
117-214/514

Principles of Software Construction: 
Objects, Design, and Concurrency

IDEs, Build system, Continuous 
Integration, Libraries

Bogdan Vasilescu Jonathan Aldrich



217-214/514

Small updates to the homework schedule

● Removed one assignment, adjusted others

● Responds to workload variations in last semester’s edition of the class

Administrivia



317-214/514

Quiz Time

Under “Quizzes → Lecture 3 Quiz” on Canvas.



417-214/514

What did we talk about Thursday?



517-214/514

Productivity Requires Automation Requires Abstraction



617-214/514

Productivity Requires Automation Requires Abstraction



717-214/514

Automation Requires Abstraction

We all treat familiar levels of abstraction as normal/natural

● That’s fine if you only do the laundry
○ Not so much if you are an appliance mechanic
○ How to debug a broken washing machine?

● Also slow to evolve
● e.g. the shift to concentrated laundry detergent

● Abstractions simplify engineering work, and allow engineers to focus on the 
hard parts. 

○ But, effective engineers also know what is beneath the abstractions



817-214/514

Automation Requires Abstraction

Today’s “normal”:
● Integrated-development environments (IDEs) galore

○ Web-based too! Press “.” on a GitHub (file) page 😲😲
● Frequent build, test, release

○ In some companies, every commit is a “release”
● Never write code for which there is a useful library

○ Define “useful”?
● All of the above, entangled



917-214/514

● For each in {Build systems, IDE, libraries, CI}:
○ What is it?
○ What happens under the hood?
○ What are some practical ways to use it?

● What is next?

Abstraction, Reuse, and Programming Tools



1017-214/514

● For each in {Build systems, IDE, libraries, CI}:
○ What is it?
○ What happens under the hood?
○ What are some practical ways to use it?

● What is next?

Abstraction, Reuse, and Programming Tools



1117-214/514

Quick overview of today’s toolchain: Build Systems

How does this happen?



1217-214/514

Starting a program: Java

All Java code is in classes, so how to create an object and call a method?

Special syntax for main method in class (java X calls main in X)

// start with: java Printer
class Printer {

void print() {
System.out.println("hi");

}
public static void main(String[] args) {

Printer obj = new Printer();
obj.print();

}
}

Main method to be 
executed, here used to 
create object and invoke 
method

Static methods belong to
class not the object, 
generally avoid them

This is Java code!

in Java, 
everything is 

a class

main must be 
public and 

static



1317-214/514

Starting a program: Javascript

Objects do not do anything on their own, they wait for method calls

Every program needs a starting point, or waits for events

// start with: node file.js
function createPrinter() {

return {
print: function() { console.log("hi"); }

}
}
const printer = createPrinter();
printer.print()
// hi

Defining interfaces, 
functions, classes

Starting:
Creating objects and
calling methods

This is Typescript code!



1417-214/514

SimpleHello.java/SimpleHello.ts

● Java:
○ javac (or your IDE) compiles .java files to .class files
○ java runs the .class files
○ Command line execution vs. in VSCode

■ What’s the -cp doing?



1517-214/514

SimpleHello.java/SimpleHello.ts

● Java:
○ javac (or your IDE) compiles .java files to .class files
○ java runs the .class files
○ Command line execution vs. in VSCode

■ -cp gives a path to the classes directory tree
■ Organized by package just like Java source

■ -cp also includes .jar files for libraries collected by maven
● A .jar file is a zipped up tree of .class files, plus some metadata



1617-214/514

SimpleHello.java/SimpleHello.ts

● Java:
○ javac (or your IDE) compiles .java files to .class files
○ java runs the .class files
○ Command line execution vs. in VSCode

■ -cp gives a path to the classes directory tree & .jar files for libraries
● TypeScript:

○ Is transpiled to JavaScript, which is then executed inside a runtime environment.
○ Outside the browser: we use node.js

○ Node looks for modules in the node_modules directory
○ How do modules get there? from npm
○ npm uses package.json to track modules we depend on & their versions

● Why do we encourage you to run everything in an IDE/use Maven/npm?
○ Hints: what are the roles of -cp in Java? Or node_modules in typescript?



1717-214/514

Quick overview of today’s toolchain: Build Systems

Compiling is “easy” when all your 
source code is here

Nowadays, your code is not “here”
● Even libraries that you use in the 

IDE!
● Interfaces make that possible



1817-214/514

Quick overview of today’s toolchain: Build Systems

● Building a few basic tasks:
○ Compiling & linking, to produce an executable
○ Creating secondary artifacts, e.g. documentation-pages, linter reports, test suite reports
○ Different levels of “depth” may be appropriate, for large code bases (e.g. Google)

● Popular options:
○ For Java: Maven and Gradle -- historically Ant.

■ You could do any homework in either, in principle; we just standardize to make helping 
you and grading easier.

○ For JS/TS: Node(JS)
■ Generally coupled with the Node Package Manager (NPM)

● Often built into IDEs, as plugins



1917-214/514

Under the Hood: Build Systems

● These days: intricately tied with IDEs, package managers
● Projects often come with a build config file or two

○ ‘pom.xml’ for Maven
○ ‘tsconfig.json’ + ‘package.json’ for TypeScript+NPM -- the second 

deals with packages
○ These can be nested, one per (sub-)directory, to compose larger 

systems
■ On GitHub, you can create links across repositories



2017-214/514

Under the Hood: Build Systems

Projects typically require build config files
● Checked into source control

○ ‘pom.xml’ for Maven
○ ‘tsconfig.json’ + ‘package.json’ for TypeScript+NPM --

the second deals with packages
● Relevant components:

○ Compilation source and target version
○ High-level configuration options
○ Targets for various development phases
○ Relevant plugins
○ Dependencies with versions



2117-214/514

https://maven.apache.org/guides/getting-
started/maven-in-five-minutes.html



2217-214/514

● Node.js is a JS runtime. npm is its 
package manager.



2317-214/514

Meanwhile, the IDE can interact with these build systems!



2417-214/514



2517-214/514



2617-214/514

What’s going on in HW1?



2717-214/514

● For each in {Build systems, IDE, libraries, CI}:
○ What is it?
○ What happens under the hood?
○ What are some practical ways to use it?

● What is next?

Abstraction, Reuse, and Programming Tools



2817-214/514

● For each in {Build systems, IDE, libraries, CI}:
○ What is it?
○ What happens under the hood?
○ What are some practical ways to use it?

● What is next?

Abstraction, Reuse, and Programming Tools



2917-214/514

Quick overview of today’s toolchain: IDEs

Integrated Development Environments bundle development workflows in 
a single UI

● Editing, refactoring, running & debugging, adding dependencies, compiling, deploying, 
plugins, you name it

● They often try to be everything, with mixed results
● Leverage them to the fullest extent, to automate and check your work

IDEs are key to managing complexity.



3017-214/514

Quick overview of today’s toolchain: IDEs

Eclipse was the dominant player in Java for 20-odd years, owing to its 
powerful backbone and plugin architecture



3117-214/514

Quick overview of today’s toolchain: IDEs

Recently, IntelliJ has been more dominant
● Packs a lot of “recipes” to create certain types of projects (e.g., web-app with Spring & 

Maven)

VSCode is surging in popularity
● Local & web, lightweight but with a massive plugin ecosystem

In general: choose based on need!
● You can relearn key-bindings; “killer features” are rare and temporary
● E.g., Android: might want Android Studio (itself built on IntelliJ) since Google supports it

We recommended VSCode because you’re programming in two languages, it’s very current, and 
then it’s easier for us to help you.



3217-214/514

Under the Hood: IDEs

● The engine: continuous parsing, building
○ Key feature: most partial programs don’t parse, but IDEs make sense of them
○ That allows quickly relaying compile warnings/errors and useful suggestions
○ Same with API resolution

● Powered by rapid incremental compilation
○ Only build what has been updated

■ Virtually every edit you make triggers a compilation, re-linking
■ Of just the changed code and its dependencies

○ Works because very little of the code changes most of the time
■ But no free lunch: tends to drop optimizations (mostly fine), may struggle with big 

projects
○ Just try it: call an API with the wrong parameters & see how fast it triggers an alert; contrast 

with running a full Maven build (e.g., with `mvn install`)



3317-214/514

Under the Hood: IDEs
Automate common programming actions, like debugging, which is often the 
default mode when you run in the IDE (like in VSCode)



3417-214/514

Debugging allows setting breakpoints in the GUI, access to rich execution info.

Under the Hood: IDEs

TS: 



3517-214/514



3617-214/514

Under the Hood: IDEs
Combine build systems + IDEs + plugins (checkstyle example/demo!)



3717-214/514

Under the Hood: IDEs

Automate common programming actions:

● Handy refactorings, suggestions
○ E.g., just press `alt+enter` in IntelliJ while highlighting nearly any code

■ Keyboard shortcuts are super useful: explore your IDE!
○ These can make you a better programmer: encode a lot of best-practices

■ Though, don’t read into them too much



3817-214/514

Under the Hood: IDEs

● IDE designers spend a lot of time automating common development 
tasks

○ Sometimes they get a little too helpful (modifying pom’s)
○ Many plugins provide customized experience
○ Mostly evolve with new tools, prioritizing emerging routines

● Useful to know how these actions work
○ Often not much more than invoking commands for you

■ VSCode is very explicit about this in the terminal -- great for customization



3917-214/514

● For each in {Build systems, IDE, libraries, CI}:
○ What is it?
○ What happens under the hood?
○ What are some practical ways to use it?

● What is next?

Abstraction, Reuse, and Programming Tools



4017-214/514

Quick overview of today’s toolchain: Libraries

Reusable packages of code.

Publicly hosted on various package managers
● Often tied, but not inextricably linked, to build tools, and languages
● Maven/Gradle for Java, NPM for JS/TS, Nuget for C#, ...
● Cross-language package registries, e.g., GitHub Packages



4117-214/514
Java: 



4217-214/514



4317-214/514

Quick overview of today’s toolchain: Libraries

● Myriad. Publicly hosted on various managers
○ Often tied, but not inextricably linked, to build tools, and languages
○ Maven, Gradle, NPM, Nuget, Docker, …
○ Cross-language package registries, e.g., GitHub Packages

● Releases are generally fast-paced or frigid
○ Almost all volunteer-based, so support waivers, as does documentation quality
○ Often open-source, so you can check out the status & details on GitHub
○ Beware of vulnerabilities and bugs, esp. with minor-releases and nightly’s, old packages



4417-214/514

Quick overview of today’s toolchain: Libraries

● A Case-Study:
○ ‘pac-resolver’ (3M weekly downloads) has a major security vulnerability

■ Uses ‘degenerator’ (same author), which misuses a Node module
■ “The vm module is not a security mechanism. Do not use it to run untrusted code.”
■ (a mistake that’s been made before: people rarely read disclaimers)

○ ‘pac-proxy-agent’ (2M weekly downloads, same author) uses the above
■ Is widely popular, the main reason people use ‘degenerator’
■ Most people using this package have never heard of the latter -- many never will

https://nodejs.org/api/vm.html#vm_vm_executing_javascript


4517-214/514

log4shell



4617-214/514

Under the Hood: Libraries & Frameworks

Packages can be either:
● Libraries:

○ A set of classes and methods that provide reusable functionality
○ Typically: programmer calls, library returns data, that’s it.



4717-214/514

Under the Hood: Libraries & Frameworks

Packages can be either:
● Libraries:

○ A set of classes and methods that provide reusable functionality
○ Typically: programmer calls, library returns data, that’s it.

● Frameworks:
○ Reusable skeleton code that can be customized into an application
○ Framework calls back into client code

■ The Hollywood principle: “Don’t call us. We’ll call you.”
○ E.g., GUI development: you declare your UI elements, how they drawn; framework invokes them
○ Principle: inversion of control

https://martinfowler.com/bliki/InversionOfControl.html


4817-214/514

Under the Hood: Libraries & Frameworks

Packages can be either:
● Libraries:

○ A set of classes and methods that provide reusable functionality
○ Typically: programmer calls, library returns data, that’s it.

● Frameworks:
○ Reusable skeleton code that can be customized into an application
○ Framework calls back into client code

■ The Hollywood principle: “Don’t call us. We’ll call you.”
○ E.g., GUI development: you declare your UI elements, how they drawn; framework invokes them
○ Principle: inversion of control

● You typically use zero/one framework and many libraries
○ Frameworks might be especially constraining, but in exchange you can reuse more functionality
○ Some tools are a bit of both, and not all frameworks quite invert control

https://martinfowler.com/bliki/InversionOfControl.html


4917-214/514

Under the Hood: Libraries & Frameworks

Which kind is a command-line parsing package?

Which kind is Android?

How about a tool that runs tests based on annotations you add in your code?

http://tom.lokhorst.eu/2010/09/why-libraries-are-better-than-frameworks`



5017-214/514

Under the Hood: Libraries & Frameworks

Look into:

● Stated Goal:
○ A simple interface (“get started in one line!”) also means lots of abstraction
○ That’s neither good nor bad; know what you need
○ Docs with “advanced use cases” are always neat

● Maintenance:
○ Active release cycle, recent updates to documentation
○ GitHub build status, issue tracker (filled with unmerged ‘dependabot’ PRs?)
○ Lots of companies deliberately lag by one minor (or even major) version

● Transitive dependencies
○ Myriad, beyond inspection. Using OSS in corporate environments is a headache



5217-214/514

● For each in {Build systems, IDE, libraries, CI}:
○ What is it?
○ What happens under the hood?
○ What are some practical ways to use it?

● What is next?

Abstraction, Reuse, and Programming Tools



5317-214/514

Quick overview of today’s toolchain: Continuous Integration

CI: Automates standard build, test, deploy pipelines

(Technically, the latter is “CD”)

Typically builds from scratch in a clean container

Often tied to code-review; triggers on new commits, pull requests

● Ideally, official releases pass the build

Produces (long) logs with debugging outputs



5417-214/514

Defines a series of actions to be run in a clean build:

● Actions start from the very top:
○ Clone repository, checkout branch
○ Download & install Java/Node
○ Invoke commands with timeouts

● Travis allocates a new (Docker) container for each build
○ Think of this like a fresh, temporary computer
○ Usually with a few default libraries present (i.e., based on an image)

● That means: fully replicable builds

Under the Hood: Continuous Integration



5517-214/514

Continuous 
integration – GitHub 
Actions

You can see the results of 
builds over time



5617-214/514



5717-214/514

Automatically builds, tests,
and displays the result

We – and everyone else – used to 
use Travis CI.

● Until they randomly stopped 
supporting OSS.

GitHub has native CI support, and 
it’s pretty good: GitHub Actions.

● Sidebar on how our GH Actions 
are configured for HW1

Under the Hood: Continuous Integration



5817-214/514

Quick overview of today’s toolchain: not mentioned

Docker: containerize applications for coarse-grained reuse

Cloud: deploy and scale rapidly, release seamlessly

Bug/Issue trackers, often integrated with reviews



5917-214/514

Behind the Abstraction: Some Nuance

● Automation vs. Reuse
○ We tend to automate common chains of actions

■ Gear-up := {Press clutch, switch gear, release clutch
while accelerating}

○ To facilitate reusing such “subroutines”, we introduce abstractions
■ Accelerate in ‘D’ => Gear-up when needed

● Reuse vs. Interfaces
○ Interfaces facilitate reuse through abstraction

■ Allow upgrading implementation without breaking things
■ Provide explicit & transparent contract



6017-214/514

Behind the Abstraction, Some Nuance

Most tools are abstractions 
of common commands
● Typically operated via 

GUI and/or a DSL
● Obvious for GitHub 

Actions: just read the 
Yaml

○ Script-like languages 
are common

○ Involving a vocabulary 
of “targets”

○ E.g., `mvn site`



6117-214/514

Behind the Abstraction, Some Nuance

Most tools are abstractions of common commands
● Typically operated via GUI and/or a DSL
● Obvious for GitHub Actions: just read the Yaml

○ Script-like languages are common
○ Involving a vocabulary of “targets”
○ E.g., `mvn site`

Abstraction can also “trap” us
● When/how do we leave the abstraction?
● Command-line comes built into IDEs for a reason
● Non-trivial in general! May require switching/“patching” libraries

○ E.g., Maven → Gradle for more unusual build routines



6217-214/514

● For each in {Build systems, IDE, libraries, CI}:
○ What is it?
○ What happens under the hood?
○ What are some practical ways to use it?

● What is next?

Abstraction, Reuse, and Programming Tools



6317-214/514

What’s Next: AI Powered Programming

● Easier in Web IDEs
○ Which are themselves

“next”



6417-214/514

What’s Next: Collaborative online coding

● Think: Google Docs for code
● E.g. VS Live Share
● How will this change “commits”?



6517-214/514

What’s Next: Tighter IDE-to-cloud integration

● Google Cloud is pushing on this
with VSCode

● We will (lightly) touch on Containers &
Clouds in this course



6617-214/514

Review of the Quiz

Bloch generally recommends that fields are not made directly accessible from 
outside a class. EITHER

(1) Give an example of a circumstance in which it's OK to bend that rule, OR

(2) give a specific example of what can go wrong if you violate it.



6717-214/514

Summary

● Programming Tools are abundant, and rapidly evolving
○ Learn multiple; you will have to inevitably

● They rely on abstractions through interfaces to facilitate reuse
○ Which come in many shapes: GUI, API, DSL
○ And can be a limitation -- choose wisely

● Your HW1 toolchain sets you up for all homeworks
○ With modest variations (frameworks, new build targets)
○ Self-discovery is a big asset
○ Recitation should be helpful! 


	Principles of Software Construction: Objects, Design, and Concurrency��IDEs, Build system, Continuous Integration, Libraries��Bogdan Vasilescu	Jonathan Aldrich


	Administrivia
	Quiz Time
	What did we talk about Thursday?
	Productivity Requires Automation Requires Abstraction
	Productivity Requires Automation Requires Abstraction

	Automation Requires Abstraction
	Automation Requires Abstraction
	Abstraction, Reuse, and Programming Tools
	Abstraction, Reuse, and Programming Tools
	Quick overview of today’s toolchain: Build Systems

	Starting a program: Java
	Starting a program: Javascript
	SimpleHello.java/SimpleHello.ts
	SimpleHello.java/SimpleHello.ts
	SimpleHello.java/SimpleHello.ts
	Quick overview of today’s toolchain: Build Systems
	Quick overview of today’s toolchain: Build Systems
	Under the Hood: Build Systems
	Under the Hood: Build Systems
	Slide Number 21
	Slide Number 22
	Meanwhile, the IDE can interact with these build systems!
	Slide Number 24
	Slide Number 25
	What’s going on in HW1?
	Abstraction, Reuse, and Programming Tools
	Abstraction, Reuse, and Programming Tools
	Quick overview of today’s toolchain: IDEs
	Quick overview of today’s toolchain: IDEs

	Quick overview of today’s toolchain: IDEs


	Under the Hood: IDEs
	Under the Hood: IDEs
	Under the Hood: IDEs
	Slide Number 35
	Under the Hood: IDEs
	Under the Hood: IDEs
	Under the Hood: IDEs
	Abstraction, Reuse, and Programming Tools
	Quick overview of today’s toolchain: Libraries
	Java: 
	Slide Number 42
	Quick overview of today’s toolchain: Libraries
	Quick overview of today’s toolchain: Libraries
	log4shell
	Under the Hood: Libraries & Frameworks
	Under the Hood: Libraries & Frameworks
	Under the Hood: Libraries & Frameworks
	Under the Hood: Libraries & Frameworks
	Under the Hood: Libraries & Frameworks
	Abstraction, Reuse, and Programming Tools
	Quick overview of today’s toolchain: Continuous Integration

	Under the Hood: Continuous Integration
	Continuous integration – GitHub Actions
	Slide Number 56
	Under the Hood: Continuous Integration
	Quick overview of today’s toolchain: not mentioned
	Behind the Abstraction: Some Nuance
	Behind the Abstraction, Some Nuance
	Behind the Abstraction, Some Nuance
	Abstraction, Reuse, and Programming Tools
	What’s Next: AI Powered Programming

	What’s Next: Collaborative online coding
	What’s Next: Tighter IDE-to-cloud integration
	Review of the Quiz
	Summary

