design for
understanding
change/ext.
reuse

robustness

17-214/514

Small scale: Mid scale: Large scale:
One/few objects Many objects Subsystems
Subtype Domain Analysis v GUI vs Core v

Polymorphism v

Information Hiding,
Contracts v

Immutability v

Types v
Static Analysis v/

Unit Testing v/

Inheritance & Del. v

Responsibility
Assignment,
Design Patterns,
Antipattern v/

Promises/
Reactive P. v

Integration Testing v/

Frameworks and

Libraries v, APIs v

Module systems,
microservices v/

Testing for
Robustness v

Cl v, DevOps v,
Teams

institut r
SSSSSSSS
RRRRRRRR

The Decorator Pattern

You have a complex drawing that consists of many shapes and want to save it. Some logic of the
saving functionality is always the same (e.g., going through all shapes, reducing them to drawable
lines), but others you want to vary to support saving in different file formats (e.g., as png, as svg,
as pdf). You want to support different file formats later.

Why is this not:

17-214/514

Anti-patterns

e \We have talked a fair bit about bad design heuristics
o High coupling, low cohesion, law of demeter, ...

e You will see a much larger vocabulary of related

ISsues

o Commonly called code/design “smells”
o Worthwhile reads:

m Ashort overview: https://refactoring.guru/refactoring/smells
m Wikipedia: https://en.wikipedia.org/wiki/Anti-pattern#Software_engineering
m Book on the topic (no required reading): Refactoring for Software Design Smells:
Managing Technical Debt, Suryanarayana, Samarthyam and Sharma
e S.0O. summary: https://stackoverflow.com/a/27567960

17-214/514 78

https://refactoring.guru/refactoring/smells
https://en.wikipedia.org/wiki/Anti-pattern#Software_engineering
https://stackoverflow.com/a/27567960

Refactoring: IDE support

Rename class, method, variable to something not

In-scope

Extract method/inline method
Extract interface

Move method (up, down, laterally)
Replace duplicates

17-214/514

Show Context Actions

Paste Ctrl+V
Copy / Paste Special >
Column Selection Mode Alt+Shift+Insert
Find Usages Alt+F7
Folding >
Analyze >
Go To >
Generate... Alt+Insert
Open In >
Local History >

I Compare with Clipboard

) Create Gist...

AltsEnter its, String name) {
atCardHolderName());

Shift+F6
Ctrl+F6

Rename...

Change Signature...
Introduce Parameter Object...
Extract Delegate...

Extract Interface...

Extract Superclass...

Inline Method... Ctrl+Alt+N
Find Method Duplicates and Replace with Calls...

Move Instance Method... F6
Copy Class... F5
Safe Delete... Alt+Delete
Make Static...

Wrap Method Return Value...
Invert Boolean...

Migrate to AndroidX...

Add Riaht-to-1 eft (RT1) Sunnort

True or false?

int 1 = 5;
int j = 5;
System.out.println(i == j);

17-214/514

String s

String t
System.out

II_FOOII;

S5

.println(s == t);

ll_Fw

h
vl ® iphone”
h

String u = "iPhone";
String v = u.tolLowerCase();
String w = "iphone";

System.out.println(v == w);

ul ®1—"iP

class OptBuilder {
private String argName

quUId APls private boolean hasArg

OptBuilder withArgName(String n) {
this.argName = n;

false;

Each method changes

state, return this;
. }
then returns this OptBuilder hasArg() {
_ this.hasArg = true;
(Immutable version: return this;
}

Return modified copy)

Option create() {
return new Option(argName,
hasArgs, ...)

17-214/514

Traversing a collection

e Since Java 1.0:
Vector arguments = ..;
for (int 1 = 0; 1 < arguments.size(); ++1) {

System.out.println(arguments.get(i));

}
e Java 1.5: enhanced for loop
List<String> arguments = ..;

for (String s : arguments) {
System.out.println(s);

}
e Works for every implementation of Iterable
public interface Iterable<E> {
public Iterator<E> iterator();
}
public interface Iterator<E> {
boolean hasNext();
E next();

17-21 void remove();

In JavaScript (ES6)

let arguments = .|
for (const s of arguments) {

console.log(s)

Works for every implementation with a “magic”

function [N EEIEI| providing an iterator

next(value?: any): IteratorResult<T>;

return?(value?: any): IteratorResult<T>;

throw?(e?: any): IteratorResult<T>;

interface IteratorReturnResult<TReturn> {
value: TReturn;

==

o
8 2 institute for
I S SOFTWARE
RESEARCH

HW4: Refactoring of
Static Website Generator

17-214/514 83 [5

RRRRRRRR

Principles of Software Construction:
Objects, Design, and Concurrency

Asynchrony and Concurrency

Claire Le Goues Bogdan Vasilescu

Carnegie Mellon University
School of Computer Science

institute for
I S SOFTWARE
RESEARCH

17-214/514 84 [If

Where we are

Design for
understanding
change/ext.
reuse

robustness

17-214/514

Small scale: Mid scale: Large scale:
One/few objects Many objects Subsystems
Subtype Domain Analysis v GUl vs Core v

Polymorphism v

Information Hiding,
Contracts v

Immutability v

Types v
Static Analysis v/

Unit Testing v/

Inheritance & Del. v

Responsibility
Assignment,
Design Patterns,
Antipattern v

Promises/
Reactive P. v

Integration Testing v/

Frameworks and

Libraries v, APIs v

Module systems,
microservices v/

Testing for
Robustness v

Cl v, DevOps v,
Teams

institut r
SSSSSSSS
RRRRRRRR

Interaction with CLI

Terminal — 0

File Edit View Search Terminal Help

scripts/kconfig/conf arch/x86/Kconfig
*

Linux Kernel Configuration

*
*
*
*

General setup

*

Prompt for developr

Pestapepeaaaees Scanner input = new Scanner(System.in);

Automatically appen : :
S while (questions.hasNext()) {

Kernel compression Question q = question.next();

i Sitﬁz‘?iizﬁtzf System.out.println(qg.toString());

3. LZMA (KERNEL_L - _ - .
4. LZO (KERNEL_LZ String answer = input.nextlLine();

choice[1-47]: 3 q.respond(answer) ;
Support for paging
System V IPC (SYSVI

POSIX Message QUEUES \rwvoain_itigurviry iy
BSD Process Accounting (BSD_PROCESS_ACCT) [Y/n/?2] n

Export task/process statistics through netlink (EXPERIMENTAL) (TASKSTATS) [Y/n/?
11

86 [Hi

institute for
SOFTWARE
RESEARCH

Event-based programming

e Style of programming where control-flow is driven by (usually
external) events

public void performAction (ActionEvent e) {
List<String> lst = Arrays.asList (bar);
foo.peek (42)

public void performAction (ActionEvent e) {
bigBloatedPowerPointFunction (e) ;
withANameSoLongIMadeItTwoMethods (e) ;
yesIKnowJavaDoesntWorkLikeThat (e) ;

public void performAction (ActionEvent e) {
List<String> lst = Arrays.aslist (bar);
foo.peek (40)

17-214/514 87 Ll

RESEARCH

Concurrency with file 1/0

Asynchronous code requires Promises

e Captures an intermediate state

o Neither fetched, nor failed; we’ll find out eventually

let imageToBe: Promise<Image> = fetch('myImage.png');

17-214/514

imageToBe.then((image) => display(image))
.catch((err) => console.log(aw:

'+ err));

1. Safety Hazard

e The ordering of operations in multiple threads is unpredictable.

@NotThreadSafe

public class UnsafeSequence {

private int value;

public int getNext() {

return

}
}

value++;

o

Not atomic

e Unlucky execution of UnsafeSequence.getNext

A
B

17-214/514

value—9

\ 4

9+1-10

value—9

\ 4

\ 4

value—10

9+1-10

\ 4

value—10

Amdahl’'s law

e The speedupis
limited by the
serial part of the
program.

17-214/514

Speedup

20

18

16

14

12

10

/// T
// Parallel porton
/ 50%
/| e 75%
e 0%
/ —— %%
/
/
/ o e i
o
o ~N -+ ==} o ~N - ==} o N -+ [==] ©o
- ™ o ~N o - ~N -+ (=2 (=2} o« (=] ™
- ~N wn (=] (=] (=] - ™ N~ [Tx]
- ~N - =] g ﬁ 8

Number of processors

920 [Hi

institute for
SOFTWARE
RESEARCH

Recall the Observer

Publisher s
«interface»
- subscribers: Subscriber[] [<>—=>| Subscriber
foreach (s in subscribers) - mainState + update(context)
s.update(this) + subscribe(s: Subscriber) A
+ unsubscribe(s: Subscriber) |
S e Conerte 1
mainBusinessLogic() Subscribers

A

s = new ConcreteSubscriber() und 2
publisher.subscribe(s) update(context)

L~ l
Client

-
-
-
-
-

17-214/514 https://refactoring.guru/design-patterns/observer 91 A

RESEARCH

An architectural pattern:
Model-View-Controller (MVC)

Manage inputs from user: }

= m e —————— Controller \\mouse, keyt)Oard, menu, etc.
\'%

:
]
]
V
View r -
Manage display of
Linformation on the screen

Manage data related to the
application domain

17-214/514 92 [Hj 5

RRRRRRRR

Principles of Software Construction:
Objects, Design, and Concurrency

Basic GUI concepts, HTML

Claire Le Goues Bogdan Vasilescu

Carnegie Mellon University
School of Computer Science

institute for
I S SOFTWARE
RESEARCH

17-214/514 93 [

Where we are

Design for
understanding
change/ext.
reuse

robustness

17-214/514

Small scale: Mid scale: Large scale:
One/few objects Many objects Subsystems
Subtype Domain Analysis v GUIl vs Core v

Polymorphism v

Information Hiding,
Contracts v

Immutability v

Types v
Static Analysis v/

Unit Testing v/

Inheritance & Del. v

Responsibility
Assignment,
Design Patterns,
Antipattern v

Promises/
Reactive P. v

Integration Testing v/

Frameworks and

Libraries v, APIs v

Module systems,
microservices v/

Testing for
Robustness v

Cl v, DevOps v,
Teams

institut r
SSSSSSSS
RRRRRRRR

Anatomy of an HTML Page

17-214 Fall 2021 — (w ﬂ Elements Console Sources Network »
Nested elements [= e
» <nav id="navigation” class="hidden">..</nav>
P <header id="top" class="container">..</header>

PrInCIples of Software v<div id="main" class="container">

® S |Z| N g Construction : :before

Objects, Design, and Concurrency I = SR e

. Attri b u teS : LEE;.;)//i:”color‘: red">.</p>

<p>After completing this course, students will:</|

»..
. T t P<n> </n>
ex html body

Overview
Styles Computed Layout Event Listeners = DOM Breakpoint
Software engineers today are less likely to design —

data structures and algorithms from scratch and
more likely to build systems from library and B
framework components. In this course, students ! margin -

engage with concepts related to the construction
of software systems at scale, building on their
understanding of the basic building blocks of data
structures, algorithms, program structures, and
computer structures. The course covers technical
topics in four areas: (1) concepts of design for
complex systems, (2) object oriented

17-2 14/5 14 programming, (3) static and dynamic analysis for L R

border -

padding 50

-|355.200x14052.300 - | - |-

r
[l
Il
i

o e

Strategy or Observer?
Either could apply

e Both involve callback
e Strategy:

o Typically single

o Often involves a return

e Observer:
o Arbitrarily many
o |Involves external updates

17-214/514

nts

ainer

Console Sources

Network — » B 1 a : X

» <div class="month-row" style="top:16.666666666666668%;heig 1
ht:17.666666666666668%" >..</div>
v<div class="month-row" style="top:33.333333333333336%;heig
ht:17.666666666666668%" >
» <table cellpadding="0"
e">..</table>
v<table cellpadding="0"
v <tbody>
v<tpe
r;<td class="st-dtitle st-dtitle—fc”>m</Ej>
P <td class="st-dtitle st-dtitle-today">.k/td> == %0
> <td class="st-dtitle st-dtitle-next">..<ftd>
> <td class="st-dtitle">..</td>
» <td class="st-dtitle">..</td>
> <td class="st-dtitle">..</td>
\r<td class="st-dtitle">..</td>

JGT

cellspacing="0" class="st-bg-tabl

cellspacing="0" class="st-grid">

b LRSS ERD
»<tr>.</tr>
»<ctr>.</tr>
P ZEPSTERS

div.month-row table.st-grid tbody tr td.st-dtitle.st-dtitle-today

c 3 S s

, v o
st T

96 SOFTWARE
RESEARCH

Static Web Pages

e Delivered as-is, final

o Consistent, often fast
o Cheap, only storage needed

e “Static” a tad murky with JavaScript
o We can still have buttons, interaction

Server-side Client-side
< T ATTPRequest
Files » Web Server HUBS Browser
Pre-created: ~ T T HTTP Response
HTML
- T
Javascript
other files

SSSSSSSS
RRRRRRR

Web Servers

Dynamic sites can do more work

Server-side Client-side
. ; ®
) Static resources: <« — e e e~
Files + CSS . Web Server sques Browser
« Javascript
Images HTTP Response

» other files @ T i
I
r Request data: @ @
| HTML

« URL encoding

*« GET/POST data CSS.
HTML | * Cookies JavaScript
Templates Y
Web HTML

Database Application @

https://developer.mozilla.org/en-US/docs/Learn/Server-side/First_steps/Client-Server_overview#anatomy of a_dynamic_request
17-214/514 98 el

RESEARCH

Separating application core and GUI

e Reduce coupling: do not allow core to depend on Ul

e Create and test the core without a GUI

o Use the Observer pattern to communicate information from the core
(Model) to the GUI (View)

GUI Tests

CoreTests

17-214/514

Principles of Software Construction:
Objects, Design, and Concurrency

Concurrency: Safety & Immutability

Claire Le Goues Bogdan Vasilescu

Carnegie Mellon University
School of Computer Science

institute for
I S SOFTWARE
RESEARCH

17-214/514 100 [Jf s

RRRRRRRR

Where we are

Design for
understanding
change/ext.
reuse

robustness

17-214/514

Small scale: Mid scale: Large scale:
One/few objects Many objects Subsystems
Subtype Domain Analysis v GUI vs Core v

Polymorphism v

Information Hiding,
Contracts v

Immutability v

Types v
Static Analysis v/

Unit Testing v/

Inheritance & Del. v

Responsibility
Assignment,
Design Patterns,
Antipattern v

Promises/
Reactive P. v

Integration Testing v/

Frameworks and

Libraries v, APIs v

Module systems,
microservices v/

Testing for
Robustness v

Cl v, DevOps v,
Teams

nstitute for
SSSSSSSS
RRRRRRRR

The Event Loop

6/16

Call Stack Web APIs

Browser console

timer [FEBAT

setTimeout cbl

Event Loop Callback Queue

‘ ’ - Empty

1/-214/514

console.log('Hi');
setTimeout(function cb1() {
console.log('cb1l');

}, 5000);
console.log('Bye');

is executed.
The browser creates a timer as part of

the Web APIs. It will handle the
countdown for you.

o
1 0 2 institute for
I S SOFTWARE
RESEARCH

“Callback Hell"?

If asynchronous:

® |ssue caused by Coding const makeBurger = nextStep => {
. getBeef(function (beef) {
with Complex nested cookBeef (beef, function (cookedBeef) {
getBuns(function (buns) {
Ca”baCkS. putBeefBetweenBuns(buns, beef, function(burger) {
e Every callback takes an })nextsmp(burger)
argument that is a result of 1
the previous callbacks. })})

}

makeBurger(function (burger) => {
serve(burger)

9

17-214/514 103 [Jj s

Remember the money-grab example?

public static void main(String[] args) throws InterruptedException {
BankAccount bugs = new BankAccount(1 000 000);
BankAccount daffy = new BankAccount(1 000 000);

Thread bugsThread = new Thread(()-> {
for (int 1 = 0; 1 < 1_000_000; i++)
transferFrom(daffy, bugs, 1);
});

Thread daffyThread = new Thread(()-> {
for (int 1 = 0; 1 < 1_000_000; i++)
transferFrom(bugs, daffy, 1);
1)

bugsThread.start(); daffyThread.start();
bugsThread. join(); daffyThread. join();
System.out.println(bugs.balance() - daffy.balance());

17-214/514 104 sl

RESEARCH

Making a Class Immutable

public final class Complex {
private final double re, im;

public Complex(double re, double im) {

this.re = re;
this.im = im;
}
// Getters without corresponding setters
public double getRealPart() { return re; }

public double getImaginaryPart() { return im; }

// subtract, multiply, divide similar to add
public Complex add(Complex c) {

}

17-214/514 105 [Jj s

RESEARCH

What will Happen:

Where does this fail?

What if single threaded

Could we make it work
with 2 threads?

17-214/514

.
[

public class Synchronization {

static long balancel =
static long balance2 =

public static void
Thread threadl
Thread thread2

100;
100;

main(String[] args) throws InterruptedException {
= new Thread(Synchronization::fromiTo2);
= new Thread(Synchronization::from2Tol);

threadl.start(); thread2.start();
threadl.join(); thread2.join();

System.out.println(balancel + ",

}

private
for

}

private
for
}

}

static void
0;
balancel -=

(Iinkt i:=

balance2 +=

static void
0;
balance2 -=

Cinkt i:=

balancel +=

" + balance2);

fromlTo2() {

i < 10000; i++) {
100;

100;

from2Tol() A

i < 10000; i++) {
100;

100;

nstitute for

SOFTWARE
RESEARCH

Principles of Software Construction:
Objects, Design, and Concurrency

Events Everywhere!

Claire Le Goues Bogdan Vasilescu

Carnegie Mellon University
School of Computer Science

institute for
I S SOFTWARE
RESEARCH

17-214/514 107 [s

Model View Controller in Santorini?

17-214/514

Model

View

Controller

https://overiq.com/django-1-10/mvc-pattern-and-django/

TicTacToe

NanoHTTPd

/newgame

17-214/514

http calls

= institute for
109 SorTasE

Useful analogy: Spreadsheets

Cells contain data or

A B
formulas 1 1 o
Formula cells are 2 1] |
computed automatically _° 2 3
whenever input data i 3 6

changes

17-214/514 110 [

Reactive Programming and GUIs

Store state in observable cells, possibly derived
Have GUI update automatically on state changes

Have buttons perform state changes on cells

Mirrors active model-view-controller gemem=ses g
pattern, discussed later I R e
(model is observable cell) A S v

17-214/514

https://refactoring.guru/design-patterns/adapter

17-214/514 112 ek

Adapters for Collections/Streams/Observables

var lines = IOHelper.readlLinesFromFile(file);
var linesObs = Observable. fromIterable(lines);
1linesObs.

map(Parser: :getURLColumn).

groupBy(...).

sorted(comparator).

subscribe(IOHelper.writeToFile(outFile));

Any others?

17-214/514 113 [s

Principles of Software Construction:
Objects, Design, and Concurrency

Immutability, Promises, Patterns

Claire Le Goues Bogdan Vasilescu

Carnegie Mellon University
School of Computer Science

institute for
I S SOFTWARE
RESEARCH

17-214/514 114 [s

RRRRRRRR

Where we are

Design for
understanding
change/ext.
reuse

robustness

17-214/514

Small scale: Mid scale: Large scale:
One/few objects Many objects Subsystems
Subtype Domain Analysis v GUI vs Core v

Polymorphism v

Information Hiding,
Contracts v

Immutability v

Types v
Static Analysis v/

Unit Testing v/

Inheritance & Del. v

Responsibility
Assignment,
Design Patterns,
Antipattern v

Promises/
Reactive P. v

Integration Testing v/

Frameworks and

Libraries v, APIs v

Module systems,
microservices v/

Testing for
Robustness v

Cl v, DevOps v,
Teams

institut
SSSSSSSS
RRRRRRRR

class Stack {
readonly #inner: any[]

IfT]fT]l]tEit)IEB’? constouctor (inner: any[]) {

this.#inner=1inner

Inner mutable state |::})ush(o: any): Stack {
(List in Java) const newInner = thgs.#inner.slice()
newItmer .push(o)

Create copy of return new Stack(newInner)

mutable object }

(new ArrayList(old) peek() ;any {

in Java) return this.#inner[this.#inner.length-1]
}

Return new getInner(): any[] {

immutable object return this.#inner
}

17-214/514

function copyFileSync(source: string, dest: string) {
// Stat dest.

try {
fs.statSync(dest);

A simple function

console.log("Destination already exists™)

return;
. ¥
...In sync world i

let fd;

try {
fd = fs.openSync(source, 'r');

} catch {
console.log("Destination already exists")
return;

b

// Read source.
let buff = Buffer.alloc(1000)

By X
r fs.readSync(fd, buff, 0, 0, 1000);

} catch () {
console.log("Could not read source file")
return;
¥
// Write to dest.
try {
fs.writeFileSync(dest, buff)
} catch () {
17_214/514 console.log("Failed to write to dest") e fo

1Y ESEARCH

Event Handling in JS: Callback Hell

What if our callbacks need callbacks?

WN =

B~

a(function (resultsFromA) {
b(resultsFromA, function (resultsFromB) {
c(resultsFromB, function (resultsFromC) {
d(resultsFromC, function (resultsFromD) {
e(resultsFromD, function (resultsFromE) {
f(resultsFromE, function (resultsFromF) {
console. log(resultsFromF);
b))

})

on

~N O

9
0

=
[

5

B WN

5)

=

})
1))

T
~N Oy O

17-214/514 118 S3F st

function makeRangeIterator(start = @, end = Infinity, step =

1) {

let nextIndex = start;

let iterationCount = 0; Tradeoffs?

const rangelterator = {
next: function() {

let result;

if (nextIndex < end) {
result = { value: nextIndex, done: false }
nextIndex += step;
iterationCount++;
return result;

}
return { value: iterationCount, done: true }
}
b _
return rangeIterator; functionk makeRangelterator(start = 0, end = 100, step = 1) {

let iterationCount = 0;

for (let i = start; i < end; i += step) {
iterationCount++;
yield ij;

}

return iterationCount;

17-214/514 119 [s

Observer vs. Generator

Push vs. Puli

e In Observer, the publisher controls information flow
o When it pushes, everyone must listen

e In generators, the listener “pulls” elements
o Generator may only prepare the next element upon/after pull

e \Which is better?

o Generators are in a sense ‘observers’ to their clients.
o This inversion of control can make flow management easier

17-214/514 120 [y s

HW5: Santorini with God Cards and GUI

17-214/514 121 [s

RRRRRRRR

Principles of Software Construction:
Objects, Design, and Concurrency

Libraries and Frameworks

(Design for large-scale reuse)

Claire Le Goues Bogdan Vasilescu

Carnegie Mellon University
School of Computer Science

institute for
I S SOFTWARE
RESEARCH

17-214/514 122 [s

Where we are

Design for
understanding
change/ext.
reuse

robustness

17-214/514

Small scale: Mid scale: Large scale:
One/few objects Many objects Subsystems
Subtype Domain Analysis v GUI vs Core v

Polymorphism v

Information Hiding,
Contracts v

Immutability v

Types v
Static Analysis v/

Unit Testing v/

Inheritance & Del. v

Responsibility
Assignment,
Design Patterns,
Antipattern v

Promises/
Reactive P. v

Integration Testing v/

Frameworks and
Libraries v, APIs v

Module systems,
microservices v/

Testing for
Robustness v

Cl v, DevOps v,
Teams

Earlier in this course: Class-level reuse

Language mechanisms supporting reuse
e Inheritance
e Subtype polymorphism (dynamic dispatch)
o Parametric polymorphism (generics)*
Design principles supporting reuse
o Small interfaces
Information hiding
Low coupling
High cohesion
Design patterns supporting reuse
o Template method, decorator, strategy, composite, adapter, ...

* Effective Java items 26, 29, 30, and 31

17-214/514 124 [

Reuse and variation:

Family of development tools

v Java - jeti/src/nu/fw/jeti/fjabber/Backend.java - Eclipse -+ 0
File Edit Source Refactor Navigate Search Project Run Window Help ene C/C#++ - mainc - [Users/chrish/Documents /workspace - Eclipse SDK
\ - . . .) ——] " st SRR @-65-E-G-i5-0-Q- | ™ 4 Sl S £ BRC/Cs »
vy E Y @eiNiGysyorarigeyi®ma v ie 4 E EBI@ 8-6-6-19$-0-% Sere
[TE CiCe s Projears 25 "1 "ﬂ' £ ** D/ 5E outtine 825" "D.
R e”
i foriService T ernon
P
[Pac % = B | [Notifiersjava [J] Pluginjava | /I Backend.java X | " L:”g:::ﬂ ety
= | " B oo > Micude ':mu».
& | G Dedu :
-] i * @author E.S. de Boer : lm: -_,:::::
SO e | * (G threadwork 9 gusrtypesn
» 5 Exam i # FORK_WORKLRS
» (=2 JBother Y w & ::-:::4;('"
» 52 JBother_ 4 > | Tahoma v|9 v|B | v v v — v| | i w o o e
v i 4 7 > jeti 759 [https://jeti.svn.sou y - — .
v %> src759 2 Pac [% Hier [Proj %2 = B|(%) DefaultName £3 5, [test |
> [> (default package) 759 = = || =,
» £ buildfiles 742 : & 4 ¢ Palette —
> &} com.swabunga.spell.engif 4 &= it H % @QAD~
> {1 com.swabunga.spell.ever 4 i
; %] DefaultName.ecorediag & Objects = "
>} com.swabunga.util 751
. 4 # defaultname
> i docs 614 ® EPackage B 456 t)getaid(); 3
> 3 languages 702 4 H 123
> [nu.fwjeti.applet 759 = qqq E EClass E 123
> [nu.fwjetibackend 759 E 456 & EDataType
> [nu.fwjeti.backend.roster = qqq
> [nu.fwjeti.events 706 € EEnum
> nu.fwjetiimages 718 . m
e f= EAnnotation fork ;
v [nu.fwjetijabber 759 b 0
S , 5
> i
i # EOperation
» iR} JID java 740
» [} JIDStatusjava 413 = EAttribute
»> [J} UnknownJIDStatus jav; s i - institute for
SOFTWARE
» [XDatacallback iava 114 EEnumlLiteral 1 25 A

RESEARCH

General distinction: Library vs. framework

user
interacts

public MyWidget extends JContainer {
ublic MyWidget (int param) {/ setup
internals, without rendering

}

/ render component on first view and
resizing

protected void

paintComponent (Graphics g) {

// draw a red box on his
componentDimension d = getSize() ;

g.drawRect (0, 0, d.getWidth(),
d.getHeight()) ;}

'your code

user
interacts

ublic MyWidget(int param) (/ setup
internals, without rendering

}

/ render component on first view and
resizing

protected void

paintComponent (Graphics g) {

// draw a red box on his
componentDimension d = getSize() ;

g.drawRect (0, 0, d.getWidth(),

your code

17-214/514 126 [s

RESEARCH

Is this a whitebox or blackbox framework??

public abstract class Application extends JFrame {
protected String getApplicationTitle() { return ""; }
protected String getButtonText() { return ""; }

protected String getInitialText() { return ""; 1}

public class Calculator extends Application {
protected String getApplicationTitle() { return "My Great Calculator"; }
protected String getButtonText() { return "calculate"; }
protected String getInititalText() { return "(10 - 3) * 6"; }
protected void buttonClicked() {
JOptionPane. showMessageDialog(this, "The result of " + getInput() +
" is " + calculate(getInput()));

} 2

= = 2 P =

public class Ping extends Application {
protected String getApplicationTitle() { return "Ping"; }
protected String getButtonText() { return "ping"; }
protected String getInititalText() { return "127.0.0.1"; }
protected void buttonClicked() { ... }

e

Tangrams

4

o
institute for
1 28 I S r SOFTWARE
RESEARCH

|

= 1 11‘ L = "5 '[‘ 3% &
w|$ b Wb | L

" aE AE BE S

o X 4 Mwe st x T Nw

ey M |w—)

17-214/514

The use vs. reuse dilemma
e Large rich components are very useful, but rarely fit

a specific need

e Small or extremely generic components often fit a
specific need, but provide little benefit

“maximizing reuse minimizes use”
C. Szyperski

17-214/514 129 [Jj S

RRRRRRRR

The cost of changing a framework

public class Application extends JFrame { Consider add|ng an extra method.
private JTextField textfield; Requires Changes tO a// pluginS!

private Plugin plugin;

public Application(Plugin p) { this.plugin=p; p.setApalicaiiaalibiclmioiilo.] I
protected void init() { public interface Plugin {
JPanel contentPane = new JPanel(new BorderLayol String getApplicationTitle();
contentPane.setBorder(new BevelBorder(BevelBord String getButtonText();
JButton button = new JButton(); String getInititalText();
if (plugin != null) void buttonClicked() ;
button.setText(plugin.getButtonText()): void setApplication(Application app);

else public class CalcPlugin implements }

butto private Application application;
contentPane public void setApplication(Application app) { this.application = app; }
textfield 3 public String getButtonText() { return "calculate"; }
if (plugin public String getInititalText() { return "10 / 2 + 6"; }
textf public void buttonClicked() {
textfield.s JOptionPane.showMessageDiaZog(null, "The result of "

class CalcStarter { public static void main(String[] args) { tO+ " s’

new Application(new CalcPlugin()).setVisible(true); }} fon-getiext())); }
e() { return "My Great Calculator"; }

| this.setCon 1

& Software Updates and Add-ons

|m Available Software I

GUIl-based plugin management

|type filker text |

Mame Version
O Qﬂ http:/fdownload.eclipse.org/releasesfganymede
O *Sj http: fjeclipse.svnkit.comj1.2.x}
= ﬁﬂ http:fflocalhost:8111fupdatefeclipsef

(=l [#] 000 jetbrains.teamcity

L% JetBrains TeamCity Plugin

® [92 http:/fsubclipse.tigris.orgfupdate_1.6.x
| ‘)ﬂ http: {jwww, perforce.comfdownloads/http/p4-wsadfinstallf
B2 [0 Qﬂ The Eclipse Project Updates

4.1.0.8920

Show only the latest versions of available software
Include items that have already been installed

Install...

!

Add Site... |
Manage Sites...

Get Add-ons

Ji

=

Themes Languages Plugins

Open the 'Automatic Updates' preference page to set up an automatic update schedule.

@

Close

17-214/514

iMacros for Firefox 6.2.4.0
Automate your web browser. Record and replay repetitious work.

@ NoScript 1.9.8.1
Extra protection for your Firefox: NoScript allows JavaScript, Java ...

.\::’ Disable

Uninstall

.

=% Ubuntu Firefox Modifications 0.7
'« Ubuntu Firefox Pack.

Find Updates

131

institute for
SOFTWARE
RESEARCH

Principles of Software Construction

API Design

Claire Le Goues Bogdan Vasilescu
(Many slides originally from Josh Bloch)

Carnegie Mellon University
School of Computer Science

institute for
I S SOFTWARE
RESEARCH

17-214/514 132 [s

Where we are

Design for
understanding
change/ext.
reuse

robustness

17-214/514

Small scale: Mid scale: Large scale:
One/few objects Many objects Subsystems
Subtype Domain Analysis GUI vs Core

Polymorphism

Information Hiding,
Contracts

Immutability
Types
Unit Testing

Inheritance & Deleg.

Responsibility
Assignment,
Design Patterns,
Antipattern

Promises/Reactive P.

Integration Testing

Frameworks and
Libraries, APIls

Module systems,
microservices

Testing for
Robustness

Cl, DevOps, Teams

nstitute for
SSSSSSSS
RRRRRRRR

API. Application Programming Interface

® An API defines the boundary between components/modules in a

programmatic system

The java.util.Collection<E> interface

Packages

java.applet
java.awt
java.awt.color
java.awt.datati
java.awt.dnd
java.awt.event
iava.awt.font

All Classes

AbstractAction
AbstractAnnot
AbstractAnnot
AbstractBorde,
AbstractButtor]
AbstractCellEc
AbstractCollec
AbstractColor(
AbstractDocur|
AbstractDocur
AbstractDocur|
AbstractDocur|
AbstractEleme

boolean
boolean.
boolean.
boolean.
boolean.
boolean.
boolean.
void
boolean.
Iterator<E>
Object[]

E[]

AbstractElementVisitor7
AbstractExecutorService
AbstractinterruptibleChannel
AbstractLayoutCache
AbstractLayoutCache.NodeDimensions

AbstractList
AbstractListModel
AbstractMap

AbstractMap.SimpleEntry
AbstractMap.SimplelmmutableEntry
AbstractMarshallerimpl

AbstractMethodError
AbstractOwnableSvnchronizer

add(E e);
addAll(Collection<E> c);
remove(E e);
removeAll(Collection<E> c);
contains(E e);
containsAll(Collection<E> c);
clear();

size();

isEmoty();

iterator();

toArray()

java.awt.font
java.awt.geom
java.awt.im
java.awt.im.spi

java.awt.image
java.awt.image.renderable

iava awt nrint

€« (e https://developer.github.com/v3/repos/
¥ 214-s14 ¥ 214 ¥ 413 [piazza [Services (L more DCKX: Directory of
List your repositories
List repositories for the authenticated user. Note that this does not include repositories owned by
organizations which the user can access. You can list user organizations and list organization
repositories separately.
GET /user/repos
Edi
Parameters
Name Type Description
' Platfc
type string Can be one of all, owner, public, private, member. Default: a1l
sort string Can be one of created, updated, pushed, full_name. Default: full_name
direction string Can be one of asc or desc. Default: when using full_name: asc;
otherwise desc
De
Pr
co List user repositories
Cc
List public repositories for the specified user.
Pr
Pri GET /users/:username/repos
Dr
me
Parameters
Pr
Pri Name Type Description
Pri type string Can be one of all, owner, member. Default: owner
ge
Pr sort string Can be one of created, updated, pushed, full_name. Default: full_name

Provides interfaces that enable the de¢
environment.

Provides classes for creating and mo:

Provides classes and interfaces for pi

Deovidoc aloccac and intarfacac for o

Queue<E> A

nt model, date and time facilities, il

he collection hierarchy.

1, which imposes a total ordering ¢

t supports element insertion and re
| ents the Enumeration interface ge

at all event listener interfaces musf

terface must be implemented by ai
\f Formatter.

action.
(also known as a sequence).

it allows the programmer to travers
Josition in the list.

eys to values.
le pair).
ed with navigation methods returni

ed with navigation methods reporti

ACiass Caniimpiertient the observer interface when it \

RandomAccess
Set<E>

for holding prior to proce.

Marker interface used by List implementations to indic

SortedMap<K,V>

A collection that contains no duplicate elements.

A Map that further provides a total ordering on its keys.

134

institute for
SOFTWARE
RESEARCH

[CRIEST? 1017 WFDAIE] |

| CHONGES I VERSION 10.17:
Hyrum’'s Law WHEN YOU HOLD DOWN SPACEBAR.

“With a sufficient number of users of | (onetMeUseRY wRiEs:

an API, it does not matter what you | | xeonteot ker 15 o BReRa,

; ; . 50 T HOLD SPACEBAR INSTERD, AND T
promise in the contract: all CONFIGURED EMACS TO INTERPRET A

observable behaviors of your RAPID TEMPERATURE. RISE: is CONTROL.
ADVMIN \WRITES

system will be depended on by THATS. HORRIFYING.

” [onGTHEUsERY WRITES:
somebody. LOOK, MY SETOP WORKS FOR VE-
J0sT ADD AN OPTON To REENABLE

SPACEBAR HERTING.
EVERY CHANGE BREAKS SOMEONES WORKFLOW.

https://www.hyrumslaw.com/

https://xkcd.com/1172/ 135 e b

17-214/514

https://xkcd.com/1172/
https://www.hyrumslaw.com/

The process of API design — 1-slide version

Not sequential; if you discover shortcomings, iterate!
1. Gather requwements skeptically, including use cases

2. Choose an abstraction (model) that appears to address use
cases
Compose a short API sketch for abstraction

4. Apply API sketch to use cases to see if it works
o If not, go back to step 3, 2, or even 1

5. Show API to anyone who will look at it

6. Write prototype implementation of API

7. Flesh out the documentation & harden implementation
8. Keep refining it as long as you can

17-214/514 136 Lo

Sample Early API Draft

// A collection of elements (root of the collection hierarchy)
public interface Collection<E> {

// Ensures that collection contains o
boolean add(E o);

// Removes an instance of o from collection, if present
boolean remove(Object 0);

// Returns true iff collection contains o
boolean contains(Object 0);

// Returns number of elements in collection
int size();

// Returns true if collection is empty
boolean isEmpty();

// Remainder omitted

}
1/-214/514 137 L]

RESEARCH

Aside: The Factory Method Design Pattern

Product p = createProduct()
p.doStuff()

+ Object creation separated from object

Creator
dnterface» + Able to hide constructor from clients,
+someOperation() [~~~ T ->| Product H H
+ createProduct(): Product + doStuff() ContrOI ObJeCt Creatlon
[2 | — 2 + Able to entirely hide implementation

et | o | s | | roducs objects, only expose interfaces + factory
+ createProduct(): Product + createProduct(): Product + Can Swap Out Concrete ClaSS Iater
return new ConcreteProductA() +

Can add caching (e.g. Integer.from())
+ Descriptive method name possible

- Extra complexity

Harder to learn API and write code
From: https://refactoring.guru/design-patterns/factory-method

17-214/514 138 sl

RESEARCH

https://refactoring.guru/design-patterns/factory-method

Principles of Software Construction

API Design (Part 2)

Claire Le Goues Bogdan Vasilescu
(With slides from Josh Bloch & Christian Kastner)

Carnegie Mellon University
School of Computer Science

institute for
I S SOFTWARE
RESEARCH

17-214/514 139 [[f s

Principle: Minimize conceptual weight

® API should be as small as possible but no smaller

O When in doubt, leave it out

® Conceptual weight.: How many concepts must a
programmer learn to use your API?

O APls should have a "high power-to-weight ratio”

17-214/514 140 [

Boilerplate Code

import org.w3c.dom.*; .
import java.io.*; » Generally done via cut-and-paste

import javax.xml.transform.*; ° Ugly, annoying’ and error-prone
import javax.xml.transform.dom.*;

import javax.xml.transform.stream.*;

/** DOM code to write an XML document to a specified output stream. */
static final void writeDoc(Document doc, OutputStream out) throws IOException{
try {
Transformer t = TransformerFactory.newInstance().newTransformer();
t.setOutputProperty(OutputkKeys.DOCTYPE_SYSTEM, doc.getDoctype().getSystemId());
t.transform(new DOMSource(doc), new StreamResult(out)); // Does actual writing
} catch(TransformerException e) {
throw new AssertionError(e); // Can’t happen!

}
}

17-214/514 141 [s

RESEARCH

348 Chapter.

ided that the initial guess is good enoug_h. Indeeq
will always ?"Yeﬁi';:'{m rat of convergence of most algorithms, " can
even determine in ized, however, how crucially success depeng,
. the solution, especially for multidimensiona) pu
mm'?““ first guess rﬁly on analysis rather than numerics, Pcr:::'"‘
= mdy‘; not only with reduced computationa| ey 1Y
/ and increased self-esteem. Hamming’s motto, “tpe p, - ™
S el S, [T e
roots. You should repeat this motto aloud whenever Your program converge, w'
digi % 1o the wrong root of a problem, or Whenever it fals to g,
ten- plmwumis g ly no root, or because there is a root but your initia] esuma,:

was not sufficiently close to it.

int ngjoi;

but what do I actually doo

the method of choice to find a bracketed root
function, when you cannot easily compute
derivative. Ridders’ method (§9.2) is concise, and a close

17-214/51

9.0 Introduction 349

first guess of the solution. Try it. Then read the more advanced
material in §9.7 for some more complicated, but globally more convergent,
alternatives. ‘
Avoiding implementations for specific computers, this book must generally
clear of interactive or grnphlc(-rcla(cd routines. We make an exception right
i The following routine, which produces a crude function plot with interactively
1O%. | axes, can save You a ot of grief as you enter the world of root finding.

eal

Number of horizontal and vertical positions in display.

loat ysml,ybig,x2,x1,x,dyj,dx,y[ISCR+1];
char sCr [ISCR+1] [JSCR+1] ;

if (ybig == ysml) ybig=ysml+1.0; Be sure to separate top and bottom.
dyj=(JSCR-1)/(ybig-;
Note which row corresponds to 0.
Place an indicator at function height and
scr[i] [jz] =ZERO 0.
j=1+(int) ((y[il-ysml)*dyj);
scr (1] [j1=FF;

printf (" %10.3f ",ybig);
for (i=1;i<=ISCR;i++) printf("Ac",scr[i) [JSCRD);

printf("\n");

for (j=(JSCR-1);j>=2;j--) { Display.
printf ("%12s"," ");
for (i=1;i<=ISCR;i++) printf(“%c",scrli1(i]);

printf("\n");

printf(" %10.3f “,ysml);

142

institute for
SOFTWARE
RESEARCH

Principle: Favor composition over inheritance

// A Properties instance maps Strings to Strings
public class Properties extends HashTable {
public Object put(Object key, Object value);

}

public class Properties {
private final HashTable data = new HashTable();
public String put(String key, String value) {
data.put(key, value);

17-214/514

REST API

APl of a web service
Uniform interface over HT TP requests

Send parameters to URL, receive data
(JSON, XML common)

Stateless: Each request is self-contained

Language independent, distributed

17-214/514 144 ek

Software Ecosystem

institute for
I S r SOFTWARE
RRRRRRRR

_

Upstream Downstream

Avoiding dependencies
Encapsulating from change

17-214/514 146 [S

RRRRRRRR

HWG6: Data Analytics Framework

17-214/514 147 [s

RRRRRRRR

Principles of Software Construction

Version Control with Git

Claire Le Goues Bogdan Vasilescu

Carnegie Mellon University
School of Computer Science

institute for
I S SOFTWARE
RESEARCH

17-214/514 148 [[f i

SECOND EDITION

Highly recommended
* (second) most useful life skill you PI‘O

Git

will have learned in 214/514

Apress

17-214/514 149 [s

Distributed version control

Server Computer

Version Database

e Clients fully mirror the version 3
repOSitory Version 2

Version 1

o Every clone is a full backup of 7 N
all the data | |

e E.g., Git, Mercurial, Bazaar e
! t
Version Database || || Version Database

Version 3 Version 3
|

Version 2 Version 2
|

Version 1 Version 1

https://git-scm.com/book/en/v2/Getting-Started-About-Version-Control
17-214/514 150 o

SEARCH

Aside: Git process

Untracked Unmodified

Remove the file

© Scott Chacon “Pro Git”

17-214/514

Edit the file
Stage the file

. omit

° N .
151 mg.%m@
RESEARCH

Principles of Software Construction

Version Control in the Wild

Claire Le Goues Bogdan Vasilescu

Carnegie Mellon University
School of Computer Science

institute for
I S SOFTWARE
RESEARCH

17-214/514 152 [[q s

error: failed to push some refs to '/path/to/repo.git'

hint: Updates were rejected because the tip of your current branch is behind its
remote counterpart. Merge the remote changes (e.g. 'git pull') before pushing again.
See the 'Note about fast-forwards' in 'git push --help' for details.

Mary tries to publish her feature

git push origin main

& & &

17-214/514 S s for

Semantic Versioning

Given a version number MAJOR.MINOR.PATCH,
Increment the:
1. MAJOR version when you make incompatible AP| changes,

2. MINOR version when you add functionality in a backwards

compatible manner, and
3. PATCH version when you make backwards compatible bug

fixes.

17-214/514 154 [s

Diff lifecycle: local testing

B Tools/xctool/xctool/xctool/Version.m View Options ¥

NSString * const XCToolVersionString = @"0.2.1"; NSString * const XCToolVersionString =

BB ExampleTest (0.050s)

Diff OK (1 test, 4 assertions)

—

Test and lint locally

Release every two weeks

www.facebook.com

1week of development

1week of development

Master

Release
branch

A

Stabilize

Release branch

Tuesday

Fverv weekdav (3x)

SSSSSSSS

Signals of PR quality

25% ‘

= ouild passing
£ 0.5
Z [
= n
2 D 0.41
o =
S 2 0.3-
3 v
©
s 0 5.5
o »
SRl oo (e buis passing f i passing 2
(oo o0 g 0.1
L
Result: Build status+code coverage 0.0

8-6-4-20 2 4 6 8
Month index relative to badge

badges indicate more tests in PRs

STREIDEL

Carnegie Mellon University

17-214/514 157 ek

Monorepos in industry

Scaling Mercurial at Facebook

Ei coue

Open Source Platforms v Infrastructure Systems v Hardware Infrastructure + Video & VR v Artificial Intelligence v

17-214/514

OPTIMIZAT ON

© 7January 2014 ¥ INFRA - OPEN 3 CE - PERFORMAN

Scaling Mercurial at Facebook

‘ Durham Goode . Siddharth P Ag:

va

With thousands of commits a week across hundreds of thousands of files, Facebook's main source
repository is enormous-—-many times larger than even the Linux kernel, which checked in at 17 million
lines of code and 44,000 files in 2013. Given our size and complexity—and Facebook's oractice of
shipping code twice a day--improving our source control is one way we help our engineers move fast.

Choosing a source control system

Two years ago, as we saw our repository continue to grow at a staggering rate, we sat down and
extrapolated our growth forward a few years. Based on those projections, it appeared likely that our
then-current technology, a Subversion server with a Git mirror, would become a productivity
bottleneck very soon. We looked at the available options and found none that were both fast and
easy to use at scale.

Qur code base has grown organically and its internal dependencies are very complex, We could have
spent a lot of time making it mare modular in a way that would be friendly to a source control toal, but
there are a number of benefits {o using a single repository. Even at our current scale, we often make
large changes throughout our code base, and having a single repository is useful for continuous

Recommended

Scaling rren

158

institute for
SOFTWARE
RESEARCH

Common build system

Bazel from Google

Build and
reliably

GET BAZEL ‘

A high-pe¢

Speed up your
and tests

Bazel only rebuilds wi
necessary. With adva

Geting Started

Pants: A fast, scalable build system

distributed caching, ¢ Instaling Pants
dependency analysis Buck is a build sy Setting Up Pants
ol ac N m
execution, you get fas small, reusable Tutoriel
incremental builds. languages on mai 5
Common Tasks Pants is a build system designed for codebases that:
Why Buck? Pants Basics + Are large andior growing rapidly.
——— + Consist of many subprojects that share a significant amount of code.
a] Why Use Pants?
Buck can help yoi i + Have complex dependencies on third-party liraries.
its Co
s » Use a variety of languages, code generators and frameworks.
4/Speedupyg BUILD files
of multiple cc » ’”dd
farget Addresses
track of unch T
Third-Party Dependencies Pans supports Java, Scaia, Python, CiC+=, Go, JavascriptiNode, Thifl, Protobuf and Androld
+ Add reprodu Pants Options code. Adding support for otner languages, frameworks and code generators is straightforward, -
everybody ge Invoking Pants Pants s a collaborative open-sourca project, buit and used by Twitter, Foursquare, Square, Medium and other companies.

Reporting Server

BEPh Getting Started

JVM = Iny
+ Setting Up Pants

+ Get correct |

JVM Projects with Pants
+ Tutorial

Scala Support

Publisning Atfacts Cookbook

Pants for Mave

Experts The Common Tasks is a practical, 1o some of the Pants tasks that you're most likely to carry out on a daily basis.

17-214/514 159 sl

RESEARCH

Principles of Software Construction: Objects,
Design, and Concurrency

{Static & Dynamic} x {Typing & Analysis}

Claire Le Goues Bogdan Vasilescu

Carnegie Mellon University
School of Computer Science

institute for
I S SOFTWARE
RESEARCH

17-214/514 160 [Jj s

RRRRRRRR

How Do You Find Bugs?

® Run Itf) public class Fails {
public static void main(String[] args) {

getValue(©: null);

private static int getValue(Integer i) {
return i.intValue();

Exception in thread "main" java.lang.NullPointe ion Create breakpoint : Cannot invoke "java.lang.Integer.intValue()" because "i" is null

at misc.Fails.getValue(Fails.java:9)
at misc.Fails.main(Fails.java:5)

17-214/514 161 B

RESEARCH

static vS. Dynamic Typing
Okay, but:

Top languages over the years

JavaScript 2015 2016 2017 2018 2019 2020 2021

1
2
3
4
5

17-214/514 https://octoverse.github.com/#geographical-distribution-of-active-users 162 m il

RRRRRRRR

Static Analysis

e How?
o Program analysis +

Vocabulary of patterns

17-214/514

color = input("Enter your favourite color: ")

| | HEH | | I
T L el e e S Rt | e T
H l»-—-lﬂ | — | -_‘ Sc NG:
' v - - + w - ANNI !
'
H | ENCODING NAME oP NAME oP NAME oP ENDMARKER ‘ '
: !
N '
i ‘ ‘utf-8' color = input (Enter your favourite color) ’ | I
! !
!
!
""""" TOKEN i
Module ANALYZER '
......... (Top '
l nod '
Bodyl0] |
e e STATICCODE |
________ ANALYSIS
Assign
A
4 ¥ AST
";4 """ i e ANALYZER
ame . '
id = "color’ . Call .
Lo —
Store 1 ' Str
----- Name "
' ¥ i 8 Enter your
. id ="input’ | ' %]
Yotes valu 5 . , favourite color: '
isbelng === leecececeewd leccccccccopm-
tored) (Den:
p—— __!f*f
Load |
PARSING

https://deepsource.io/blog/introduction-static-code-analysis/ .

163

institute for
S SOFTWARE
RESEARCH

Soundness & Precision

e Since we can't perfectly analyze behavior statically

o \We may miss things by being cautious (unsound; false
negative)
o \We might identify non-problems (imp

ﬁ Program state covered in actual execution

- Program state covered by abstract
execution with analysis

, false positive)

unsound imprecise
(false negative) (false positive)

17-214/514 164 ek

TriCorder

package com.google.devtools.staticanalysis;
public class Test {

~ Lint Missing a Javadoc comment.
Java
1:02 AM, Aug 21

Please fix

Not useful

public boolean foo() {
return getString() == "foo".toString();

~ ErrorProne String comparison using reference equality instead of value equality

StringEquality (see http://code. g r-prone/wiki/StringEquality)
1:03 AM, Aug 21
Please fix

[lIdepotIgoogIe3ljavalcomlgoogIeldevtoolslstaticanalysisl‘l’ est.java

package com.google.devtools.staticanalysis;

public class Test {
public boolean foo() {
return getString() == "foo".toString();
}

public String getString() {
return new String("foo");
}
}

17'2 m Cancel

package com.google.devtools.staticanalysis;
import java.util.Objects;

public class Test {
public boolean foo() {
return Objects.equals(getString(), "foo".toString());
}

public String getString() {
return new String("foo");
}
}

165

institute for
SOFTWARE
RESEARCH

What else could we do?

e Use more complicated logic
One example: Infer, at Facebook
(Google claims this won't (easily)
scale to their mono-repo.)
e UseAl?
o Facebook: Getafix, also integrates
with SapFix
o Amazon: CodeGuru
o Microsoft: IntelliSense in VSCode,
mostly refactoring/code

completion, trained on large
volumes of code - S =0 Woam Ja®
H H H = —= =t o
o Mostly fairly simple ML (details moe [mmliey Swme U el e
I i m ited) Find V?I';"g“:f“m . 'w1th amonal;le the exg'e?::jv: lines and Cmuo t;:(:f:;w il:)r:‘es of and reduce cost
17-214/514 166

Principles of Software Construction:
Objects, Design, and Concurrency

A Quick Tour of all
23 GoF Design Patterns

Claire Le Goues Bogdan Vasilescu

Carnegie Mellon University
School of Computer Science

institute for
I S SOFTWARE
RESEARCH

17-214/514 167 [[f s

Where we are

Design for
understanding
change/ext.
reuse

robustness

17-214/514

Small scale: Mid scale: Large scale:
One/few objects Many objects Subsystems
Subtype Domain Analysis v GUI vs Core v

Polymorphism v

Information Hiding,
Contracts v

Immutability v
Types
Unit Testing v/

Inheritance & Del. v

Responsibility
Assignment,
Design Patterns,
Antipattern v

Promises/
Reactive P. v

Integration Testing v/

Frameworks and

Libraries v, APIs v

Module systems,
microservices v/

Testing for
Robustness v

Cl v/, DevOps,
Teams

nstitute for
SSSSSSSS
RRRRRRRR

o Published 1994 |
o 23 Patterns

A
vy
z
=
=
=
7
0
=
74
Z
<
v
=
m
<
T
-
o)
4
m
w
u
0
Z
Z
P
-~
(@)
z
=
—~
b
74
0
v
m
z
m
17

S
Q
S

3
8
S

A -

WiSf{ o BLULLED)

sopI

o Widely known

17-214/514 169 Lo

|. Creational Patterns

1. Abstract factory

2. Builder

3. Factory method
4. Prototype

5. Singleton

17-214/514

Singleton lllustration

public class Elvis {

private static final = new OF
public static () { return 5

private () {}

const elvis = { .. }
function getElvis() {

export { getElvis }

17-214/514 171 [s

RRRRRRRR

ll. Structural Patterns

Adapter
Bridge
Composite
Decorator
Facade
Flyweight

N o U s WwNhRE

Proxy

17-214/514

172

||||||||||||
SSSSSSSS
RRRRRRRR

Decorator vs Strategy?

interface GamelLogic {
isValidMove(w, X, V)
move(w, X, V)

class BasicGamelogic
implements GamelLogic { .. }

class AbstractGodCardDecorator
implements GamelLogic { .. }

class PanDecorator
extends AbstractGodCardDecorator
implements GamelLogic { .. }

interface GamelLogic {
isValidMove(w, x, V)
move(w, X, V)

}

class BasicGamelogic

implements GamelLogic {

constructor(board) { .. }
isValidMove(w, x, v) { .. }
move(w, x, y) { .. }

}

class PanDecorator
extends BasicGamelLogic {
move(w, x, y} {

=

lll. Behavioral Patterns

RPOWLOONOUNAEWNE

Chain of Responsibility
Command
Interpreter
lterator

Mediator
Memento
Observer

State

Strateg%/
Template method
Visitor

17-214/514

Principles of Software Construction:
Objects, Design, and Concurrency

Design for Robustness:
Distributed Systems

Bogdan Vasilescu Claire Le Goues

Carnegie Mellon University

arnegie Mel Iniversity
School of Computer Science
. . .
institute for
I S SOFTWARE
RESEARCH

17-214/514 175 [s

RRRRRRRR

Where we are

Design for
understanding
change/ext.
reuse

robustness

17-214/514

Small scale: Mid scale: Large scale:
One/few objects Many objects Subsystems
Subtype Domain Analysis v GUI vs Core v

Polymorphism v

Information Hiding,
Contracts v

Immutability v
Types v
Unit Testing v/

Inheritance & Del. v

Responsibility
Assignment,
Design Patterns,
Antipattern v

Promises/
Reactive P. v

Integration Testing v/

Frameworks and

Libraries v, APIs v

Module systems,
microservices

(Testing for)
Robustness

Cl v, DevOps v,
Teams

institut
SSSSSSSS
RRRRRRRR

Where did w =

M Bookmarks

QPvent Log
1 LF UTF-8 P main W

P Git ETODO @ Problems Terminal § CheckStyle 4 Build & Dependencies

17-214/514

(u]

uits

src

uits — typescript
X

uits
import { FlashCard } from './cards/flashcard'
import { CardDeck } from './ordering/cardproducer'

.')

Ln1, Col1

Vv sre
import readline from 'readline-sync'
> cards
® java - ULjava S i irite ce UI {
java | src | main | java) edu cmu cs214) hwi cli) @ Ul - Add Configuration. > ordering studyCards: (producer: Cardeck) => void
[Project D I T+ & — AREADMEMd Uljava index.ts ¥
v Wgjava [FlashCards] 1 edu.cny.cs214.hwl.cli uits
> I cards — newUI (): UI {
_ v mEsc -giignore on cueAllCards (producer: CardDeck): void {
£ v B main {} package-lock.json for (const cardStatus of producer.getCards()) {
g v B java uI { {} package.json card = cardStatus.getCard()
v BN edu.cmu.cs214.hwi R correctAnswer = cueCard(card)
e, EADME.md
@ s cardStatus. recordResult(correctAnswer)
g > Bmch tsconfig.json }
g > bmdata
= > Emordering FlashCard, Cardpeck ¥
i Main .
% .gitignore CardDeck cueCard (card: FlashCard): boolean {
4 checkstyle.xml console.log('\nNext cue: ' + card.getQuestion())
pom.xmi @ studyCards(CardDeck cardProducer) { line = readline.question('answer> ')
a 5 - 6
‘ README.md T oR Scannen(System.in)) { success = card.checkSuccess(line)
> e o <
;Iw Ex\e;n:l L\bradnzs ‘ (1cardProducer. isConplete()) { if (success) { console.log("That's correct!") } else {
cratches and Consoles ' is incorrect; r response was:
(] SUaALLCards (EartProdtear ot console.log('That is incorrect; the correct response was: ' +
cardProducer.reorganize() CBIU-Gethnswer (1)
System.out.printin(+ cardProducer.countCards() +) ¥
' return success
System.out.printinC) }
i
b return {
@ cueAllCards(CardDeck cardProducer, Scanner sc) {
(CardStatus cardStatus : cardProducer.getCards()) { R LT,
FlashCard card = cardStatus.getCard() vcardpr'_’ducer { Kjcardiroducer)
success = cueCard(card, sc) learnTitles
cardstatus. recordResult (success)
} studyCards (producer: CardDeck): void {
i while (!producer.isComplete()) {
console. log(" ${producer. countCards()} cards to go...")
@ cueCard(FlashCard card, Scanner sc) { CUEMFE{GS:?;““:”) Heendtorith 5
Syaton louE o ¥ card.cusstion() console. log('Reached the end of the card deck, reorganizing.
response = sc.nextLine().trin() (M)
success = card.checksuccess(response) ¥
5 console. log('Finished all cards. Yay.')
(success) {
System.out.printin() ¥
} { }
System.out.printin(}
+ card.answer
- ; ' mer()) > OUTLINE
: TIT > TIMELINE rt { newUI }
} L X Pmain & ®1A0 § Claire g} 4 Live Share

« CardProducer}

Spaces:2 UTF-8 LF

{} TypeScript

£

institute for
SOFTWARE

RESEARCH

Database Server

Credit card server

17-214/514 178 e

RESEARCH

Microservices

/’.

& .. H
e af
\4} '

ik

»

Microservices Everywhere

17-214/514

Proxy Design Pattern

e Local representative for remote object | cient [—
o Create expensive obj on-demand

o Control access to an object
e Hides extra “work” from client

o Add extra error handling, caching

o Uses indirection

17-214/514

Servicelnterface

«interface»

+ operation()

Service

- realService: Service

+ Proxy(s: Service)
+ checkAccess()
+ operation()

+ operation()

realService = s

if (checkAccess() {

realService.operation()

}

SSSSSSSS
RRRRRRR

FOr example: T4 A T a &= 19:07

FacébookFﬁendMap

friends

e 3rd party Facebook apps
o Android user interface
o Backend uses Facebook data

How do we test this?

17-214/514 PNy el

Test Doubles

e Stand in for a real object under test
e Elements on which the unit testing depends (i.e.
collaborators), but need to be approxmated because

they are
o Unavailable
o EXxpensive
o Opaque
o Non-deterministic
e Not just for distributed systems!

17-214/514

http://www.kickvick.com/celebrities-stunt-doubles

Design: Testabillity

e Single responsibility principle
e Dependency Inversion Principle (DIP)
o High-level modules should not depend on low-level modules; both should

depend on abstractions. Abstractions should not depend on details. Details
should depend upon abstractions.

e Law of Demeter: Don’t acquire dependencies through

dependencies.
o avoid: this.getA().getB().doSomething()

e Use factory pattern to instantiate new objects, rather than new.
e Use appropriate tools, e.g., dependency injection or mocking
frameworks

17-214/514 183 [y s

Principles of Software Construction:
Objects, Design, and Concurrency

DevOps

Claire Le Goues Bogdan Vasilescu

Carnegie Mellon University
School of Computer Science

institute for
I S SOFTWARE
RESEARCH

17-214/514 184 [@] i

Where we are

Design for
understanding
change/ext.
reuse

robustness

17-214/514

Small scale: Mid scale: Large scale:
One/few objects Many objects Subsystems
Subtype Domain Analysis v GUI vs Core v

Polymorphism v

Information Hiding,
Contracts v

Immutability v

Types v
Static Analysis v/

Unit Testing v/

Inheritance & Del. v

Responsibility
Assignment,
Design Patterns,
Antipattern v

Promises/
Reactive P. v

Integration Testing v/

Frameworks and

Libraries v, APIs v

Module systems,
microservices v/

Testing for
Robustness v

Cl v/, DevOps,
Teams

nstitute for
SSSSSSSS
RRRRRRRR

earch

Jenkins Suisse Stop-tabac dev ENAB: REFRESH

‘ Back to Dashboard

Q Status

- Changes

i Workspace Disable Project

Test Result Trend
@ Build Now

Coverage Report
Q Delete Project EC)

z Configure
Workspace

B) Set Next Build Number

Project Stop-tabac dev

CI build

count

‘14 Duplicate Code =
Recent Changes

E Coverage Report

R H SLOCCount E Latest Test Result (no failures) 3
- 2
. *

[j Git Polling Log

g K
) o
* *

(just show failures) enlarge

o Permalinks Code Coverage
§8 Build History (trend) Classes 45% Conditionals 74% Files 45% Lines 28% Packages 88%
@ #977 Aug 27, 2012 4:37:27 PM ® Last build (#977), 3 min 17 sec ago 100 ey
e Last stable build (#977), 3 min 17 sec ago 90 / \
@ #438 Jun 28,2012 8:47:42 AM [B] o Last successful build (#577), 3 min 17 sec ago 80 1 N
:39:39 PM 70

@ #426 Jun 26, 2012 1:35:39 =] n 7 —Clasies
@ #345 Jun 19,2012 9:02:20 AM [&] % 50 — Conditionals
@ #263 Jun6,20129:14:42PM [&] 40 // ~Files

30 ~ Lines
@ #210 May 31,2012 8:42:20 AM [&] s 2 s

20 N ~—Packages
@ #171 May 23, 2012 9:58:18 PM [&] 10 4
@ #90 May 15, 2012 11:49:41 AM [&] 0: £l 2 v @ 2 N

; ¥ ¥ ¥ B i ¥ g
s RSS for all s RSS for failures
SLOCCount Trend

lines

17-2 14/5 14 B Help us localize this page Page generated: Aug 27, 2012 4:40:45PM Jenkins ver. 1.470 1 86 g‘g}%ﬁ%
RESEARCH

Aside: The role of signaling

Status

Build Pipeline

Release Pipeline

Dev Test Prod

P deployment 'succeeded # deployment succeeded P deployment succeeded
B NuGet 0.6.0 B NuGet 0.6.0 B NuGet 0.4.0

https://blog.devops4me.com/status-badges-in-azure-devops-pipelines/

17-214/514 187 sl

RESEARCH

Release management e T
with branches

Release 2 ‘ A

QA passes - goes alpla Public release

Bus fix T ' Bug fix a :

Release 1 A A . x
QA passes - goes|alpha| Public release
Development o
A A
End of Release 1| development End of Release 2 developmpent

New festime ¥ (for Relesse 2)

A Project milestone

N
New festwe 2 (for %em 2) x End of branch

T Create branch/merge changes

17- New festime 3 (for Relesse 3) x o

SSSSSSSS
RRRRRRRR

OPS PROBLEM NOW

memego

17-214/514 189 [i

RESEARCH

17-214/514 190 sl

C|

Heavy Tooling and Automation

~Application Lifecycle Mgmt. — ~SCM/VCS —————— Testing ~Deployment ————Cloud / laaS / PaaS ——— ‘1
[heroku
YIRA Mmingle @7relsr el o *Octopus Deploy (XL) DepLOY ----amazon" ®
Vgt =g % boks Flynn @
|l | (R =RUNDECK C - B e
Team Foundation Serve g GitHub S€ OWASP y
PivolaTee G : GAUNTLT urban{code} N NOLIO | | GoogeClovapiaion (@ rackspace
/. Basecamp Sasana et © Bitbucket V Q& @atung ZAP > jUJU) n openstack C¢) G ,
S TGitBucket C'f-a0 U L) 7 ElasticBox Spinnaler # DEIS 3PPfog openswrr |LERI
nit
r Communication & ChatOps — Cl " ‘\K ARMA i~ Config Mgmt./Provisioning — - Orchestration & Scheduling —
" H g) wercker SNA .
i slack Qipchat #irc 1€ ? . @«) o P @FitNesse /\\ o o 52 MESOSPHERE °
eamCity Jenkins C.
Tlowdock fopse cHEr avsioie || s
N H labs .
9 circleci Nomad
¢ ROCKET.CHAT u > o @ Travis CI cucumberg m ..’ PowerShell DSC Q - c:ﬂ
99[; Nestor 3‘3\ "ur—:"‘ g ‘CODESH'P VVAC’RANT .TERRA‘CRM RANCHER :‘3’: MESOS
~Knowledge Sharing——— Build % & () Galen Framework Artefact Management ————— ~BI / Monitoring / Logging
p MSradle GRUNT logstash = elasticsearch
&y sbt AAISS UAY || w'og - Ea\
githprages ‘/0 /lq ‘* Maven J APACH @ LEe = wQ co SP'unk:v Vectér ‘ «bana DATADOG
. - 5 Wis_ g\ / eter & 9 x
X Confluence "(.:, ra— 4/ ! ‘ﬂ\ - i_li ‘—TBlaZEMeter DockerHuB GR@;K&Z'PK'N f Google Analytics x-pack
Me - .“.m AT RMEQSTRY . SER i
g ; § ower 5 D Prometheus
ED S i | I 55 o | pytest g Otenretc B, O o

down ’ PINPOINT
B . mLeiningen Rake JFrog Artifactol) Q @

«®,,2piblueprint - ’ l. Browsersync O_ ’ " Pgb?? O RuUNSCOPE sensy pa
AP S Y"Grofcna

" grapnte RIS
RAYGUN (25 STaTsD 5

- Database Management "
‘ o Pall
@FLARUM \‘? D! "‘{OPENAPI J\ DBmaestio DBDeploy ~ specﬂCD\N o Onuget @ Rollbar | -
e d Flyway . for e s B Sonatype Airbrakeio [
grapiwi Flocker o 3
i = . N xUnit.net archiva pagerduty @oo
Dnscourse @r eddit || 3 redgate LIOUIsmaSE @ lewman (inpim| N exus - % ooseae dhKeenio |4

17-214/514 191 [s

RESEARCH

A/B Testing

Original: 2.3% Long Form: 4.3%
t G'owe : 'Er-c " Gfoove o - o
SaaS!;& eCommerce Everything you need to deliver awesome,
§ustomer Support. personal support to every customer.

WS Managing customer support requests
in Groove is so easy. Way better
than'trying to use Gmail or a mote

In'.w.'.-.).\ ! and alw

ALLAN UBLS CROOVE 10 COOW ol BUSIALYE 1ORES HOW

complicated help desk.”

Tl Gritfin. Custimer Crumplon M Alscate

Howr (1 works What you got What #t costs How wo're atfedent

You'll be up and running in less than a minute.

17-214/514 192 [[Jf s

RESEARCH

Looking Forward:
Beyond Code-Level Concerns

17-214/514 193 [Jj S

RRRRRRRR

Where we are

Design for
understanding
change/ext.
reuse

robustness

17-214/514

Small scale: Mid scale: Large scale:
One/few objects Many objects Subsystems
Subtype Domain Analysis v GUI vs Core v

Polymorphism v

Information Hiding,
Contracts v

Immutability v

Types v
Static Analysis v/

Unit Testing v/

Inheritance & Del. v

Responsibility
Assignment,
Design Patterns,
Antipattern v

Promises/
Reactive P. v

Integration Testing v/

Frameworks and

Libraries v, APIs v

Module systems,
microservices v/

Testing for
Robustness v

Cl v, DevOps v,
Teams

nstitute for
SSSSSSSS
RRRRRRRR

This Course
We focused on code-level concerns

Writing maintainable, extensible, robust, and correct
code

Design from classes to subsystems

Testing, concurrency, basic user interfaces

17-214/514 195 [y s

Carnegie Mellon

Toyota Case: Single Bit Flip That Killed

Junko Yoshida BOOKOUt
10/25/2013 03:35 PM EDT Trial
During the trial, embedded systems experts who reviewed Toyota's

electronic throttle source code testified that they found Toyota's 1
source code defective, and that it contains bugs -- including bugs Reportlng

that can cause unintended acceleration. hitp:/www.eetimes.com/do

"We did a few things that NASA apparently did not have time to do," cument.asp?doc_id=1319
Barr said. For one thing, by looking within the real-time operating 903&page_number=1
system, the experts identified "unprotected critical variables." They (Bxcerpts)

obtained and reviewed the source code for the "sub-CPU," and they
"uncovered gaps and defects in the throttle fail safes.”

The experts demonstrated that "the defects we found were linked to
unintended acceleration through vehicle testing,” Barr said. "We

also obtained and reviewed the source code for the black box and “TaSk X death
found that it can record false information about the driver's actions

in the final seconds before a crash.” In comblnatlon

Stack overflow and software bugs led to memory corruption, he Wlth Other taSk

said. And it turns out that the crux of the issue was these memory deaths”
corruptions, which acted "like ricocheting bullets."

Barr also said more than half the dozens of tasks' deaths studied by

the experts in their experiments "were not detected by any fail
safe." 14
ks © Copyright 2014, Philip Koopman. CC Attribution 4.0 Intemational license.

o
institute for
196 [H] o

17-214/514 ' 197 [s

RESEARCH

17-214/514

Healthcare.gov: Government I'T
Project Failure at its Finest

=

Posted: 101852013

Read more » Project Management, Government, Healthcare, It Projects, Open Source, Business Hews

3 6 O o 7 GET BUSIHESS HEWSLETTERS:
= Erte 21 SUBSCRIEBE
T I
The BusinessWeel article on the Healthcare.gow failure is nothing if not instructive. From
the piece:

Healthcare.gov isn't just a website; it's more like a platform for building health-care
marketplaces. Visiting the site is like visiting a restaurant. ¥ou sit in the dining room,
read the menu, and tell the waiter what you want, and off he goes to the kitchen with
your order. The dining room is the front end, with all the buttons to click and forms to
fill out. The kitchen is the back end, with all the databases and services. The contractor

most responsible for the back end is CGI Federal. Apparently it's this company's part of

the systern that's burning up under the load of thousands of simmultanecus users.

The restaurant analogy is a good one. Projects with scopes like these fail for all sorts of
reasons. Why New Systerns Fail details a bunch of culprits, most of which are people-
related.

As I read the article, a few other things jurmnped out at me, as they wirtually gcuarantee

failure:

e The sheer number of vendors involved

* The unwillingness of key parties involved with the back-end to embrace

R e T g e Rt e T et

33 pm

198 [Hi

institute for
SOFTWARE
RESEARCH

“But we’re CMU students and we
are really, really smart!”

17-214/514 199 [[f s

What is engineering? And how is it different from
hacking/programming?

Software Engineering?

17-214/514 200 i

1968 NATO Conference on Software
Engineering

“Software Engineering” was a provocative term

e e.g., Producing a car or bridge
o Estimable costs and risks
o Well-defined expected results
o High quality
e Separation between plan and production

o Simulation before construction

o Quality assurance through measurement

o Potential for automation

17-214/514 202 [s

From Programming to Software Engineering

17-214/514 203 || 5

RRRRRRRR

17-214/514

Healthcare.gov: Government I'T
Project Failure at its Finest

=

Posted: 10M 852013 33 pm

Read more » Project Management, Government, Healthcare, It Projects, Open Source, Business Hews

3 6 (8] 0 7 GET BUSIHESS HEWSLETTERS:

ke | " s~ cormes |

eelc article on the Healthecare.gov failure is nothing if not instructive. From

SUBSCRIBE

T
The Businessl

the piece:

Healthcare.gov isn't just a website; it's more like a platform for building health-care
marketplaces. Visiting the site is like visiting a restaurant. ¥ou sit in the dining room,
read the menu, and tell the waiter what you want, and off he goes to the kitchen with
your order. The dining room is the front end, with all the buttons to click and forms to
fill out. The kitchen is the back end, with all the databases and services. The contractor
most responsible for the back end is CGI Federal. Apparently it's this company's part of
the systern that's burning up under the load of thousands of simmultanecus users.

The restaurant analogy is a good one. Projects with scopes like these fail for all sorts of
reasons. Why New Systerns Fail details a bunch of culprits, most of which are people-
related.

As I read the article, a few other things jurmnped out at me, as they wirtually gcuarantee

failure:

e The sheer number of vendors involved

* The unwillingness of key parties involved with the back-end to embrace 204

R e T g e Rt e T et

institute for
SOFTWARE
RESEARCH

What happened with HealthCare.gov?

® Poor team and process coordination.
® Changing requirements.
® Inadequate quality assurance infrastructure.

® Architecture unsuited to the ultimate system load.

But....why??

17-214/514 205 ik

RRRRRRRR

Boeing 737 MAX

17-214/514 206 sl

Software is written by humans

Sociotechnical system: interlinked system of people,
technology, and their environment

Key challenges in how to

identify what to build (requirements)

coordinate people building it (process)

assure quality (speed, safety, fairness)

contain risk, time and budget (management)
sustain a community (open source, economics)

17-214/514 207 i

Requirements

17-214/514 208 [i

Requirements

o What does the customer want?
o What is required, desired, not necessary? Legal, policy constraints?

» Customers often do not know what they really want; vague, biased
by what they see; change their mind; get new ideas...

» Difficult to define requirements precisely

o (Are we building the right thing? Not: Are we building the thing
right?)

209 .
17-214/514 209 Lo

>

17-214/%

institute for
I S SOFTWARE
RESEARCH

Call for tenders,

_ Project contract
proposal evaluation Project workplan
Project estimations

(size, cost, schedules) \Y\ / / Follow-up directives

Software prototype, . >, (Requirements
mockup Document

> Software architecture

\ Software evolution

Acceptance test da’a / \ directives

Quality Assurance Implementation Software documentation
checklists d|re chives User manual

N\

17-214/514 211 [i

Interviews

Abb J on es1 You can edit anything in blue print Abby has always liked music. When she is on her way to work in the morning.
y B N * 28 years old she listens to music that spans a wide variety of styles. But when she arrives at

» Eifbloved A tant work, she turns it off, and begins her day by scanning all her emails first to get
) P .ye as_an ccouman an overall picture before answering any of them. (This exira pass takes time
* Lives in Cardiff, Wales but seems worth it.) Some nights she exercises or stretches, and sometimes
she likes to play computer puzzle games like Sudoku

G;ckground and skills \

Abby works as an accountant. She is comfortable with the technologies she uses regularly, but
she just moved to this employer 1 week ago, and their software systems are new to her.

Abby says she's a “numbers person’, but she has never taken any computer programming or IT

systems classes. She likes Math and knows how to think with numbers She writes and edits
spreadsheet formulas in her work.

In her free time, she also enjoys working with numbers and logic. She especially likes working out

{uzzles and puzzle games, either on paper or on the computer /‘
Motivations and Attitudes * Attitude toward Risk: Abby'’s life is a little \‘
= Motivations: Abby uses technologies to = Computer Self-Efficacy: Abby has low complicated and she rarely has spare time. So
accomplish her tasks. She learns new confidence about doing ynfamiliar computing she is risk averse about using unfamiliar
technologies if and when she needs to, but tasks. If problems arise with her technology, technologies that might need her to spend extra
prefers to use methods she is already familiar she often blames herself for these problems. fime on them, even if the new features might be
and comfortable with, to keep her focus on the This affects whether and how she will persevere relevant. She instead performs tasks using
tasks she cares about. with a task if technology problems have arisen. familiar features, because they're more
predictable about what she will get from them
and how much time they will take.

% /
N

ﬁlow Abby Works with Information and Learns:

Infarmatinm Droarcroaccinrm fulas ARhywv teande tawarde A AcAarmnrabanch/e e | earnina: bv Proceses ve bv Tinkerina: When learnina new technoloav

Process

17-214/514 214 ek

How to develop software?

Discuss the software that needs to be written
Write some code

Test the code to identify the defects

Debug to find causes of defects

Fix the defects

A A T o

If not done, return to step 1

17-214/514 215 e

RRRRRRRR

Software Process

“The set of activities and associated results that
produce a software product”

What makes a good process?

Sommerville, SE, ed. 8

17-214/514 216 [[f s

100%
Percent
of
Effort
0%
Project Time Project
beginning end

17-214/514 217 [5

RRRRRRRR

100% Trashing / Rework

Percent
of
Effort Productive Coding
0%
Project Time Project
beginning end

17-214/514 218 [uwis

100% Trashing / Rework

Percent
of
Effort

Productive Coding

Process: Cost and Time estimates, Writing Requirements, Design,

Change Management, Quality Assurance Plan,
Development and Integration Plan

0%

Project Time Project

beginning end
17-214/514 219 sl

RESEARCH

100%

Percent
of
Effort

0%

17-214/514

Trashing / Rework

Productive Coding

Project Time Project
beginning end

institute for

220 o

OF TWA
RESEARCH

oo (Y A S

Percent
of
Effort
Productive Coding
0%
Project Time Project
beginning end

17-214/514 221 s

OF TWA
RESEARCH

Example process issues

® Change Control: Mid-project informal agreement to changes suggested by customer or
manager. Project scope expands 25-50%

® Quality Assurance: Late detection of requirements and design issues. Test-debug-reimplement
cycle limits development of new features. Release with known defects.

® Defect Tracking: Bug reports collected informally, forgotten

® System Integration: Integration of independently developed components at the very end of the
project. Interfaces out of sync.

® Source Code Control: Accidentally overwritten changes, lost work.

® Scheduling: When project is behind, developers are asked weekly for new estimates.

17-214/514 222 [| 5

Process Costs

nin—1)/2
communication links

17-214/514 223 sl

Process Costs

17-214/514 224 ek

Large teams (29 people) create around six times
as many defects as small teams (3 people) and
obviously burn through a lot more money. Yet,
the large team appears to produce about the
same mount of output in only an average of 12
days’ less time. This is a truly astonishing finding,
through it fits with my personal experience on

projects over 35 years.
- Phillip Amour, 2006, CACM 49:9

17-214/514 225 [If s

Conway’s Law

“Any organization that designs a system (defined
broadly) will produce a design whose structure is a
copy of the organization's communication
structure.”

— Mel Conway, 1967

“If you have four groups working on a compiler,
you'll get a 4-pass compiler.”

17-214/514 226 [|f 5

RRRRRRRR

Congruence

‘ Module A ‘

Module C '_
A

Module B

17-214/514 227 [y

The Manifesto for Agile Software

Development (2001)

Value

Individuals and
interactions

Working software

Customer collaboration

Responding to change

17-214/514

over

over

over

over

Processes and tools

Comprehensive
documentation

Contract negotiation

Following a plan

Pair Programming

17-214/514

Scrum Process

17-214/514

PrRoOopucT
BACkLOG

DAILY SCRUM
MEETING

SPRINT
BAckLOG

: 2-4 WEEKS

POTENTIALLY
SHIPPABLE
PrROopDucCT
INCREMENT

230 peanelEy
RESEARCH

Planning

17-214/514 231 ek

Measuring Progress”?

“I'm almost done with the X. Component A is almost
fully implemented. Component B is finished except
for the one stupid bug that sometimes crashes the
server. | only need to find the one stupid bug, but
that can probably be done in an afternoon?”

17-214/514 232 [

Almost Done Problem

planned actua

® Last 10% of work -> 40% X 5
of time L il
(or 20/80) - z
g reported
Q 5 :
o
S |
o ; :
® Make progress X
measureable —_—
® Avoid depending entirely | 5
on developer estimations
) time
33 233 [5

17-214/514

Measuring Progress”?

® Developer judgment: x% done

® Lines of code?

® Functionality?

® Quality?

17-214/514 234 o

RRRRRRRR

Project Planning

Budget, Check progress

|ldentify constraints
Personal,

Deadlines

Estimate project
parameters

yes

() O
Reestimate project new

parameter feature

° i activities begin
Define milestones g requests

Refine schedule

Create schedule
Problem?

renegotiate

: Technical review
constraints

Abort?

17-214/514 235 [s

Reasons for Missed Deadlines

® Insufficient staff (illnesses, staff turnover, ...)

® |Insufficient qualitication

® Unanticipated difficulties

® Unrealistic time estimations

® Unanticipated dependencies

® Changing requirements, additional requirements

® Especially in student projects
O Underestimated time for learning technologies
O Uneven work distribution

O Last-minute panic.

17-214/514 236 ik

RESEARCH

Team productivity

® Brook's law: Adding people to a late software project
makes it later.

Team Productivity

Total Productivity

Team Members

Estimating effort

17-214/514 238 o

RRRRRRRR

Software Architecture

17-214/514 239 [y wise

Requirements

Architecture

Implementation

17-214/514 240 ek

Software Architecture

"The software architecture of a computing system is
the set of structures needed to reason about the
system, which comprise software elements, relations

among them, and properties of both.”
[Clements et al. 2010]

17-214/514

Design Questions

How do | add a menu item in Eclipse?

How can | make it easy to add menu
items in Eclipse?

What lock protects this data?
How does Google rank pages?

What encoder should | use for secure
communication?

What is the interface between objects?

17-214/514

Design vs. Architecture

Architectural Questions

How do | extend Eclipse with a plugin?

What threads exist and how do they
coordinate?

How does Google scale to billions of
hits per day?

Where should | put my firewalls?

What is the interface between
subsystems?

242

institute for
SOFTWARE
RESEARCH

Case Study:
Architecture Changes at Twitter

17-214/514 243 ek

©2009 Twimer AdboutUs Contact Biog Smaus AP Help Jobs TOS Privacy

17-214/514 244 B

RESEARCH

AFRICA
2010

17-214/514 245 e

Caching

Api) (Web

) T A

Page cache

Fragment cache

Row cache

Memcached

Vector cache

o8 0B DB

17-214/514 246 || 5

RRRRRRRR

Redesign Goals

® Improve median latency; lower outliers cS
et
® Reduce number of machines 10x Qe(;\o
° | oy
Isolate failures (e\\a‘O
® "We wanted cleaner boundaries with “related” logic being in one place"

O encapsulation and modularity at the systems level (rather than at the class, module, or \0‘\\'\\,\\
package level) . \.3'\(\3

N\

e

® Quicker release of new features
user-facing changes, independent of other teams" 06‘\‘\\3

17-214/514 247 sl

RESEARCH

Outcome: Rearchitecting Twitter

"This re-architecture has not only made the service more
resilient when traffic spikes to record highs, but also
provides a more flexible platform on which to build more
features faster, including synchronizing direct messages
across devices, Twitter cards that allow Tweets to become
richer and contain more content, and a rich search experience
that includes stories and users."

17-214/514 248 Lo

Was the original architect wrong?

17-214/514 249 || 5

RRRRRRRR

Beyond testing: QA and Process

Many QA approaches

Code review, static analysis, formal verification, ...

Which to use when, how much?

Requirrments

System
specificdon

System
specificdon

design

Detailed
design

e T
17-214/514 test integation tes

System Sub-system Module and \
Acceptance . . ; . .
test plan integation integation unit code
test plan test plan and test

Sub-system Y}
integation test)

How to get students to write tests?

17-214/514 251 [5

RRRRRRRR

“‘We had initially scheduled time to write tests for both
front and back end systems, although this never
happened.”

17-214/514 252 ek

“Due to the lack of time, we could only conduct
individual pages’ unit testing. Limited testing was done
using use cases. Our team felt that this testing process

was rushed and more time and effort should be

allocated.”

17-214/514 253 [s

Time estimates (in hours):

Activity Estimated | Actual ___

testing plans
unit testing
validation testing
test data

, A W W
_ N Rk O

17-214/514 254 ek

How to get developers to write tests?

17-214/514 255 [5

RRRRRRRR

Test Driven Development

o Tests first!

Test
succeeds

o Popular agile technique
« Write tests as specifications before code
« Never write code without a failing test

o Claims:
+ Design approach toward testable design
« Think about interfaces first
« Avoid writing unneeded code
« Higher product quality (e.g. better code, less defects)
« Higher test suite quality

succeed

« Higher overall productivity

(CC BY-SA 3.0)
Excirial

—Repeat- — — -

17-214/514 256

http://en.wikipedia.org/wiki/User:Excirial

& Build #17 - wyvernla: x 5
€« C A @ https://travis-ci.org/y

sernlang/wyvern

Help

o

o

| wyvernlang / wyvern ©

17 ° SimpleWyvern-devel Asserting false (works on Linux, soits C

-

X= Remove Log Download Log

Using worker: worker-linux-027f08490-1.bb.travis-ci.org:travis-linux-2 (J

Build system information system_info

$ git clone --depth=5@ --branch=SimpleWyvern-devel git.checkout

$ jdk_switcher use oraclejdk8

Switching to Oracle JDK8 (java-8-oracle), JAVA_HOME will be set to /usr/lib/jvm/java-8-oracle
$ java -Xmx32m -version

java version "1.8.0_31"

17-214/514 SE Runtime Environment (build 1.8.0 31-b13

How to get developers to use static analysis?

17-214/514 258 [5

RRRRRRRR

/ O Refactorings by ckaestne = x

» E=Tiod X

€ - C |8 GitHub, Inc. [US]|https://github.com/ckaestne/fypeChef/puII/28

Qdede R C B9 O =

GitHub This repository Search Explore Features Enterprise Blog

Q ckaestne / TypeChef

Refactorings #28

joliebig merged 17 commits into 1ivenezz from cs116rapr 9 months ago

¥® Conversation 3 o Commits 17 [#) Files changed 97
. ckaestne commented on Jan 29 Owner
@joliebig

Please have a look whether you agree with these refactorings in CRewrite

key changes: Moved ASTNavigation and related classes and tumed EnforceTreeHelper into an object

[ﬂ ckaestne added some commits on Jan 29

[l remove obsolete test cases
. refactoring: move AST helper classes to CRewrite package where it is .. -
[l improve readability of test code

[l removed unused fields

- ckaestne commented on Jan 29 Owner

Can one of the adm

BN | i o g g e S e S g L S e

* Star 20 Y Fork 12

(&4
(0}
+1,149 -10,129 HEER
. : i |
Labels "
None yet
fole
Milestone
No milestone
Assignee

No one assigned

2 participants

https://help.github.com/articles/using-pull-requests/]

Code Improvements
Understanding

Social Communication
Defects

External Impact
Testing

Review Tool
Knowledge Transfer
Misc

]...,””

0% 10% 20% 30%

17-214/514 260 [l s

How to get developers to use static analysis?

package com.google.devtools.staticanalysis;
public class Test {

~ Lint Missing a Javadoc comment.
Java
1:02 AM, Aug 21

Please fix Not useful

public boolean foo() {
return getString() == "foo".toString();

~ ErrorProne String comparison using reference equality instead of value equality

fg'g?ﬁq'-i ty 1 (see http://code.google.com/p/error-prone/wiki/StringEquality)
03 AM, Aug 2
Please fix

Suggested fix attached: show Not useful

}

public String getString() {

PGy AP e el 7 W EOCS N b <Y LT

Are code reviews worth it?

17-214/514 262 [

Advertisement:. SE @ CMU

Many courses

Spring: SE for Startups, ML in Production, Program Analysis, WebApps, Foundations of SE
Fall: Foundations of SE, (sometimes) API Design

Master level: Formal methods, Requirements, Architecture, Agile, QA, DevOps,

Software Project Mgmt, Scalable Systems, Embedded Sys., ...
Technical foundations: ML, Distributed Systems

Many research opportunities -- contact us for pointers

https://www.cmu.edu/scs/isr/reuse/
https://se-phd.isri.cmu.edu/

Software Engineering Concentration / Minor

17-214/514 263 [|f 5

https://www.cmu.edu/scs/isr/reuse/
https://se-phd.isri.cmu.edu/

Summary

Looking back at one semester of code-level design,
testing, and concurrency

Looking forward to human aspects of software
engineering, including process and requirements

17-214/514 264 ek

