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Quiz Time

Under “Quizzes → Lecture 4 Quiz” on Canvas.
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Encapsulation / Information hiding

● Well designed objects protect internals from others

○ both internal state and implementation details

● Well-designed code hides all implementation details

○ Cleanly separates interface from implementation

○ Modules communicate only through interfaces

○ They are oblivious to each others’ inner workings

● Hidden details can be changed without changing client!

● Fundamental tenet of software design

Remember this 
discussion from 
last week?
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Who’s to blame?

Algorithms.shortestDistance(g, “Tom”, “Anne”);

> ArrayOutOfBoundsException
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Who’s to blame?

Algorithms.shortestDistance(g, “Tom”, “Anne”);

> -1
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Who’s to blame?

/**
* This method finds the shortest
* distance between two vertices.
* It returns -1 if the two nodes
* are not connected.
*/
function shortestDistance(…): number {…}
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Who’s to blame?

/**
* This method finds the shortest
* distance between two vertices.
* It returns -1 if the two nodes
* are not connected.
*/
function shortestDistance(…): number {…}

Think of this (textual) 
specification as a “contract”
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Most real-world code has a contract

● Imperative to build systems that scale!
● This is why we:

○ Encode specifications
○ Write tests

Service* 
implementation

Service interface

Client
environment

Hidden from 
service provider

Hidden from 
service client

* service = object, 
subsystem, …
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Today

Is about explicit >> implicit, key to quality assurance at scale

1. Exception Handling
2. Unit Testing
3. Specifications
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Exceptions
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What does this code do? This is Java code

FileInputStream fIn = new FileInputStream(fileName);
if (fIn == null) {

switch (errno) {
case _ENOFILE:

System.err.println(“File not found: “ + …);
return -1;

default:
System.err.println(“Something else bad happened: “ + …);
return -1;

}
}
DataInput dataInput = new DataInputStream(fIn);
if (dataInput == null) {
System.err.println(“Unknown internal error.”);
return -1; // errno > 0 set by new DataInputStream

}
int i = dataInput.readInt();
if (errno > 0) {
System.err.println(“Error reading binary data from file”);
return -1;

} // The slide lacks space to close the file.  Oh well.
return i;
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Compare to:

try (FileInputStream fi = new FileInputStream(fileName)) {

DataInput dataInput = new DataInputStream(fi);

return dataInput.readInt();

} catch (FileNotFoundException e) {

System.out.println("Could not open file " + fileName);

} catch (IOException e) {

System.out.println("Couldn’t read file: " + e);

}

This is Java code



1317-214/514

● Split control-flow into a “normal” and an “erroneous” branch
○ Compare “if/else”

● Inform caller of problem by transfer of control
● Where do exceptions come from?

○ Program can raise them explicitly using ‘throw’
○ Underlying virtual machine (JVM) can generate

● Semantics
○ Propagates up call stack until exception is caught, or main method is reached (terminates 

program!)

Exceptions



1417-214/514

The exception hierarchy in Java (messy)

Throwable

Exception

RuntimeException IOException

EOFException

FileNotFoundException

NullPointerException

IndexOutOfBoundsException

ClassNotFoundException… …

. . .

Object

Error
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Control-flow of exceptions
public static void test() {

try {
System.out.println("Top");
int[] a = new int[10];
a[42] = 42;
System.out.println("Bottom");

} catch (NegativeArraySizeException e) {
System.out.println("Caught negative array size");

}
}

public static void main(String[] args) {
try {

test();
} catch (IndexOutOfBoundsException e) {

System.out.println"("Caught index out of bounds");
}

}

This is Java code
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Control-flow of exceptions

Handle errors at a level you 
choose, not necessarily in 
the low-level methods 
where they originally occur.

public static void test() {
try {

System.out.println("Top");
int[] a = new int[10];
a[42] = 42;
System.out.println("Bottom");

} catch (NegativeArraySizeException e) {
System.out.println("Caught negative array size");

}
}

public static void main(String[] args) {
try {

test();
} catch (IndexOutOfBoundsException e) {

System.out.println"("Caught index out of bounds");
}

}

This is Java code
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Exception Handling

Undeclared vs. Declared

int divide(int a, int b) {
return a / b;

}

String read(String path) throws
IOException {

return Files.lines(Path.of(path))
.collect(Collectors.joining(“\n”));

}

This is Java code
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Exception Handling

Undeclared vs. Declared

Unchecked vs. Checked

int divide(int a, int b) {
return a / b;

}

String read(String path) throws
IOException {

return Files.lines(Path.of(path))
.collect(Collectors.joining(“\n”));

}

divide(4, 3); // Compiles 
fine

read(“test.txt”); // Unhandled
exception: java.io.IOException

This is Java code
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Exception Handling

Handling unchecked exceptions is not enforced by the compiler

These are quite common

● E.g., all exceptions in C++
● In Java: any exception that extends Error or RuntimeException
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Throwable

Exception

RuntimeException
IOException

EOFException

FileNotFoundException

NullPointerException

IndexOutOfBoundsException

ClassNotFoundException

Object

Error

StackOverflowError

…

…

…

…

Checked Exceptions

Java’s exception hierarchy (messy)
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Checked vs. unchecked exceptions
● Checked exception

○ Must be caught or propagated, or program won’t compile
○ Exceptional condition that programmer must deal with

● Unchecked exception
○ No action is required for program to compile…

■ But uncaught exception will cause failure at runtime
○ Usually indicates a programming error

● Error
○ Special unchecked exception typically thrown by VM
○ Recovery is usually impossible
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● You can’t forget to handle common failure modes
○ Explicit > implicit
○ Compare: using a flag or special return value

● Provide high-level summary of error
○ Compare: core dump in C/C++

● Improve code structure
○ Separate normal code path from exceptional
○ Error handling code is segregated in catch blocks

● Ease task of writing robust, maintainable code

Benefits of exceptions (summary)
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class BufferBoundsException extends Exception {
public BufferBoundsException(String message) {

...
}

}

void atIndex(int[] buff, int i) throws BufferBoundsException {
if (buff.length <= i)

throw new BufferBoundsException(“...”);
return buff[i];

}

Defining & using Exception Types
This is Java code
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Exception Handling

● It’s still wise to guard for “obvious” unchecked exceptions

● Or explicitly signal the problem, recall:

● Why is this better than letting the index fail?

if (arr.length > 10)
return arr[10];

if (buff.length <= i)
throw new BufferBoundsException(“...”);

return buff[i];

This is Java code
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Exception Handling

● It’s still wise to guard for “obvious” unchecked exceptions

● Or explicitly signal the problem, recall:

● Why is this better than letting the index fail?
○ BufferBoundsException can be a checked exception!
○ Which forces someone to handle it
○ Here, we declared: atIndex(int[] buff, int i) throws BufferBoundsException

○ So every calling method must handle it, or throw it on

if (arr.length > 10)
return arr[10];

if (buff.length <= i)
throw new BufferBoundsException(“...”);

return buff[i];

This is Java code
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● Document all exceptions thrown by each method in the specification
○ Unchecked as well as checked (EJ Item 74)
○ But don’t declare unchecked exceptions!

● Include failure-capture info in detail message (EJ Item 75)

throw new IllegalArgumentException(
"Quantity must be positive: " + quantity);

Guidelines for using exceptions
This is Java code
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● Document all exceptions thrown by each method in the specification
○ Unchecked as well as checked (EJ Item 74)
○ But don’t declare unchecked exceptions!

● Include failure-capture info in detail message (EJ Item 75)

● Don’t ignore exceptions (EJ Item 77)

throw new IllegalArgumentException(
"Quantity must be positive: " + quantity);

Guidelines for using exceptions (2)

try {
processPayment(payment);

}
catch (Exception e) {  // BAD!
}

This is Java code
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Cleanup

Exception handling often also supports cleaning up

openMyFile();
try {

writeMyFile(theData); // This may throw an error
} catch(e) {

handleError(e); // If an error occurred, handle it
} finally {

closeMyFile(); // Always close the resource
}

https://developer.mozilla.org/en-US/docs/Web/JavaScript/Guide/Control_flow_and_error_handling

This is JavaScript code
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Manual Resource Termination

Is ugly and error-prone, especially for multiple resources

● Even good programmers usually get it wrong
○ Sun’s Guide to Persistent Connections got it wrong in code that claimed to be exemplary
○ Solution on page 88 of Bloch and Gafter’s Java Puzzlers is badly broken; no one noticed 

for years
● 70% of the uses of close in the JDK itself were wrong in 2008!
● Even the “correct” idioms for manual resource management are deficient
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Automatically closes resources!

try (DataInputStream dataInput = 
new DataInputStream(new FileInputStream(fileName))) {

return dataInput.readInt();
} catch (IOException e) {

...
}

The solution: try-with-resources
This is Java code
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Exceptions Across Languages

Alas, try-with-resources does not exist in JS/TS

● Neither does ‘throws’

Exception structures differ radically across languages

● Most languages have ‘try/catch’ and ‘throw’
○ Some have ‘finally’

● Some languages have resource management support
○ Python has ‘with’ (since 2006), C# has ‘using’
○ Java’s try-with-resources was added in 2011

● Go returns an error-typed value, to be checked for nullity
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In summary

Use exceptions to report failure

● Make exceptions part of your contract via comments (Java, JS, TS)

● Use finally statements to clean up resources

● In Java, use checked exceptions to enforce that recoverable exceptions 
are handled
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Outline

1. Exception Handling
2. Unit Testing
3. Specifications
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Functional Correctness

● Compiler ensures types are correct (type-checking)
○ Prevents many runtime errors, like “Method Not Found” and “Cannot add boolean to int”
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Functional Correctness

● Compiler ensures types are correct (type-checking)
○ Prevents many runtime errors, like “Method Not Found” and “Cannot add boolean to int”

● How to ensure functional correctness, beyond type correctness?
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One option: Formal verification

● Use mathematical methods to prove correctness with respect to 
the formal specification

● Formally prove that all possible executions of an implementation 
fulfill the specification

● Manual effort; partial automation; not automatically decidable
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Another option: Testing

● Executing the program with selected inputs in a controlled environment
● Goals

○ Reveal bugs, so they can be fixed (main goal)
○ Assess quality
○ Clarify the specification, documentation

● Testing is related to contracts
○ Because we need to know what to test!



3817-214/514

Re: Formal verification, Testing

“Testing shows the presence, not the 
absence of bugs.”

Edsger W. Dijkstra, 1969

“Beware of bugs in the above code; I
have only proved it correct, not tried it.”

Donald Knuth, 1977
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1: public static int binarySearch(int[] a, int key) {
2: int low = 0;
3: int high = a.length - 1;
4:
5: while (low <= high) {
6: int mid = (low + high) / 2;
7: int midVal = a[mid];
8:
9: if (midVal < key)
10: low = mid + 1
11: else if (midVal > key)
12: high = mid - 1;
13: else
14: return mid; // key found
15: }
16: return -(low + 1); // key not found.
17: }

Binary search from java.util.Arrays

Fails if low + high > MAXINT (231 - 1)
Sum overflows to negative value

Spec: sets mid to the average of low and 
high, truncated down to the nearest integer.

Q: Who’s more right, Dijkstra or Knuth?
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A: They’re Both Right

● There is no silver bullet! Use all the tools at your disposal
○ Careful design
○ Testing
○ Formal methods (where appropriate)
○ Code reviews 
○ …

● You’ll still have bugs, but hopefully fewer.
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How to test?

Manual Testing

● Live System?
● Extra Testing System?
● Check output / assertions?
● Effort, Costs?
● Reproducible?
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How to test?

Automated Testing

● Execute a program with specific inputs
○ Check output for expected values

● Test small pieces of the program
○ Easier than testing user interactions

● Set up testing infrastructure
○ Execute tests regularly
○ Typically, after every change
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Testing

How do we know
this works?

int isPos(int x) {
return x >= 1;

}

This is Java code
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Testing

How do we know
this works?

Testing

Are we done?

int isPos(int x) {
return x >= 1;

}

@Test
void testIsPos() {

assertTrue(isPos(1));
}

This is Java code
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Testing

How do we know
this works?

Testing

Are we done?

int isPos(int x) {
return x >= 1;

}

@Test
void testIsPos() {

assertTrue(isPos(1));
}

@Test
void testNotPos() {
assertFalse(isPos(-1));

}

This is Java code
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Testing

How do we know
this works?

Testing

Are we done?

int isPos(int x) {
return x >= 0; // What if?

}

@Test
void testIsPos() {
assertTrue(isPos(1));

}

@Test
void testNotPos() {
assertFalse(isPos(-1));

}

This is Java code
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Testing

How do we know
this works?

Testing

Are we done?

int isPos(int x) {
return x >= 0; // What if?

}

@Test
void test1IsPos() {
assertTrue(isPos(1));

}

@Test
void test0IsNotPos() {
assertFalse(isPos(0)); // Fails

}

This is Java code
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Boundary Value Testing

We cannot test for every integer.

Choose representative values:
1 for positives, -1 for negatives

And boundary cases: 0 is a likely
candidate for mistakes

● Think like an attacker

int isPos(int x) {
return x >= 0; // What if?

}

@Test
void test1IsPos() {
assertTrue(isPos(1));

}

@Test
void test0IsNotPos() {
assertFalse(isPos(0)); // Fails

}

This is Java code
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Unit Tests

● For “small” units: methods, classes, subsystems
○ Unit is smallest testable part of system
○ Test the parts before assembling them
○ Intended to catch local bugs

● Typically (but not always) written by developers
● Many small, fast-running, independent tests
● Few dependencies on other system parts or environment
● Insufficient, but a good starting point
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For Java: JUnit

● Popular unit-testing framework for Java
● Easy to use
● Tool support available, e.g., IntelliJ integration
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For Java: JUnit

Syntax: import static org.junit.Assert.*;

class PosTests {

@Before
void setUp() {
// Anything you want to run 

before each test
}

@Test
void test1IsPos() {
assertTrue(isPos(1));

}
}

This is Java code
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For TS: Jest

● In particular, ts-jest
○ Many other options; your choice

● Requires a few files:
○ jest.config.js, to specify testing mode
○ package.json with (ts-)jest dependencies

● Provides useful features:
○ ‘test’, ‘expect’ (= ‘assert’)
○ ‘toBe’ (identity), ‘toEqual’ (equality)
○ ‘fn’, for Mocking (later)
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Test organization

● Conventions (not requirements)

● Have a test class FooTest for each public 
class Foo

● Have a source directory and a test directory
○ Store FooTest and Foo in the same package

○ Tests can access members with default (package) 
visibility
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Writing Testable Code

● Think about testing when writing code
○ Unit testing encourages you to write testable code

● Modularity and testability go hand in hand
○ Same test can be used on multiple implementations of an interface!

● Test-Driven Development
○ A design and development method in which you write tests before you write the code
○ Writing tests can expose API weaknesses!



5517-214/514

Run Tests Often

● You should only commit code that passses all tests…
● So run tests before every commit
● If test suite becomes too large & slow for rapid feedback

○ Run local package-level tests (“smoke tests”) frequently
○ Run all tests nightly
○ Medium sized projects often have thousands of test cases

● Continuous integration (CI) servers help to scale testing
○ We ask you to use GitHub Actions in this class
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Outline

1. Exception Handling
2. Unit Testing
3. Specifications – to be continued on Tuesday
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Q: What exactly do you test given some method?

● What it claims to do: specification testing – the contract
● What it does: structural testing (next week)

Specifications and testing are closely related
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How to Encode Specifications?

Formal frameworks exist, to capture pre- and post-conditions

● E.g., ‘requires arr != null’
● Useful for formal verification
● But rarely used

○ Takes a lot of effort, and doesn’t scale well
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More common: prose specification. 

How to Encode Specifications?

/**
* This method finds the shortest
* distance between two vertices.
* It returns -1 if the two nodes
* are not connected.
*/
function shortestDistance(…): number {…}

Recall the earlier example? 
(Probably too unstructured)
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What is a contract?

● Agreement between an object and its user
○ Defines method’s and caller’s responsibilities
○ Analogy: legal contract

■ If you pay me this amount on this schedule…
■ I will build a room with the following detailed spec
■ Some contracts have remedies for nonperformance

● What the method does, not how it does it
○ Interface (API), not implementation

● Defines correctness of implementation – we’ll come back to this later today
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How to Encode Specifications?

Method contract structure:

● Preconditions: what method requires for correct operation
● Postconditions: what method establishes on completion
● Exceptional behavior: what it does if precondition violated
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How to Encode Specifications?

Document:

● Every parameter
● Return value
● Every exception (checked and unchecked)
● What the method does, including

○ Primary purpose
○ Any side effects
○ Any thread safety issues
○ Any performance issues
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How to Encode Specifications?

Document:

● Every parameter
● Return value
● Every exception (checked and unchecked)
● What the method does, including

○ Primary purpose
○ Any side effects
○ Any thread safety issues
○ Any performance issues

Do not document 
implementation details

● Known as overspecification
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Docstring Specification
class RepeatingCardOrganizer {
...

public boolean isComplete(CardStatus card) {
return card.getResults().stream()
.filter(isSuccess -> isSuccess)
.count() >= this.repetitions;

}
}

This is Java code
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Docstring Specification
class RepeatingCardOrganizer {
...
/**
* Checks if the provided card has been answered correctly the required 

number of times.
* @param card The {@link CardStatus} object to check.
* @return {@code true} if this card has been answered correctly at least 

{@code this.repetitions} times.
*/
public boolean isComplete(CardStatus card) {

return card.getResults().stream()
.filter(isSuccess -> isSuccess)
.count() >= this.repetitions;

}
}

This is Java code
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Docstring Specification
class RepeatingCardOrganizer {
...
/**
* Checks if the provided card has been answered correctly the required 

number of times.
* @param card The {@link CardStatus} object to check.
* @return {@code true} if this card has been answered correctly at least 

{@code this.repetitions} times.
*/
public boolean isComplete(CardStatus card) {

// IGNORE THIS WHEN SPECIFICATION TESTING!
}

}

This is Java code



6717-214/514

Docstring Specification
/**
* Checks if the provided card has been answered correctly the required 

number of times.
* @param card The {@link CardStatus} object to check.
* @return {@code true} if this card has been answered correctly at least 

{@code this.repetitions} times.
*/
public boolean isComplete(CardStatus card);

// What is specified?

This is Java code
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Docstring Specification
/**
* Checks if the provided card has been answered correctly the required 

number of times.
* @param card The {@link CardStatus} object to check.
* @return {@code true} if this card has been answered correctly at least 

{@code this.repetitions} times.
*/
public boolean isComplete(CardStatus card);

// What is specified?
// - Parameter type (no constraints)

This is Java code
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Docstring Specification
/**
* Checks if the provided card has been answered correctly the required 

number of times.
* @param card The {@link CardStatus} object to check.
* @return {@code true} if this card has been answered correctly at least 

{@code this.repetitions} times.
*/
public boolean isComplete(CardStatus card);

// What is specified?
// - Parameter type (no constraints)
// - Return constraints: “at least” this.repetitions correct answers

This is Java code
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Docstring Specification
/**
* Checks if the provided card has been answered correctly the required 

number of times.
* @param card The {@link CardStatus} object to check.
* @return {@code true} if this card has been answered correctly at least 

{@code this.repetitions} times.
*/
public boolean isComplete(CardStatus card);

// What is specified?
// - Parameter type (no constraints)
// - Return constraints: “at least” this.repetitions correct answers
// So what do we test?

This is Java code
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Docstring Specification
/**
* Checks if the provided card has been answered correctly the required 

number of times.
* @param card The {@link CardStatus} object to check.
* @return {@code true} if this card has been answered correctly at least 

{@code this.repetitions} times.
*/
public boolean isComplete(CardStatus card);

@Test
public void testIsCompleteSingleSuccess() {
CardRepeater repeater = new RepeatingCardOrganizer(1); // Single repetition
CardStatus cs = new CardStatus(new FlashCard(“”, “”));
cs.recordResult(true); // Single Success
assert???(repeater.isComplete(cs));

}

This is Java code
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Docstring Specification
/**
* Checks if the provided card has been answered correctly the required 

number of times.
* @param card The {@link CardStatus} object to check.
* @return {@code true} if this card has been answered correctly at least 

{@code this.repetitions} times.
*/
public boolean isComplete(CardStatus card);

@Test
public void testIsCompleteSingleSuccess() {
CardRepeater repeater = new RepeatingCardOrganizer(1); // Single repetition
CardStatus cs = new CardStatus(new FlashCard(“”, “”));
cs.recordResult(true); // Single Success
assertTrue(repeater.isComplete(cs));

}

This is Java code
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Docstring Specification
/**
* Checks if the provided card has been answered correctly the required 

number of times.
* @param card The {@link CardStatus} object to check.
* @return {@code true} if this card has been answered correctly at least 

{@code this.repetitions} times.
*/
public boolean isComplete(CardStatus card);

@Test
public void testIsNotCompleteSingleFailure() {
CardRepeater repeater = new RepeatingCardOrganizer(1); // Single repetition
CardStatus cs = new CardStatus(new FlashCard(“”, “”));
cs.recordResult(false); // Single failure
assertFalse(repeater.isComplete(cs));

}

This is Java code
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Docstring Specification
/**
* Checks if the provided card has been answered correctly the required 

number of times.
* @param card The {@link CardStatus} object to check.
* @return {@code true} if this card has been answered correctly at least 

{@code this.repetitions} times.
*/
public boolean isComplete(CardStatus card);

This is Java code

We’ve now run this twice. 
Are we done testing?
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Specification vs. Structural Testing

You can test for different objectives:

● Structural Testing: consider implementation
○ Optimize for various kinds of code coverage

■ Line, Statement, Data-flow, etc. -- More next week
○ By some definitions, we are done. Full line coverage, branch coverage.

■ Which is rarely enough
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Specification vs. Structural Testing

You can test for different objectives:

● Structural Testing: consider implementation
○ Optimize for various kinds of code coverage

■ Line, Statement, Data-flow, etc. -- More next week
○ By some definitions, we are done. Full line coverage, branch coverage.

■ Which is rarely enough
● Specification-based testing: test solely the specification

○ Ignores implementation, use inputs/outputs only
○ Cover all specified behavior
○ Do not rely on code; consider corner-cases

■ Think like an attacker
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Specification vs. Structural Testing
/**
* Checks if the provided card has been answered correctly the required 

number of times.
* @param card The {@link CardStatus} object to check.
* @return {@code true} if this card has been answered correctly at least 

{@code this.repetitions} times.
*/
public boolean isComplete(CardStatus card) {

return card.getSuccesses.get(0);  // <-- Bad, but passes both tests
}

This is Java code
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Outlook

● Next Tuesday: a systematic approach to testing
○ Introducing coverage for structural testing, strategies for covering specifications

● Homework 2 is all about testing
○ Specification-testing the FlashCard system based on documentation
○ Structural testing of the Java UI to achieve complete branch coverage
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Summary

● Being explicit about program behavior is important
○ Helps you detect bugs
○ Forces handling of special cases -- a key source of bugs
○ Increases transparency of your program’s interface

● Specification comes in multiple forms
○ Explicit contracts, formal or informal
○ Compile-time signals, e.g. through exceptions
○ Testing helps clarify, often improve specifications

■ TDD takes this to the extreme
■ You rarely know your code until you test it
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