
117-214/514

Principles of Software Construction
(Design for change, class level)

Starting with Objects
(dynamic dispatch, encapsulation, entry points)

Jonathan Aldrich Bogdan Vasilescu

217-214/514

Full assignment is due January 30 (Monday).

Don’t panic, it’s a lot to figure out at first, and we know that.
● Setting up a new (to you) toolchain often involves roadbumps. This is why we

released the HW so early: for recitation!
● We encourage you to iron out issues early, ask (publicly!) on Piazza, go to office

hours.
● We also list additional language resources, and will cover more about the

languages today/Tuesday/Wednesday.

Miscellaneous:
● The rubric is descriptive and intended to be clear.
● Note the CI doesn’t test, it only check style

● And it only runs on code that changed
● The actual programming required is quite minimal!

Administrivia (1 / 4): Homework 1 is released

317-214/514

Administrivia (2 / 4) : Reading, Office Hours, Waitlist

Reading on website for Tuesday. It’s short. Expect a quiz.
Office hours are on the calendar and mostly accurate.
● That said: please Google the error message or other symptoms you’re seeing and try a

few things before asking us in OH or Piazza. This is a CENTRAL skill.

Reminder: if you have waitlist questions or are interested in switching sections,
email Samantha Mudrinich smudrini@andrew.cmu.edu

● Note: you may have to unregister from other classes that create schedule conflicts. Also
from “easiest to get into” to “hardest to get into” the section list is: D, A, E, C, G, F, B

mailto:smudrini@andrew.cmu.edu

417-214/514

Administrivia (3 / 4) : Late day policy

● See syllabus on course web page for details

● 2 possible late days per deadline (some exceptions may be announced)

○ 5 total free late days for semester (+ separate 2 late days for assignments done in pairs)

○ 10% penalty per day after free late days are used

○ but we won’t accept work 3 days late

● Extreme circumstances – talk to us

517-214/514

Administrivia (4 / 4) : Collaboration policy

● See course web page for details!

● We expect your work to be your own

● Do not release your solutions (not even after end of semester)

● Ask if you have any questions

● If you are feeling desperate, please reach out to us

○ Always turn in any work you've completed before the deadline

● We run cheating detection tools. Trust us, academic integrity meetings are
painful for everybody

617-214/514

What did we talk about on Tuesday?

717-214/514

Tradeoffs?
void sort(int[] list, String order) {

…
boolean mustswap;
if (order.equals("up")) {
mustswap = list[i] < list[j];

} else if (order.equals("down")) {
mustswap = list[i] > list[j];

}
…

}

void sort(int[] list, Comparator cmp) {
…
boolean mustswap;
mustswap = cmp.compare(list[i], list[j]);
…

}
interface Comparator {
boolean compare(int i, int j);

}
class UpComparator implements Comparator {
boolean compare(int I, int j) { return i<j; }}

class DownComparator implements Comparator {

This is Java code!

817-214/514

Learning Goals

Develop familiarity with Java and Typescript syntax.

Explain the need to design for change and design for division of labor

Understand subtype polymorphism and dynamic dispatch

Use encapsulation mechanisms

Distinguish object methods from global procedures

Start a program with entry code

917-214/514

Today: Key Features that Support:

● Design for Change (flexibility, extensibility, modifiability)
● Design for Division of Labor
● Design for Understandability

1017-214/514

Hello, world!
I know, it’s corny.

Some basics.

1117-214/514

Typescript

Java

class HelloWorld {

public static void main(String[] args) {

System.out.println("Hello world!");

}

}

let message: string = "Hello, World!";
console.log(message);

1217-214/514

Typescript is Javascript with types.
● Typescript is a strict superset of Javascript.

○ Javascript started as a browser-based scripting language, now it is
widespread on both client- and server-side applications, and you
can write standalone apps in it. It’s reasonably general-purpose.

○ It’s also very dynamic. Typescript adds a bit of discipline.
● Typescript adds optional static typing to javascript.

○ Step 1 on running a TS program is to compile it to javascript.
○ Existing javascript programs are valid typescript programs by

definition.
○ The slides sometimes uses Type/javascript interchangeably.

1317-214/514

Java is verbose.

class HelloWorld {

public static void main(String[] args) {

System.out.println("Hello world!");

}

}

You must use a class even if you’re
not doing OO programming.

main must be
“public static”

main must
return void

main must declare these
command line arguments even if

it doesn’t use them.

println uses the static field
System.out

must match filename!!

1417-214/514

Java and Javascript have 2-part type systems

Java Primitives Javascript Primitives
int, long,byte, short, char,
float, double, boolean

null, undefined, boolean,
number, string, symbol, bigint

Primitive types are immutable and passed by value.

Both also have: Object, a non-primitive type.
● Object references are also passed by value to methods. We’ll see this play

out later.

1517-214/514

Programming without Objects

1617-214/514

1 public class TrailingZeros {

2 public static void main(String[] args) {

3 int i = Integer.parseInt(args[0]);

4 System.out.println(trailingZerosInFactorial(i));

5 }

6 static int trailingZerosInFactorial(int i) {

7 int result = 0; // Conventional name for return value

8 while (i >= 5) {

9 i /= 5; // Same as i = i / 5; Remainder discarded

10 result += i;

11 }

12 return result;

13 }

14 }

Programming with primitives in Java looks a lot like any
other imperative programming.

1717-214/514

Objects (JavaScript)

A program abstraction with internal state (data) and behavior (actions, methods)

Interact through messages (invoking methods)
● perform an action, update state (e.g., move)
● request some information (e.g., getSize)

const obj = {
print: function() { console.log("Hello, world!"); }

}

obj.print()
// Hello, world!

Functions in an object
are typically called
methods

This is a
method invocation
(conceptually by sending
a message to the object)

This is JavaScript code!

1817-214/514

Objects can contain state

const obj = {
v: 1,
print: function() { console.log(this.v); },
inc: function() { this.v++; }

}
obj.print()
// 1
obj.print()
// 1
obj.inc()
obj.print()
// 2

The object contains a
variable v, called a field,
to store state

Multiple methods in the
object

This is JavaScript code!

1917-214/514

Objects respond to messages, methods define interface

const obj = {
v: 1,
inc: function() { this.v++; },
get: function() { return this.v; },
add: function(y) { return this.v + y; }

}
obj.get() + 2
// 3
obj.add(obj.get()+2)
// 4
obj.send()
// Uncaught TypeError: obj.send is not a function

Calling a method that
does not exist results in
an error

This is JavaScript code!

2017-214/514

Typescript and Java allow us to explicitly define interfaces

interface Counter {
v: number;
inc(): void;
get(): number;
add(y: number): number;

}
const obj: Counter = {

v: 1,
inc: function() { this.v++; },
get: function() { return this.v; },
add: function(y) { return this.v + y; }

}
obj.foo();
// Compile-time error: Property 'foo' does not exist

v must be part of the
interface in TypeScript.
Ways to avoid this later.

The object assigned to
obj must have all the
same methods as the
interface.

receiver

method
name

This is TypeScript code!

2117-214/514

Interfaces and Objects in Java
interface Counter {

int get();
int add(int y);
void inc();

}
Counter obj = new Counter() {

int v = 1;
public int get() { return this.v; }
public int add(int y) { return this.v + y; }
public void inc() { this.v++; }

};

System.out.println(obj.add(obj.get()));
// 2

This uses anonymous
classes to create an
object without a class.
This isn’t very common, it
just looks a lot like the
TS.

interface Counter {
v: number;
inc(): void;
get(): number;
add(y: number): number;

}
const obj: Counter = {

v: 1,
inc: function() { this.v++; },
get: function() { return this.v; },
add: function(y) { return this.v + y; }

}

Yellow background is Java, Black is Typescript

2217-214/514

SUBTYPE POLYMORPHISM /
DYNAMIC DISPATCH

Object-oriented language feature enabling flexibility

2317-214/514

Subtype Polymorphism / Dynamic Dispatch

● An interface describes the API/way to interact with an object. It does NOT
provide the implementation.

● There may be multiple implementations of an interface!

● Multiple implementations can coexist in the same program

● Every object has its own data and behavior, internals can be very different

2417-214/514

Classes as Object Templates
interface Point {

int getX();
int getY();

} class as template for
objects with Point
interface

This is Java code!

2517-214/514

Classes as Object Templates
interface Point {

int getX();
int getY();

}
class CartesianPoint implements Point {

int x,y;
CartesianPoint(int x, int y) {this.x=x; this.y=y;}
int getX() { return this.x; }
int getY() { return this.y; }

}

class as template for
objects with Point
interface

This is Java code!

2617-214/514

Classes as Object Templates
interface Point {

int getX();
int getY();

}
class CartesianPoint implements Point {

int x,y;
CartesianPoint(int x, int y) {this.x=x; this.y=y;}
int getX() { return this.x; }
int getY() { return this.y; }

}
Point p = new CartesianPoint(3, -10);

class as template for
objects with Point
interface

Constructor initializes
the object

Calling constructor of
class to create object

This is Java code!

2717-214/514

Note that Typescript lets us do this, too! Remember this?

interface Counter {
v: number;
inc(): void;
get(): number;
add(y: number): number;

}
const obj: Counter = {

v: 1,
inc: function() { this.v++; },
get: function() { return this.v; },
add: function(y) { return this.v + y; }

}
obj.foo();
// Compile-time error: Property 'foo' does not exist

This is TypeScript code!

Here we create an object
using an object literal,
declaring fields and
methods inside
{ curly braces }

2817-214/514

TS/JS also allow classes explicitly, similar to Java

interface Counter {
v: number;
inc(): void;
get(): number;
add(y: number): number;

}
class C implements Counter = {

v = 1;
inc () { this.v++; }
get () { return this.v; }
add (y : number) { return this.v + y; }

}
const obj = new C();
// …

…but we can do things
this way, too.

While using classes
makes the code more
similar to Java, object
literals are used all over
JS/TS, so it’s worth being
comfortable with them.

This is Typescript code!

2917-214/514

Multiple Implementations of Interface
interface Point {

int getX();
int getY();

}
class PolarPoint implements Point {

double len, angle;
PolarPoint(double len, double angle)

{this.len=len; this.angle=angle;}
int getX() { return this.len * cos(this.angle);}
int getY() { return this.len * sin(this.angle); }
double getAngle() {…}

}
Point p = new PolarPoint(5, .245);

This is Java code!

3017-214/514

Multiple Implementations of Interface
interface Point {

int getX();
int getY();

}
class MiddlePoint implements Point {

Point a, b;
MiddlePoint(Point a, Point b) { this.a = a; this.b = b; }
int getX() { return (this.a.getX() + this.b.getX()) / 2; }
int getY() { return (this.a.getY() + this.b.getY()) / 2; }

}
Point p = new MiddlePoint(new PolarPoint(5, .245),

new CartesianPoint(3, 3));

Works with
all imple-
mentations
of Point

This is Java code!

3117-214/514

Clients work with all implementations of Interface
interface Point {

int getX();
int getY();

}
r = new Rectangle() {

Point origin;
int width, height;
void draw() {

this.drawLine(this.origin.getX(), this.origin.getY(),
this.origin.getX()+this.width, this.origin.getY());

… // more lines here
}

};

Works with
all imple-
mentations
of Point

This is Java code!

3217-214/514

Subtype Polymorphism / Dynamic Dispatch

● An interface describes the API/way to interact with an object. It does NOT
provide the implementation.

● There can/may be multiple implementations of any interface!

● Multiple implementations can coexist in the same program

● Every object has its own data and behavior, internals can be very different

3317-214/514

Points and Rectangles: Interface
interface Point {

int getX();

int getY();

}

interface Rectangle {

Point getOrigin();

int getWidth();

int getHeight();

void draw();

}

What are possible
implementations of
the Rectangle
interface?

This is Java code!

3417-214/514

Sets: Interface
interface IntSet {

boolean contains(int element);

boolean isSubsetOf(IntSet otherSet);

} What are possible
implementations of
the IntSet interface?

This is Java code!

3517-214/514

Programming against interfaces, not internals

interface IntSet {
boolean contains(

int element);
boolean isSubsetOf(

IntSet otherSet);
}

IntSet a = …; IntSet b = …
boolean s = a.isSubsetOf(b);

interface Point {
int getX();
int getY();
void moveUp(int y);
Point copy();

}

Point p = …
int x = p.getX();

This is Java code!

3617-214/514

Java Twist: Classes implicitly have Interfaces

Classes can be used as types,
like interfaces

All (public) methods can be
called

No alternative implementations
of class type

Prefer interfaces over class
types!

class PolarPoint implements Point {
double len, angle;
...
int getX() {…}
int getY() {…}
double getAngle() {…}

}
PolarPoint pp = new PolarPoint(5, .245);
Point p = new PolarPoint(5, .245);
pp.getAngle(); // okay
p.getAngle(); // compilation error

This is Java code!

3717-214/514

JavaScript and Classes

All methods of objects can be
called

Objects with the same method
can be called

No static checking by compiler;
runtime error if method not exist

TypeScript added type
system with interfaces

const pp = {
len: 1, angle: 0,
getX: function() {…}
getAngle: function() {…}

}
const p = {

x: 1, y: 0;
getX: function() {…}

}
pp.getX(); p.getX(); // okay
pp.getAngle(); // okay
p.getAngle() // runtime error

This is JavaScript code!

3817-214/514

Method Call Internals

l: Line

points: Point[]

draw(Canvas)

s0: PolarPoint

angle
len

getX()
getY()

s1:CartesianPoint

x
y

getX()
getY()Using the object’s own method implementation,

not a fixed jump to an address

3917-214/514

interface Animal {
void makeSound();

}
class Dog implements Animal {

public void makeSound() { System.out.println("bark!"); } }
class Cow implements Animal {

public void makeSound() { moo(); }
public void moo() {System.out.println("moo!"); } }

Animal x = new Animal() {
public void makeSound() { System.out.println("chirp!"); }}

x.makeSound();

Animal d = new Dog();
d.makeSound();
Animal b = new Cow();
b.makeSound();
b.moo();

Check your
Understanding

Animal a = new Animal();
a.makeSound();

This is Java code!

4017-214/514

interface Animal {
void makeSound();

}
class Dog implements Animal {

public void makeSound() { System.out.println("bark!"); } }
class Cow implements Animal {

public void makeSound() { moo(); }
public void moo() {System.out.println("moo!"); } }

Animal x = new Animal() {
public void makeSound() { System.out.println("chirp!"); }}

x.makeSound(); // “chirp”

Animal d = new Dog();
d.makeSound(); // “bark!”
Animal b = new Cow();
b.makeSound(); // “moo!”
b.moo(); // compile-time error

Check your
Understanding

Animal a = new Animal();
a.makeSound(); // compile-time error

4117-214/514

Object Methods vs
Global Functions/Procedures

Dynamic Dispatch

4217-214/514

// top-level function
function movePoint(p, x, y) { ... }

// create object, implementation unknown
const p = createPoint(...)

// call object’s method
// object determines implementation
p.move(3, 5);

// single global implementation
// less flexibiliy
movePoint(p, 3, 5)

Flexibility of dynamic dispatch (JavaScript)

Each object decides
implementation,
client does not care

Method is decided at runtime

Only single implementation of
global function (and module)

This is Typescript code!

4317-214/514

interface Point {
void move(int x, int y) { ... }

}
class Helper {

static void movePoint(Point p,
int x, int y) {...}

}

Point p = createPoint(...);
// dynamic dispatch, object’s method
p.move(4, 5);

// single global method, less flexible
Helper.movePoint(p, 4, 5);

Flexibility of dynamic dispatch (Java)

Each class decides
implementation,
client does not care

Static methods are global
functions, only single copy exists;
class provides only namespace

Java does not allow global
functions outside of classes

The “main” function is
defined this way!

This is Java code!

4417-214/514

Benefits of Dynamic Dispatch
Dynamic Dispatch

4517-214/514

Discussion Dynamic Dispatch

● A user of an object does not need to know the object’s implementation, only
its interface

● All objects implementing the interface can be used interchangeably

● Allows flexible change (modifications, extensions, reuse) later without
changing the client implementation, even in unanticipated contexts

4617-214/514

Why multiple implementations?

Different performance

● Choose implementation that works best for your use

Different behavior

● Choose implementation that does what you want

● Behavior must comply with interface spec (“contract”)

Often performance and behavior both vary

● Provides a functionality – performance tradeoff

● Example: HashSet, TreeSet

4717-214/514

interface Order {
boolean lessThan(int i, int j);

}

class AscendingOrder implements Order {
public boolean lessThan(int i, int j) { return i < j; }

}
class DescendingOrder implements Order {
public boolean lessThan(int i, int j) { return i > j; }

}

static void sort(int[] list, Order order) {
…
boolean mustSwap =
order.lessThan(list[j], list[i]);

…
}

This is Java code!

4817-214/514

Historical note: simulation and the origins of OO
programming

Simula 67 was the first object-oriented language

Developed by Kristin Nygaard and Ole-Johan Dahl
at the Norwegian Computing Center

Developed to support discrete-event simulation

● Application: operations research, e.g. traffic
analysis

● Extensibility was a key quality attribute for
them

● Code reuse was another

4917-214/514

Encapsulation
Information Hiding

5017-214/514

Encapsulation / Information hiding

● Well designed objects project internals from others

○ both internal state and implementation details

● Well-designed code hides all implementation details

○ Cleanly separates interface from implementation

○ Modules communicate only through interfaces

○ They are oblivious to each others’ inner workings

● Hidden details can be changed without changing client!

● Fundamental tenet of software design

5117-214/514

How to hide information?

class CartesianPoint {
int x,y;
CartesionPoint(int x, int y) {

this.x=x;
this.y=y;

}
int getX() { return this.x; }
int getY() { return this.y; }
int helper_getAngle();

}

const point = {
x: 1, y: 0,
getX: function() {…}
helper_getAngle:

function() {…}
}

Left is Java, right is Typescript

5217-214/514

Java: Access modifier to hide private details
public class PolarPoint implements Point {

private double len, angle;
private int xcache = -1;
public PolarPoint(double len, double angle)

{this.len=len; this.angle=angle; computeX(); }
public int getX() { return xcache; }
public int getY() {...}
private int computeX() {

xcache = this.len * cos(this.angle);
}

}

This is Java code!

5317-214/514

Java: Access modifier to hide private details
public class PolarPoint implements Point {

private double len, angle;
private int xcache = -1;
public PolarPoint(double len, double angle)

{this.len=len; this.angle=angle; computeX(); }
public int getX() { return xcache; }
public int getY() {...}
private int computeX() {

xcache = this.len * cos(this.angle);
}

}
PolarPoint p = new PolarPoint(5, .245);

This is Java code!

5417-214/514

Java: Access modifier to hide private details
public class PolarPoint implements Point {

private double len, angle;
private int xcache = -1;
public PolarPoint(double len, double angle)

{this.len=len; this.angle=angle; computeX(); }
public int getX() { return xcache; }
public int getY() {...}
private int computeX() {

xcache = this.len * cos(this.angle);
}

}
PolarPoint p = new PolarPoint(5, .245);
p.xcache // type error, trying to access private member
p.computeX(); // type error, private method

This is Java code!

5517-214/514

Benefits of information hiding

Decouples the objects that comprise a system: Allows them to be developed,
tested, optimized, used, understood, and modified in isolation

Speeds up system development: Objects can be developed in parallel

Eases maintenance burden: Objects can be understood more quickly and
debugged with little fear of harming other modules

Enables effective performance tuning: “Hot” classes can be optimized in isolation

Increases software reuse: Loosely-coupled classes often prove useful in other
contexts

5617-214/514

Java: Information hiding with interfaces
public interface Point { … }
private class PolarPoint implements Point {

private double len, angle;
public void computeX() { … }
public int getX() { return xcache; }

}

This is Java code!

5717-214/514

Java: Information hiding with interfaces
public interface Point { … }
public class Factory {

private class PolarPoint implements Point {
private double len, angle;
public void computeX() { … }
public int getX() { return xcache; }

}
public Point createPoint(int x, int y) {

return new PolarPoint(x, y);
}

}

This is Java code!

5817-214/514

Java: Information hiding with interfaces
public interface Point { … }
public class Factory {

private class PolarPoint implements Point {
private double len, angle;
public void computeX() { … }
public int getX() { return xcache; }

}
public Point createPoint(int x, int y) {

return new PolarPoint(x, y);
}

}
Point p = new Factory().createPoint((5, .245);
p.computeX(); // type error, method not in interface Point

This is Java code!

5917-214/514

Principles of Information hiding with interfaces (Java)

Declare variables using interface types, not class types

● Client can use only interface methods

● Fields and implementation-specific methods not accessible from client code

Use private for fields and internal methods to restrict access also in class
types; accessible only from within same class

Interface methods must be public.

Other modifiers protected (for inheritance, more later) and package

6017-214/514

JavaScript:
Closures for Hiding

All methods and fields are
public, no language
constructs for access
control

TypeScript added them, so
it’s quite similar to Java!

In JS: Encoding hiding with
closures (the “module
pattern”)

function createPolarPoint(len, angle) {
let xcache = -1;
let internalLen=len;
function computeX() {…}
return {

getX: function() {
computeX(); return xcache; },

getY: function() {
return len * sin(angle); }

};
}
const pp = createPolarPoint(1, 0);
pp.getX(); // works
pp.computeX(); // runtime error
pp.xcache // undefined
pp.len // undefined

6117-214/514

Closures

In nested functions/classes, inner
functions/classes can access variables and
arguments of outer functions

Frequently used in JavaScript

In Java: Closures for nested classes and
lambda functions, but outer variables need to
be final

function a(x) {
const z = 3;
function b(y) {

x++;
console.log(x+y+z);

}
b(5);
console.log(x);

}
a(3);
// 12
// 4

This is Javascript code!

6217-214/514

Information hiding at the file level!

Decide what functions, variables, classes to
keep private in a file

Historically, all code was in one file; later,
multiple competing module systems
Standardized since ECMAScript 2015 (ES6)

In general, it is good practice to use
files/modules to organize your code and do
this kind of information hiding.

Type/JavaScript: Modules

import { f, b }
from 'dir/file'

import fs from 'fs'

interface Point { ... }

function createP(a, b) {...}

function helper() { ... }

export { Point, createP }

decide what functions /
interfaces can be access
from other modules

import interfaces / functions from
other modules

This is Typescript code!

6317-214/514

Java: Packages and classes

Each class is in a file with same name; classes grouped in packages (directories)

Fully qualified name = Package + Class name (e.g. java.lang.String)

All public classes from all packages can be used

Imports simplify names

import me.util.PolarPoint;

PolarPoint p = new PolarPoint(...);

instead of

me.util.PolarPoint p = new me.util.PolarPoint(...);

6417-214/514

Best practices for information hiding

● Carefully design your API

● Provide only functionality required by clients

○ All other members should be private / hidden through interfaces or closure

● You can always make a private member public later (or export an
additional method) without breaking clients, but not vice-versa!

6517-214/514

Starting a Program
Objects do not do anything on their own; they wait for method calls…

6617-214/514

Starting a Program: Javascript

Objects do not do anything on their own, they wait for method calls

Every program needs a starting point, or waits for events

// start with: node file.js
function createPrinter() {

return {
print: function() { console.log("hi"); }

}
}
const printer = createPrinter();
printer.print()
// hi

Defining interfaces,
functions, classes

Starting:
Creating objects and
calling methods

This is Typescript code!

6717-214/514

Starting a program: Java

All Java code is in classes, so how to create an object and call a method?

Special syntax for main method in class (java X calls main in X)

// start with: java Printer
class Printer {

void print() {
System.out.println("hi");

}
public static void main(String[] args) {

Printer obj = new Printer();
obj.print();

}
}

Main method to be
executed, here used to
create object and invoke
method

Static methods belong to
class not the object,
generally avoid them

This is Java code!

in Java,
everything is

a class

main must be
public and

static

6817-214/514

Summary

Need to divide work, divide and conquer

Objects encapsulate state and behavior

Static/global functions: Only a single function provided, less flexibility

Dynamic dispatch: Each object’s own method is executed, multiple implementations
possible

Encapsulation: Hide object internals behind interface

Tuesday: how to actually run code in an IDE.

	Principles of Software Construction �(Design for change, class level)��Starting with Objects
(dynamic dispatch, encapsulation, entry points)�
Jonathan Aldrich		Bogdan Vasilescu
	Administrivia (1 / 4): Homework 1 is released
	Administrivia (2 / 4) : Reading, Office Hours, Waitlist
	Administrivia (3 / 4) : Late day policy
	Administrivia (4 / 4) : Collaboration policy
	What did we talk about on Tuesday?
	Tradeoffs?
	Learning Goals
	Today: Key Features that Support:
	Hello, world!
I know, it’s corny.
	Typescript
	Typescript is Javascript with types.
	Java is verbose.
	Java and Javascript have 2-part type systems
	Programming without Objects
	Programming with primitives in Java looks a lot like any other imperative programming.
	Objects (JavaScript)
	Objects can contain state
	Objects respond to messages, methods define interface
	Typescript and Java allow us to explicitly define interfaces
	Interfaces and Objects in Java
	SUBTYPE POLYMORPHISM /
DYNAMIC DISPATCH
	Subtype Polymorphism / Dynamic Dispatch
	Classes as Object Templates
	Classes as Object Templates
	Classes as Object Templates
	Note that Typescript lets us do this, too! Remember this?
	TS/JS also allow classes explicitly, similar to Java
	Multiple Implementations of Interface
	Multiple Implementations of Interface
	Clients work with all implementations of Interface
	Subtype Polymorphism / Dynamic Dispatch
	Points and Rectangles: Interface
	Sets: Interface
	Programming against interfaces, not internals
	Java Twist: Classes implicitly have Interfaces
	JavaScript and Classes
	Method Call Internals
	Check your �Understanding
	Check your �Understanding
	Object Methods vs �Global Functions/Procedures
	Flexibility of dynamic dispatch (JavaScript)
	Flexibility of dynamic dispatch (Java)
	Benefits of Dynamic Dispatch
	Discussion Dynamic Dispatch
	Why multiple implementations?
	Slide Number 47
	Historical note: simulation and the origins of OO programming
	Encapsulation
	Encapsulation / Information hiding
	How to hide information?
	Java: Access modifier to hide private details
	Java: Access modifier to hide private details
	Java: Access modifier to hide private details
	Benefits of information hiding
	Java: Information hiding with interfaces
	Java: Information hiding with interfaces
	Java: Information hiding with interfaces
	Principles of Information hiding with interfaces (Java)
	JavaScript: �Closures for Hiding
	Closures
	Type/JavaScript: Modules
	Java: Packages and classes
	Best practices for information hiding
	Starting a Program
	Starting a Program: Javascript
	Starting a program: Java
	Summary

