
117-214/514

Principles of Software Construction:
Objects, Design, and Concurrency

Specifications and unit testing,
exceptions

Bogdan Vasilescu Jonathan Aldrich

217-214/514

Quiz Time

Under “Quizzes → Lecture 4 Quiz” on Canvas.

317-214/514

Encapsulation / Information hiding

● Well designed objects protect internals from others

○ both internal state and implementation details

● Well-designed code hides all implementation details

○ Cleanly separates interface from implementation

○ Modules communicate only through interfaces

○ They are oblivious to each others’ inner workings

● Hidden details can be changed without changing client!

● Fundamental tenet of software design

Remember this
discussion from
last week?

417-214/514

Who’s to blame?

Algorithms.shortestDistance(g, “Tom”, “Anne”);

> ArrayOutOfBoundsException

517-214/514

Who’s to blame?

Algorithms.shortestDistance(g, “Tom”, “Anne”);

> -1

617-214/514

Who’s to blame?

/**
* This method finds the shortest
* distance between two vertices.
* It returns -1 if the two nodes
* are not connected.
*/
function shortestDistance(…): number {…}

717-214/514

Who’s to blame?

/**
* This method finds the shortest
* distance between two vertices.
* It returns -1 if the two nodes
* are not connected.
*/
function shortestDistance(…): number {…}

Think of this (textual)
specification as a “contract”

817-214/514

Most real-world code has a contract

● Imperative to build systems that scale!
● This is why we:

○ Encode specifications
○ Write tests

Service*
implementation

Service interface

Client
environment

Hidden from
service provider

Hidden from
service client

* service = object,
subsystem, …

917-214/514

Today

Is about explicit >> implicit, key to quality assurance at scale

1. Exception Handling
2. Unit Testing
3. Specifications

1017-214/514

Exceptions

1117-214/514

What does this code do? This is Java code

FileInputStream fIn = new FileInputStream(fileName);
if (fIn == null) {

switch (errno) {
case _ENOFILE:

System.err.println(“File not found: “ + …);
return -1;

default:
System.err.println(“Something else bad happened: “ + …);
return -1;

}
}
DataInput dataInput = new DataInputStream(fIn);
if (dataInput == null) {
System.err.println(“Unknown internal error.”);
return -1; // errno > 0 set by new DataInputStream

}
int i = dataInput.readInt();
if (errno > 0) {
System.err.println(“Error reading binary data from file”);
return -1;

} // The slide lacks space to close the file. Oh well.
return i;

1217-214/514

Compare to:

try (FileInputStream fi = new FileInputStream(fileName)) {

DataInput dataInput = new DataInputStream(fi);

return dataInput.readInt();

} catch (FileNotFoundException e) {

System.out.println("Could not open file " + fileName);

} catch (IOException e) {

System.out.println("Couldn’t read file: " + e);

}

This is Java code

1317-214/514

● Split control-flow into a “normal” and an “erroneous” branch
○ Compare “if/else”

● Inform caller of problem by transfer of control
● Where do exceptions come from?

○ Program can raise them explicitly using ‘throw’
○ Underlying virtual machine (JVM) can generate

● Semantics
○ Propagates up call stack until exception is caught, or main method is reached (terminates

program!)

Exceptions

1417-214/514

The exception hierarchy in Java (messy)

Throwable

Exception

RuntimeException IOException

EOFException

FileNotFoundException

NullPointerException

IndexOutOfBoundsException

ClassNotFoundException… …

. . .

Object

Error

1517-214/514

Control-flow of exceptions
public static void test() {

try {
System.out.println("Top");
int[] a = new int[10];
a[42] = 42;
System.out.println("Bottom");

} catch (NegativeArraySizeException e) {
System.out.println("Caught negative array size");

}
}

public static void main(String[] args) {
try {

test();
} catch (IndexOutOfBoundsException e) {

System.out.println"("Caught index out of bounds");
}

}

This is Java code

1617-214/514

Control-flow of exceptions

Handle errors at a level you
choose, not necessarily in
the low-level methods
where they originally occur.

public static void test() {
try {

System.out.println("Top");
int[] a = new int[10];
a[42] = 42;
System.out.println("Bottom");

} catch (NegativeArraySizeException e) {
System.out.println("Caught negative array size");

}
}

public static void main(String[] args) {
try {

test();
} catch (IndexOutOfBoundsException e) {

System.out.println"("Caught index out of bounds");
}

}

This is Java code

1717-214/514

Exception Handling

Undeclared vs. Declared

int divide(int a, int b) {
return a / b;

}

String read(String path) throws
IOException {

return Files.lines(Path.of(path))
.collect(Collectors.joining(“\n”));

}

This is Java code

1817-214/514

Exception Handling

Undeclared vs. Declared

Unchecked vs. Checked

int divide(int a, int b) {
return a / b;

}

String read(String path) throws
IOException {

return Files.lines(Path.of(path))
.collect(Collectors.joining(“\n”));

}

divide(4, 3); // Compiles
fine

read(“test.txt”); // Unhandled
exception: java.io.IOException

This is Java code

1917-214/514

Exception Handling

Handling unchecked exceptions is not enforced by the compiler

These are quite common

● E.g., all exceptions in C++
● In Java: any exception that extends Error or RuntimeException

2017-214/514

Throwable

Exception

RuntimeException
IOException

EOFException

FileNotFoundException

NullPointerException

IndexOutOfBoundsException

ClassNotFoundException

Object

Error

StackOverflowError

…

…

…

…

Checked Exceptions

Java’s exception hierarchy (messy)

2117-214/514

Checked vs. unchecked exceptions
● Checked exception

○ Must be caught or propagated, or program won’t compile
○ Exceptional condition that programmer must deal with

● Unchecked exception
○ No action is required for program to compile…

■ But uncaught exception will cause failure at runtime
○ Usually indicates a programming error

● Error
○ Special unchecked exception typically thrown by VM
○ Recovery is usually impossible

2217-214/514

● You can’t forget to handle common failure modes
○ Explicit > implicit
○ Compare: using a flag or special return value

● Provide high-level summary of error
○ Compare: core dump in C/C++

● Improve code structure
○ Separate normal code path from exceptional
○ Error handling code is segregated in catch blocks

● Ease task of writing robust, maintainable code

Benefits of exceptions (summary)

2317-214/514

class BufferBoundsException extends Exception {
public BufferBoundsException(String message) {

...
}

}

void atIndex(int[] buff, int i) throws BufferBoundsException {
if (buff.length <= i)

throw new BufferBoundsException(“...”);
return buff[i];

}

Defining & using Exception Types
This is Java code

2417-214/514

Exception Handling

● It’s still wise to guard for “obvious” unchecked exceptions

● Or explicitly signal the problem, recall:

● Why is this better than letting the index fail?

if (arr.length > 10)
return arr[10];

if (buff.length <= i)
throw new BufferBoundsException(“...”);

return buff[i];

This is Java code

2517-214/514

Exception Handling

● It’s still wise to guard for “obvious” unchecked exceptions

● Or explicitly signal the problem, recall:

● Why is this better than letting the index fail?
○ BufferBoundsException can be a checked exception!
○ Which forces someone to handle it
○ Here, we declared: atIndex(int[] buff, int i) throws BufferBoundsException

○ So every calling method must handle it, or throw it on

if (arr.length > 10)
return arr[10];

if (buff.length <= i)
throw new BufferBoundsException(“...”);

return buff[i];

This is Java code

2617-214/514

● Document all exceptions thrown by each method in the specification
○ Unchecked as well as checked (EJ Item 74)
○ But don’t declare unchecked exceptions!

● Include failure-capture info in detail message (EJ Item 75)

throw new IllegalArgumentException(
"Quantity must be positive: " + quantity);

Guidelines for using exceptions
This is Java code

2717-214/514

● Document all exceptions thrown by each method in the specification
○ Unchecked as well as checked (EJ Item 74)
○ But don’t declare unchecked exceptions!

● Include failure-capture info in detail message (EJ Item 75)

● Don’t ignore exceptions (EJ Item 77)

throw new IllegalArgumentException(
"Quantity must be positive: " + quantity);

Guidelines for using exceptions (2)

try {
processPayment(payment);

}
catch (Exception e) { // BAD!
}

This is Java code

2817-214/514

Cleanup

Exception handling often also supports cleaning up

openMyFile();
try {

writeMyFile(theData); // This may throw an error
} catch(e) {

handleError(e); // If an error occurred, handle it
} finally {

closeMyFile(); // Always close the resource
}

https://developer.mozilla.org/en-US/docs/Web/JavaScript/Guide/Control_flow_and_error_handling

This is JavaScript code

2917-214/514

Manual Resource Termination

Is ugly and error-prone, especially for multiple resources

● Even good programmers usually get it wrong
○ Sun’s Guide to Persistent Connections got it wrong in code that claimed to be exemplary
○ Solution on page 88 of Bloch and Gafter’s Java Puzzlers is badly broken; no one noticed

for years
● 70% of the uses of close in the JDK itself were wrong in 2008!
● Even the “correct” idioms for manual resource management are deficient

3017-214/514

Automatically closes resources!

try (DataInputStream dataInput =
new DataInputStream(new FileInputStream(fileName))) {

return dataInput.readInt();
} catch (IOException e) {

...
}

The solution: try-with-resources
This is Java code

3117-214/514

Exceptions Across Languages

Alas, try-with-resources does not exist in JS/TS

● Neither does ‘throws’

Exception structures differ radically across languages

● Most languages have ‘try/catch’ and ‘throw’
○ Some have ‘finally’

● Some languages have resource management support
○ Python has ‘with’ (since 2006), C# has ‘using’
○ Java’s try-with-resources was added in 2011

● Go returns an error-typed value, to be checked for nullity

3217-214/514

In summary

Use exceptions to report failure

● Make exceptions part of your contract via comments (Java, JS, TS)

● Use finally statements to clean up resources

● In Java, use checked exceptions to enforce that recoverable exceptions
are handled

3317-214/514

Outline

1. Exception Handling
2. Unit Testing
3. Specifications

3417-214/514

Functional Correctness

● Compiler ensures types are correct (type-checking)
○ Prevents many runtime errors, like “Method Not Found” and “Cannot add boolean to int”

3517-214/514

Functional Correctness

● Compiler ensures types are correct (type-checking)
○ Prevents many runtime errors, like “Method Not Found” and “Cannot add boolean to int”

● How to ensure functional correctness, beyond type correctness?

3617-214/514

One option: Formal verification

● Use mathematical methods to prove correctness with respect to
the formal specification

● Formally prove that all possible executions of an implementation
fulfill the specification

● Manual effort; partial automation; not automatically decidable

3717-214/514

Another option: Testing

● Executing the program with selected inputs in a controlled environment
● Goals

○ Reveal bugs, so they can be fixed (main goal)
○ Assess quality
○ Clarify the specification, documentation

● Testing is related to contracts
○ Because we need to know what to test!

3817-214/514

Re: Formal verification, Testing

“Testing shows the presence, not the
absence of bugs.”

Edsger W. Dijkstra, 1969

“Beware of bugs in the above code; I
have only proved it correct, not tried it.”

Donald Knuth, 1977

3917-214/514

1: public static int binarySearch(int[] a, int key) {
2: int low = 0;
3: int high = a.length - 1;
4:
5: while (low <= high) {
6: int mid = (low + high) / 2;
7: int midVal = a[mid];
8:
9: if (midVal < key)
10: low = mid + 1
11: else if (midVal > key)
12: high = mid - 1;
13: else
14: return mid; // key found
15: }
16: return -(low + 1); // key not found.
17: }

Binary search from java.util.Arrays

Fails if low + high > MAXINT (231 - 1)
Sum overflows to negative value

Spec: sets mid to the average of low and
high, truncated down to the nearest integer.

Q: Who’s more right, Dijkstra or Knuth?

4017-214/514

A: They’re Both Right

● There is no silver bullet! Use all the tools at your disposal
○ Careful design
○ Testing
○ Formal methods (where appropriate)
○ Code reviews
○ …

● You’ll still have bugs, but hopefully fewer.

4117-214/514

How to test?

Manual Testing

● Live System?
● Extra Testing System?
● Check output / assertions?
● Effort, Costs?
● Reproducible?

4217-214/514

How to test?

Automated Testing

● Execute a program with specific inputs
○ Check output for expected values

● Test small pieces of the program
○ Easier than testing user interactions

● Set up testing infrastructure
○ Execute tests regularly
○ Typically, after every change

4317-214/514

Testing

How do we know
this works?

int isPos(int x) {
return x >= 1;

}

This is Java code

4417-214/514

Testing

How do we know
this works?

Testing

Are we done?

int isPos(int x) {
return x >= 1;

}

@Test
void testIsPos() {

assertTrue(isPos(1));
}

This is Java code

4517-214/514

Testing

How do we know
this works?

Testing

Are we done?

int isPos(int x) {
return x >= 1;

}

@Test
void testIsPos() {

assertTrue(isPos(1));
}

@Test
void testNotPos() {
assertFalse(isPos(-1));

}

This is Java code

4617-214/514

Testing

How do we know
this works?

Testing

Are we done?

int isPos(int x) {
return x >= 0; // What if?

}

@Test
void testIsPos() {
assertTrue(isPos(1));

}

@Test
void testNotPos() {
assertFalse(isPos(-1));

}

This is Java code

4717-214/514

Testing

How do we know
this works?

Testing

Are we done?

int isPos(int x) {
return x >= 0; // What if?

}

@Test
void test1IsPos() {
assertTrue(isPos(1));

}

@Test
void test0IsNotPos() {
assertFalse(isPos(0)); // Fails

}

This is Java code

4817-214/514

Boundary Value Testing

We cannot test for every integer.

Choose representative values:
1 for positives, -1 for negatives

And boundary cases: 0 is a likely
candidate for mistakes

● Think like an attacker

int isPos(int x) {
return x >= 0; // What if?

}

@Test
void test1IsPos() {
assertTrue(isPos(1));

}

@Test
void test0IsNotPos() {
assertFalse(isPos(0)); // Fails

}

This is Java code

4917-214/514

Unit Tests

● For “small” units: methods, classes, subsystems
○ Unit is smallest testable part of system
○ Test the parts before assembling them
○ Intended to catch local bugs

● Typically (but not always) written by developers
● Many small, fast-running, independent tests
● Few dependencies on other system parts or environment
● Insufficient, but a good starting point

5017-214/514

For Java: JUnit

● Popular unit-testing framework for Java
● Easy to use
● Tool support available, e.g., IntelliJ integration

5117-214/514

For Java: JUnit

Syntax: import static org.junit.Assert.*;

class PosTests {

@Before
void setUp() {
// Anything you want to run

before each test
}

@Test
void test1IsPos() {
assertTrue(isPos(1));

}
}

This is Java code

5217-214/514

For TS: Jest

● In particular, ts-jest
○ Many other options; your choice

● Requires a few files:
○ jest.config.js, to specify testing mode
○ package.json with (ts-)jest dependencies

● Provides useful features:
○ ‘test’, ‘expect’ (= ‘assert’)
○ ‘toBe’ (identity), ‘toEqual’ (equality)
○ ‘fn’, for Mocking (later)

5317-214/514

Test organization

● Conventions (not requirements)

● Have a test class FooTest for each public
class Foo

● Have a source directory and a test directory
○ Store FooTest and Foo in the same package

○ Tests can access members with default (package)
visibility

5417-214/514

Writing Testable Code

● Think about testing when writing code
○ Unit testing encourages you to write testable code

● Modularity and testability go hand in hand
○ Same test can be used on multiple implementations of an interface!

● Test-Driven Development
○ A design and development method in which you write tests before you write the code
○ Writing tests can expose API weaknesses!

5517-214/514

Run Tests Often

● You should only commit code that passses all tests…
● So run tests before every commit
● If test suite becomes too large & slow for rapid feedback

○ Run local package-level tests (“smoke tests”) frequently
○ Run all tests nightly
○ Medium sized projects often have thousands of test cases

● Continuous integration (CI) servers help to scale testing
○ We ask you to use GitHub Actions in this class

5617-214/514

Outline

1. Exception Handling
2. Unit Testing
3. Specifications – to be continued on Tuesday

5717-214/514

Q: What exactly do you test given some method?

● What it claims to do: specification testing – the contract
● What it does: structural testing (next week)

Specifications and testing are closely related

5817-214/514

How to Encode Specifications?

Formal frameworks exist, to capture pre- and post-conditions

● E.g., ‘requires arr != null’
● Useful for formal verification
● But rarely used

○ Takes a lot of effort, and doesn’t scale well

5917-214/514

More common: prose specification.

How to Encode Specifications?

/**
* This method finds the shortest
* distance between two vertices.
* It returns -1 if the two nodes
* are not connected.
*/
function shortestDistance(…): number {…}

Recall the earlier example?
(Probably too unstructured)

6017-214/514

What is a contract?

● Agreement between an object and its user
○ Defines method’s and caller’s responsibilities
○ Analogy: legal contract

■ If you pay me this amount on this schedule…
■ I will build a room with the following detailed spec
■ Some contracts have remedies for nonperformance

● What the method does, not how it does it
○ Interface (API), not implementation

● Defines correctness of implementation – we’ll come back to this later today

6117-214/514

How to Encode Specifications?

Method contract structure:

● Preconditions: what method requires for correct operation
● Postconditions: what method establishes on completion
● Exceptional behavior: what it does if precondition violated

6217-214/514

How to Encode Specifications?

Document:

● Every parameter
● Return value
● Every exception (checked and unchecked)
● What the method does, including

○ Primary purpose
○ Any side effects
○ Any thread safety issues
○ Any performance issues

6317-214/514

How to Encode Specifications?

Document:

● Every parameter
● Return value
● Every exception (checked and unchecked)
● What the method does, including

○ Primary purpose
○ Any side effects
○ Any thread safety issues
○ Any performance issues

Do not document
implementation details

● Known as overspecification

6417-214/514

Docstring Specification
class RepeatingCardOrganizer {
...

public boolean isComplete(CardStatus card) {
return card.getResults().stream()
.filter(isSuccess -> isSuccess)
.count() >= this.repetitions;

}
}

This is Java code

6517-214/514

Docstring Specification
class RepeatingCardOrganizer {
...
/**
* Checks if the provided card has been answered correctly the required

number of times.
* @param card The {@link CardStatus} object to check.
* @return {@code true} if this card has been answered correctly at least

{@code this.repetitions} times.
*/
public boolean isComplete(CardStatus card) {

return card.getResults().stream()
.filter(isSuccess -> isSuccess)
.count() >= this.repetitions;

}
}

This is Java code

6617-214/514

Docstring Specification
class RepeatingCardOrganizer {
...
/**
* Checks if the provided card has been answered correctly the required

number of times.
* @param card The {@link CardStatus} object to check.
* @return {@code true} if this card has been answered correctly at least

{@code this.repetitions} times.
*/
public boolean isComplete(CardStatus card) {

// IGNORE THIS WHEN SPECIFICATION TESTING!
}

}

This is Java code

6717-214/514

Docstring Specification
/**
* Checks if the provided card has been answered correctly the required

number of times.
* @param card The {@link CardStatus} object to check.
* @return {@code true} if this card has been answered correctly at least

{@code this.repetitions} times.
*/
public boolean isComplete(CardStatus card);

// What is specified?

This is Java code

6817-214/514

Docstring Specification
/**
* Checks if the provided card has been answered correctly the required

number of times.
* @param card The {@link CardStatus} object to check.
* @return {@code true} if this card has been answered correctly at least

{@code this.repetitions} times.
*/
public boolean isComplete(CardStatus card);

// What is specified?
// - Parameter type (no constraints)

This is Java code

6917-214/514

Docstring Specification
/**
* Checks if the provided card has been answered correctly the required

number of times.
* @param card The {@link CardStatus} object to check.
* @return {@code true} if this card has been answered correctly at least

{@code this.repetitions} times.
*/
public boolean isComplete(CardStatus card);

// What is specified?
// - Parameter type (no constraints)
// - Return constraints: “at least” this.repetitions correct answers

This is Java code

7017-214/514

Docstring Specification
/**
* Checks if the provided card has been answered correctly the required

number of times.
* @param card The {@link CardStatus} object to check.
* @return {@code true} if this card has been answered correctly at least

{@code this.repetitions} times.
*/
public boolean isComplete(CardStatus card);

// What is specified?
// - Parameter type (no constraints)
// - Return constraints: “at least” this.repetitions correct answers
// So what do we test?

This is Java code

7117-214/514

Docstring Specification
/**
* Checks if the provided card has been answered correctly the required

number of times.
* @param card The {@link CardStatus} object to check.
* @return {@code true} if this card has been answered correctly at least

{@code this.repetitions} times.
*/
public boolean isComplete(CardStatus card);

@Test
public void testIsCompleteSingleSuccess() {
CardRepeater repeater = new RepeatingCardOrganizer(1); // Single repetition
CardStatus cs = new CardStatus(new FlashCard(“”, “”));
cs.recordResult(true); // Single Success
assert???(repeater.isComplete(cs));

}

This is Java code

7217-214/514

Docstring Specification
/**
* Checks if the provided card has been answered correctly the required

number of times.
* @param card The {@link CardStatus} object to check.
* @return {@code true} if this card has been answered correctly at least

{@code this.repetitions} times.
*/
public boolean isComplete(CardStatus card);

@Test
public void testIsCompleteSingleSuccess() {
CardRepeater repeater = new RepeatingCardOrganizer(1); // Single repetition
CardStatus cs = new CardStatus(new FlashCard(“”, “”));
cs.recordResult(true); // Single Success
assertTrue(repeater.isComplete(cs));

}

This is Java code

7317-214/514

Docstring Specification
/**
* Checks if the provided card has been answered correctly the required

number of times.
* @param card The {@link CardStatus} object to check.
* @return {@code true} if this card has been answered correctly at least

{@code this.repetitions} times.
*/
public boolean isComplete(CardStatus card);

@Test
public void testIsNotCompleteSingleFailure() {
CardRepeater repeater = new RepeatingCardOrganizer(1); // Single repetition
CardStatus cs = new CardStatus(new FlashCard(“”, “”));
cs.recordResult(false); // Single failure
assertFalse(repeater.isComplete(cs));

}

This is Java code

7417-214/514

Docstring Specification
/**
* Checks if the provided card has been answered correctly the required

number of times.
* @param card The {@link CardStatus} object to check.
* @return {@code true} if this card has been answered correctly at least

{@code this.repetitions} times.
*/
public boolean isComplete(CardStatus card);

This is Java code

We’ve now run this twice.
Are we done testing?

7517-214/514

Specification vs. Structural Testing

You can test for different objectives:

● Structural Testing: consider implementation
○ Optimize for various kinds of code coverage

■ Line, Statement, Data-flow, etc. -- More next week
○ By some definitions, we are done. Full line coverage, branch coverage.

■ Which is rarely enough

7617-214/514

Specification vs. Structural Testing

You can test for different objectives:

● Structural Testing: consider implementation
○ Optimize for various kinds of code coverage

■ Line, Statement, Data-flow, etc. -- More next week
○ By some definitions, we are done. Full line coverage, branch coverage.

■ Which is rarely enough
● Specification-based testing: test solely the specification

○ Ignores implementation, use inputs/outputs only
○ Cover all specified behavior
○ Do not rely on code; consider corner-cases

■ Think like an attacker

7717-214/514

Specification vs. Structural Testing
/**
* Checks if the provided card has been answered correctly the required

number of times.
* @param card The {@link CardStatus} object to check.
* @return {@code true} if this card has been answered correctly at least

{@code this.repetitions} times.
*/
public boolean isComplete(CardStatus card) {

return card.getSuccesses.get(0); // <-- Bad, but passes both tests
}

This is Java code

7817-214/514

Outlook

● Next Tuesday: a systematic approach to testing
○ Introducing coverage for structural testing, strategies for covering specifications

● Homework 2 is all about testing
○ Specification-testing the FlashCard system based on documentation
○ Structural testing of the Java UI to achieve complete branch coverage

7917-214/514

Summary

● Being explicit about program behavior is important
○ Helps you detect bugs
○ Forces handling of special cases -- a key source of bugs
○ Increases transparency of your program’s interface

● Specification comes in multiple forms
○ Explicit contracts, formal or informal
○ Compile-time signals, e.g. through exceptions
○ Testing helps clarify, often improve specifications

■ TDD takes this to the extreme
■ You rarely know your code until you test it

	Principles of Software Construction: Objects, Design, and Concurrency��Specifications and unit testing, exceptions��Bogdan Vasilescu		Jonathan Aldrich
	Quiz Time
	Encapsulation / Information hiding
	Who’s to blame?
	Who’s to blame?
	Who’s to blame?
	Who’s to blame?
	Most real-world code has a contract
	Today
	Exceptions
	What does this code do?
	Compare to:
	Exceptions
	The exception hierarchy in Java (messy)
	Control-flow of exceptions
	Control-flow of exceptions
	Exception Handling
	Exception Handling
	Exception Handling
	Java’s exception hierarchy (messy)
	Checked vs. unchecked exceptions
	Benefits of exceptions (summary)
	Defining & using Exception Types
	Exception Handling
	Exception Handling
	Guidelines for using exceptions
	Guidelines for using exceptions (2)
	Cleanup
	Manual Resource Termination
	The solution: try-with-resources
	Exceptions Across Languages
	In summary
	Outline
	Functional Correctness
	Functional Correctness
	One option: Formal verification
	Another option: Testing
	Re: Formal verification, Testing
	Binary search from java.util.Arrays
	A: They’re Both Right
	How to test?
	How to test?
	Testing
	Testing
	Testing
	Testing
	Testing
	Boundary Value Testing
	Unit Tests
	For Java: JUnit
	For Java: JUnit
	For TS: Jest
	Test organization
	Writing Testable Code
	Run Tests Often
	Outline
	Specifications and testing are closely related
	How to Encode Specifications?
	How to Encode Specifications?
	What is a contract?
	How to Encode Specifications?
	How to Encode Specifications?
	How to Encode Specifications?
	Docstring Specification
	Docstring Specification
	Docstring Specification
	Docstring Specification
	Docstring Specification
	Docstring Specification
	Docstring Specification
	Docstring Specification
	Docstring Specification
	Docstring Specification
	Docstring Specification
	Specification vs. Structural Testing
	Specification vs. Structural Testing
	Specification vs. Structural Testing
	Outlook
	Summary

