
117-214/514

Principles of Software Construction:
Objects, Design, and Concurrency

Test case design

Bogdan Vasilescu Jonathan Aldrich

217-214/514

Administrative

● Canvas submissions
○ “Submit all code of your solution to GitHub and submit a link to your final commit here on Canvas in the form

https://github.com/CMU-17-214/<reponame>/commit/<commitid>”
● Homework 2 is due next week: testing

○ Lots of useful stuff in recitation on Wednesday

317-214/514

Quiz Time

Under “Quizzes → Lecture 5 Quiz” on Canvas.

417-214/514

Last Week

● Exception handling
● Unit testing: small, simple, per-method tests
● Started talking about specifications

517-214/514

Today

● Specifications
● Specification vs. Structural testing
● Testing Strategies

○ Structural Testing: Statement, branch, path coverage; limitations
○ Specification Testing: Boundary value analysis, combinatorial testing, decision tables

● Writing testable code & good tests

617-214/514

Q: What exactly do you test when given a method?

● What it claims to do: specification testing – the contract (last week)
● What it does: structural testing – coverage

Specifications and testing are closely related

717-214/514

What is a contract?

● Agreement between an object and its user
○ What object provides, and user can count on

● Includes:
○ Method signature (type specifications)

○ Functionality and correctness expectations

○ Sometimes: performance expectations

● What the method does, not how it does it
○ Interface (API), not implementation

● “Focus on concepts rather than operations”

817-214/514

Method contract details

● Defines method’s and caller’s responsibilities
● Analogy: legal contract

○ If you pay me this amount on this schedule…

○ I will build a room with the following detailed spec

○ Some contracts have remedies for nonperformance

● Method contract structure
○ Preconditions: what method requires for correct operation

○ Postconditions: what method establishes on completion

○ Exceptional behavior: what it does if precondition violated

● Defines correctness of implementation

917-214/514

How to Encode Specifications?

Formal frameworks exist, to capture pre- and post-conditions
● E.g., ‘requires arr != null’
● Useful for formal verification
● But rarely used in general-purpose application software

○ Takes a lot of effort, and doesn’t scale well

1017-214/514

Most common: prose specification.

How to Encode Specifications?

class Algorithms {
 /**
 * This method finds the
 * shortest distance between two
 * vertices. It returns -1 if
 * the two nodes are not
 * connected. */
 int shortestDistance(…) {…}
}

Recall the earlier example?
(Probably too unstructured)

1117-214/514

How to Encode Specifications?

Most common: prose specification.
Document:
● Every parameter
● Return value
● Every exception (checked and unchecked)
● What the method does, including

○ Primary purpose

○ Any side effects

○ Any thread safety issues

○ Any performance issues

1217-214/514

How to Encode Specifications?

Most common: prose specification.
Document:
● Every parameter
● Return value
● Every exception (checked and unchecked)
● What the method does, including

○ Primary purpose

○ Any side effects

○ Any thread safety issues

○ Any performance issues

Do not document
implementation details

● Known as overspecification

1317-214/514

Docstring Specification
class RepeatingCardOrganizer {
 ...

 public boolean isComplete(CardStatus card) {
 return card.getResults().stream()
 .filter(isSuccess -> isSuccess)
 .count() >= this.repetitions;
 }
}

This is Java code

1417-214/514

Docstring Specification
class RepeatingCardOrganizer {
 ...
 /**
 * Checks if the provided card has been answered correctly the required
number of times.
 * @param card The {@link CardStatus} object to check.
 * @return {@code true} if this card has been answered correctly at least
{@code this.repetitions} times.
 */
 public boolean isComplete(CardStatus card) {
 return card.getResults().stream()
 .filter(isSuccess -> isSuccess)
 .count() >= this.repetitions;
 }
}

This is Java code

1517-214/514

Docstring Specification
class RepeatingCardOrganizer {
 ...
 /**
 * Checks if the provided card has been answered correctly the required
number of times.
 * @param card The {@link CardStatus} object to check.
 * @return {@code true} if this card has been answered correctly at least
{@code this.repetitions} times.
 */
 public boolean isComplete(CardStatus card) {
 // IGNORE THIS WHEN SPECIFICATION TESTING!
 }
}

This is Java code

1617-214/514

Docstring Specification
 /**
 * Checks if the provided card has been answered correctly the required
number of times.
 * @param card The {@link CardStatus} object to check.
 * @return {@code true} if this card has been answered correctly at least
{@code this.repetitions} times.
 */
 public boolean isComplete(CardStatus card);

 // What is specified?

This is Java code

1717-214/514

Docstring Specification
 /**
 * Checks if the provided card has been answered correctly the required
number of times.
 * @param card The {@link CardStatus} object to check.
 * @return {@code true} if this card has been answered correctly at least
{@code this.repetitions} times.
 */
 public boolean isComplete(CardStatus card);

 // What is specified?
 // - What the method does (but not how)

This is Java code

1817-214/514

Docstring Specification
 /**
 * Checks if the provided card has been answered correctly the required
number of times.
 * @param card The {@link CardStatus} object to check.
 * @return {@code true} if this card has been answered correctly at least
{@code this.repetitions} times.
 */
 public boolean isComplete(CardStatus card);

 // What is specified?
 // - What the method does (but not how)
 // - Parameter type (no constraints)

This is Java code

1917-214/514

Docstring Specification
 /**
 * Checks if the provided card has been answered correctly the required
number of times.
 * @param card The {@link CardStatus} object to check.
 * @return {@code true} if this card has been answered correctly at least
{@code this.repetitions} times.
 */
 public boolean isComplete(CardStatus card);

 // What is specified?
 // - What the method does (but not how)
 // - Parameter type (no constraints)
 // - Return constraints: “at least” this.repetitions correct answers

This is Java code

2017-214/514

Docstring Specification
 /**
 * Checks if the provided card has been answered correctly the required
number of times.
 * @param card The {@link CardStatus} object to check.
 * @return {@code true} if this card has been answered correctly at least
{@code this.repetitions} times.
 */
 public boolean isComplete(CardStatus card);

 // What is specified?
 // - Parameter type (no constraints)
 // - Return constraints: “at least” this.repetitions correct answers
 // So what do we test?

This is Java code

2117-214/514

Docstring Specification
 /**
 * Checks if the provided card has been answered correctly the required
number of times.
 * @param card The {@link CardStatus} object to check.
 * @return {@code true} if this card has been answered correctly at least
{@code this.repetitions} times.
 */
 public boolean isComplete(CardStatus card);

@Test
public void testIsCompleteSingleSuccess() {
 CardRepeater repeater = new RepeatingCardOrganizer(1); // Single repetition
 CardStatus cs = new CardStatus(new FlashCard(“”, “”));
 cs.recordResult(true); // Single Success
 assert???(repeater.isComplete(cs));
}

This is Java code

2217-214/514

Docstring Specification
 /**
 * Checks if the provided card has been answered correctly the required
number of times.
 * @param card The {@link CardStatus} object to check.
 * @return {@code true} if this card has been answered correctly at least
{@code this.repetitions} times.
 */
 public boolean isComplete(CardStatus card);

@Test
public void testIsCompleteSingleSuccess() {
 CardRepeater repeater = new RepeatingCardOrganizer(1); // Single repetition
 CardStatus cs = new CardStatus(new FlashCard(“”, “”));
 cs.recordResult(true); // Single Success
 assertTrue(repeater.isComplete(cs));
}

This is Java code

2317-214/514

Docstring Specification
 /**
 * Checks if the provided card has been answered correctly the required
number of times.
 * @param card The {@link CardStatus} object to check.
 * @return {@code true} if this card has been answered correctly at least
{@code this.repetitions} times.
 */
 public boolean isComplete(CardStatus card);

@Test
public void testIsNotCompleteSingleFailure() {
 CardRepeater repeater = new RepeatingCardOrganizer(1); // Single repetition
 CardStatus cs = new CardStatus(new FlashCard(“”, “”));
 cs.recordResult(false); // Single failure
 assertFalse(repeater.isComplete(cs));
}

This is Java code

2417-214/514

Docstring Specification
 /**
 * Checks if the provided card has been answered correctly the required
number of times.
 * @param card The {@link CardStatus} object to check.
 * @return {@code true} if this card has been answered correctly at least
{@code this.repetitions} times.
 */
 public boolean isComplete(CardStatus card);

This is Java code

We’ve now run this twice.
Are we done testing?

2517-214/514

Specification vs. Structural Testing
 /**
 * Checks if the provided card has been answered correctly the required
number of times.
 * @param card The {@link CardStatus} object to check.
 * @return {@code true} if this card has been answered correctly at least
{@code this.repetitions} times.
 */
 public boolean isComplete(CardStatus card) {
 return card.getSuccesses.get(0); // <-- Bad, but passes both tests
 }

This is Java code

2617-214/514

You can test for different objectives:
● Specification-based testing: test solely the specification

○ Ignores implementation, use inputs/outputs only
○ Cover all specified behavior
○ Do not rely on code; consider corner-cases

■ Think like an attacker

● Structural Testing: consider implementation
○ Optimize for various kinds of code coverage

■ Line, Statement, Data-flow, etc.
○ By some definitions, we are done. Full line coverage, branch coverage.

■ Which is rarely enough

Specification vs. Structural Testing

2717-214/514

Specification vs. Structural Testing

You can test for different objectives:

● Structural Testing: consider implementation
○ Optimize for various kinds of code coverage

■ Line, Statement, Data-flow, etc.

○ By some definitions, we are done. Full line coverage, branch coverage.

■ Which is rarely enough

2817-214/514

Specification vs. Structural Testing

You can test for different objectives:

● Structural Testing: consider implementation
○ Optimize for various kinds of code coverage

■ Line, Statement, Data-flow, etc.

○ By some definitions, we are done. Full line coverage, branch coverage.

■ Which is rarely enough

● Specification-based testing: test solely the specification
○ Ignores implementation, use inputs/outputs only

○ Cover all specified behavior

○ Do not rely on code; consider corner-cases

■ Think like an attacker

2917-214/514

Outlook

Homework 2 is all about testing
● Specification-testing the FlashCard system
● Some structural testing as well

So is recitation tomorrow!

3017-214/514

Summary

● Being explicit about program behavior is ideal
○ Helps you detect bugs

○ Forces handling of special cases -- a key source of bugs

○ Increases transparency of your program’s interface

● Specification comes in multiple forms
○ Explicit contracts, formal or informal

○ Compile-time signals, e.g. through exceptions

○ Testing helps clarify, often improve specifications

■ TDD takes this to the extreme

■ You rarely know your code until you test it

3117-214/514

Structural Testing: a closer look

Takes into account the internal mechanism of a system (IEEE, 1990).
● Approaches include tracing data and control flow through a program

3217-214/514

Case Study

Assume various Wallets

public interface Wallet {

 boolean pay(int cost);

 int getValue();

}

3317-214/514

DebitWallet.pay()

What should we test in this code?

public boolean pay(int cost) {
 if (cost <= this.money) {
 this.money -= cost;
 return true;
 }
 return false;
}

3417-214/514

DebitWallet.pay()

public boolean pay(int cost) {
 if (cost <= this.money) {
 this.money -= cost;
 return true;
 }
 return false;
}

new DebitWallet(100).pay(10);

3517-214/514

DebitWallet.pay()

public boolean pay(int cost) {
 if (cost <= this.money) {
 this.money -= cost;
 return true;
 }
 return false;
}

new DebitWallet(0).pay(10);

3617-214/514

CreditWallet.pay()

How about now?

public boolean pay(int cost, boolean useCredit) {
 if (useCredit) {
 if (this.credit + cost <= this.maxCredit) {
 this.credit += cost;
 return true;
 }
 }
 if (cost <= this.cash) {
 this.cash -= cost;
 return true;
 }
 return false;
}

3717-214/514

CreditWallet.pay()

Exercise: think about as many test scenarios as you can

public boolean pay(int cost, boolean useCredit) {
 if (useCredit) {
 if (enoughCredit) {
 return true;
 }
 }
 if (enoughCash) {
 return true;
 }
 return false;
}

3817-214/514

CreditWallet.pay()
public boolean pay(int cost, boolean useCredit) {
 if (useCredit) {
 if (enoughCredit) {
 return true;
 }
 }
 if (enoughCash) {
 return true;
 }
 return false;
}

Test
case

useCredit
enough
Credit

enough
Cash

Result Coverage

1 T T - Pass --

3917-214/514

CreditWallet.pay()
public boolean pay(int cost, boolean useCredit) {
 if (useCredit) {
 if (enoughCredit) {
 return true;
 }
 }
 if (enoughCash) {
 return true;
 }
 return false;
}

Test
case

useCredit
enough
Credit

enough
Cash

Result Coverage

1 T T - Pass --

2 F - T Pass --

3 F - F Fails Statement

4017-214/514

Coverage

We have tested every statement; are we done?
Depends on desired coverage:

● Provide at least one test for distinct types of behavior
● Typically on control flow paths through the program
● Statement, branch, basis paths, MC/DC

4117-214/514

Structures in Code

4217-214/514

Control-Flow of CreditCard.pay()
public boolean pay(int cost, boolean useCredit) {
 if (useCredit) {
 if (enoughCredit) {
 return true;
 }
 }
 if (enoughCash) {
 return true;
 }
 return false;
}

useCredit

enough
Credit

pay
w/credit

true

true

enough
Cash

pay
w/cash

fail

false

false

false

true

4317-214/514

Control-Flow of CreditCard.pay()

useCredit

enough
Credit

pay
w/credit

true

true

enough
Cash

pay
w/cash

fail

false

false

false

true

Test
case

useCredit
enough
Credit

enough
Cash

Result Coverage

1 T T - Pass --

2 F - T Pass --

3 F - F Fails Statement

4417-214/514

Control-Flow of CreditCard.pay()

useCredit

enough
Credit

pay
w/credit

true

true

enough
Cash

pay
w/cash

fail

false

false

false

true

Test
case

useCredit
enough
Credit

enough
Cash

Result Coverage

1 T T - Pass --

2 F - T Pass --

3 F - F Fails Statement

4517-214/514

Control-Flow of CreditCard.pay()

useCredit

enough
Credit

pay
w/credit

true

true

enough
Cash

pay
w/cash

fail

false

false

false

true

Test
case

useCredit
enough
Credit

enough
Cash

Result Coverage

1 T T - Pass --

2 F - T Pass --

3 F - F Fails Statement

4617-214/514

CreditWallet.pay()
public boolean pay(int cost, boolean useCredit) {
 if (useCredit) {
 if (enoughCredit) {
 return true;
 }
 }
 if (enoughCash) {
 return true;
 }
 return false;
}

Test
case

useCredit
enough
Credit

enough
Cash

Result Coverage

1 T T - Pass --

2 F - T Pass --

3 F - F Fails Statement

4 T F T Pass Branch

4717-214/514

Path Coverage

We have seen every condition … what else is missing?

4817-214/514

Path Coverage

We have seen every condition … but not every path.

● 3 conditions, each with two values = 8 permutations
● Some permutations are impossible
● Still one path left

4917-214/514

Control-Flow of CreditCard.pay()

useCredit

enough
Credit

pay
w/credit

true

true

enough
Cash

pay
w/cash

fail

false

false

false

true

Paths:

● {true, true}: pay w/credit
● {false, true}: pay w/cash
● {false, false}: fail

5017-214/514

Paths:

● {true, true}: pay w/credit
● {false, true}: pay w/cash
● {false, false}: fail
● {true, false, true}: pay w/cash

after failing credit

Control-Flow of CreditCard.pay()

useCredit

enough
Credit

pay
w/credit

true

true

enough
Cash

pay
w/cash

fail

false

false

false

true

5117-214/514

Control-Flow of CreditCard.pay()

useCredit

enough
Credit

pay
w/credit

true

true

enough
Cash

pay
w/cash

fail

false

false

false

true

Paths:

● {true, true}: pay w/credit
● {false, true}: pay w/cash
● {false, false}: fail
● {true, false, true}: pay w/cash

after failing credit
● {true, false, false}: try credit, but

fail, and no cash

5217-214/514

CreditWallet.pay()
public boolean pay(int cost, boolean useCredit) {
 if (useCredit) {
 if (enoughCredit) {
 return true;
 }
 }
 if (enoughCash) {
 return true;
 }
 return false;
}

Test
case

useCredit
enough
Credit

enough
Cash

Result Coverage

1 T T - Pass --

2 F - T Pass --

3 F - F Fails Statement

4 T F T Pass Branch

5 T F F Fails (Basis) paths

5317-214/514

BitCoinWallet.pay()

public boolean pay(int cost) {
 int currValue;
 while ((currValue = getValue()) < cost) {
 // Just wait.
 }
 this.btc -= cost / currValue;
 return true;
}

public int getValue() {
 return (int)
 (this.btc * Math.pow(2, 20*Math.random()));
}

5417-214/514

Control-flow of BitCoinWallet.pay()

What are all the paths?
BTC value
enough?

pay
w/btc

true

false

5517-214/514

Control-flow of BitCoinWallet.pay()

What are all the paths?

● {true}
● {false, true}
● {false, false, true}
● {false, false, false, true}
● ...

BTC value
enough?

pay
w/btc

true

false

5617-214/514

Control-flow of BitCoinWallet.pay()

Perfect “general” path coverage is elusive

But “adequate” coverage criteria exist:

● Basis paths: each path must cover one new edge
○ {true} and {false, true} are sufficient
○ As is just {false, true}

● Loop adequacy: iterate each loop zero, one, and 2+ times

BTC value
enough?

pay
w/btc

true

false

5717-214/514

More Coverage

Many more criteria exist:

● For branches with multiple conditions
○ Modified Condition/Decision Coverage is quite popular

● For loops
○ Boundary Interior Testing

● Branch coverage is by far the most common

5817-214/514

if a ≤ 1

x = a - 1

y = z / x

else

x = 5 Question 1: Is there a defect?

then

Coverage and Quality

5917-214/514

if a ≤ 1

x = a - 1

y = z / x

else

x = 5 Question 2: Can we achieve 100%
statement coverage and miss the
defect?

then

Coverage and Quality

6017-214/514

if a ≤ 1

x = a - 1

y = z / x

then

else

x = 5 Question 3: Can we achieve 100%
branch coverage and miss the defect?

Coverage and Quality

6117-214/514

Outline

● Structural Testing Strategies
● Writing testable code & good tests
● Specification Testing Strategies

6217-214/514

Writing Testable Code

What is the problem with this?

public boolean hasHeader(String path) throws IOException {
 List<String> lines = Files.readAllLines(Path.of(path));
 return !lines.get(0).isEmpty()
}

// complete control-flow coverage!
hasHeader(“cards.csv”) // true

6317-214/514

Writing Testable Code

What is the problem with this?

public boolean hasHeader(String path) throws IOException {
 List<String> lines = Files.readAllLines(Path.of(path));
 return !lines.get(0).isEmpty()
}

// to achieve a ‘false’ output without having a test input file:
try {
 Path tempFile = Files.createTempFile(null, null);
 Files.write(tempFile,"\n".getBytes(StandardCharsets.UTF_8));
 hasHeader(tempFile.toFile().getAbsolutePath()); // false
} catch (IOException e) {
 e.printStackTrace();
}

6417-214/514

Writing Testable Code

Exercise: rewrite to make this easier

● And: what would you test?
public boolean hasHeader(String path) throws IOException {
 List<String> lines = Files.readAllLines(Path.of(path));
 return !lines.get(0).isEmpty()
}

6517-214/514

Writing Testable Code

Aim to write easily testable code

● Which is almost by definition more modular

public List<String> getLines(String path) throws IOException {
 return Files.readAllLines(Path.of(path));
}

public boolean hasHeader(List<String> lines) {
 return !lines.get(0).isEmpty()
}

// Test:
// - hasHeader with empty, non-empty first line
// - getLines (if you must) with null, real path

6617-214/514

What is the problem with this?

Writing Testable Code

public String[] getHeaderParts(List<String> lines) {
 if (!lines.isEmpty()) {
 String header = lines.get(0);
 if (header.contains(",")) {
 return header.split(",");
 } else {
 return new String[0];
 }
 } else {
 return null;
 }
}

6717-214/514

Split functionality into easily testable units

Writing Testable Code

public String getFirstLine(List<String> lines) {
 if (!lines.isEmpty()) {
 return lines.get(0);
 } else {
 return null;
 }
}

public String[] getHeaderParts(String header) {
 if (header.contains(",")) {
 return header.split(",");
 } else {
 return new String[0];
 }
}

6817-214/514

What is the problem with this?

Clean Testing

public String[] getHeaderParts(String header) {
 if (header.contains(",")) {
 return header.split(",");
 } else {
 return null;
 }
}

@Test
public void testGetHeaderParts() {
 for (String header : List.of("line", "", "one,two")) {
 String[] parts = getHeaderParts(line);
 if (header.contains(",")) assertNull(parts);
 else assertEqual(header.split(","), parts.length);
 }
}

6917-214/514

Keep tests simple, small

Clean Testing

public String[] getHeaderParts(String header) {
 if (header.contains(",")) {
 return header.split(",");
 } else {
 return null;
 }
}

@Test
public void testGetHeaderPartsNoComma() {
 String[] parts = getHeaderParts("line");
 assertNull(parts);
}

@Test
...

7017-214/514

Testing Best Practices

Coverage is useful, but no substitute for your insight

● Cannot capture all paths
○ Especially beyond “unit”
○ Write testable code

● You may be testing buggy code
○ (add regression tests)

● Aim for at least branch coverage
○ And think through scenarios that demand more

7117-214/514

Bonus: Coding like the tour the france
public boolean foo() {
 try {
 synchronized () {
 if () {
 } else {
 }
 for () {
 if () {
 if () {
 if () {
 if ()
 {
 if () {
 for () {
 }
 }
 }
 } else {
 if () {
 for () {
 if () {
 } else {
 }
 if () {
 } else {
 if () {
 }
 }
 if () {
 if () {
 if () {
 for () {
 }
 }
 }
 } else {
 }
 }
 } else {
 }
 }
 }
 }
 }

 if () {
 }

https://thedailywtf.com/articles/coding-like-the-tour-de-france

https://thedailywtf.com/articles/coding-like-the-tour-de-france

7217-214/514

Outline

● Structural Testing Strategies
● Writing testable code & good tests
● Specification Testing Strategies

7317-214/514

Back to Specification Testing

What would you test differently in this situation?

● Previously identified five paths through the code.
○ Are there still five given only specification?

● Should we test anything new?
/** Pays with credit if useCredit is set and enough
 * credit is available; otherwise, pays with cash if
 * enough cash is available; otherwise, returns false.
 */
public boolean pay(int cost, boolean useCredit);

7417-214/514

Back to Specification Testing

What would you test differently in this situation?

● “if useCredit is set and enough credit is available”:
○ Test both true, either/both false

● “pays with cash if enough cash is available; otherwise”:
○ Test true, false

● Could to this with as few as three test cases

/** Pays with credit if useCredit is set and enough
 * credit is available; otherwise, pays with cash if
 * enough cash is available; otherwise, returns false.
 */
public boolean pay(int cost, boolean useCredit);

7517-214/514

Specification Testing

We need a strategy to identify plausible mistakes

7617-214/514

Specification Testing

We need a strategy to identify plausible mistakes

● Random: avoids bias, but inefficient
○ Yet potentially very valuable, because automatable
○ Not for today

7717-214/514

Boundary Value Testing

We need a strategy to identify plausible mistakes

● Boundary Value Testing: errors often occur at boundary conditions
○ E.g.:

/** Returns true and subtracts cost if enough
 * money is available, false otherwise.
 */
public boolean pay(int cost) {
 if (cost < this.money) {
 this.money -= cost;
 return true;
 }
 return false;
}

7817-214/514

Boundary Value Testing

We need a strategy to identify plausible mistakes

● Boundary Value Testing: errors often occur at boundary conditions
○ Identify equivalence partitions: regions where behavior should be the same

■ cost <= money: true, cost > money: false
■ Boundary value: cost == money

/** Returns true and subtracts cost if enough
 * money is available, false otherwise.
 */
public boolean pay(int cost) {
 if (cost < this.money) {
 this.money -= cost;
 return true;
 }
 return false;
}

7917-214/514

We need a strategy to identify plausible mistakes

● Boundary Value Testing: errors often occur at boundary conditions
○ Select: a nominal/normal case, a boundary value, and an abnormal case
○ Useful for few categories of behavior (e.g., null/not-null) per value

● Test: cost < credit, cost == credit, cost > credit,
 cost < cash, cost == cash, cost > cash

/** Pays with credit if useCredit is set and enough
 * credit is available; otherwise, pays with cash if
 * enough cash is available; otherwise, returns false.
 */
public boolean pay(int cost, boolean useCredit);

Boundary Value Testing

8017-214/514

Combinatorial Testing

We need a strategy to identify plausible mistakes

● Combinatorial Testing: focus on tuples of boundary values
○ Captures bugs in interactions between risky inputs
○ Rarely need to test pairs of “invalid” values (cost too high for credit & cash)

/** Pays with credit if useCredit is set and enough
 * credit is available; otherwise, pays with cash if
 * enough cash is available; otherwise, returns false.
 */
public boolean pay(int cost, boolean useCredit);

8117-214/514

Combinatorial Testing

We need a strategy to identify plausible mistakes

● Combinatorial Testing: focus on tuples of boundary values
○ Captures bugs in interactions between risky inputs
○ Rarely need to test pairs of “invalid” values (cost too high for credit & cash)

● Include: {cost > credit && cost == cash}
● Maybe: {cost < credit && cost == cash}

/** Pays with credit if useCredit is set and enough
 * credit is available; otherwise, pays with cash if
 * enough cash is available; otherwise, returns false.
 */
public boolean pay(int cost, boolean useCredit);

8217-214/514

Decision Tables

We need a strategy to identify plausible mistakes

● Decision Tables
○ You’ve seen one already
○ Enumerate condition options

■ Leave out impossibles
■ Identify “don’t-matter” values

○ Useful for redundant input domains

Test
case

useCredit
enough
Credit

enough
Cash

Result

1 T T - Pass

2 F - T Pass

3 F - F Fails

4 T F T Pass

5 T F F Fails

8317-214/514

Specification Tests

So what is the right granularity?

● It depends
● We are still aiming for coverage

○ Just of specifications, and their innumerable implementations
○ BVA (& its cousins), decision tables tend to provide good coverage

8417-214/514

Structural Testing vs. Specification Testing

You will typically have both code & (prose) specification

● Test specification, but know that it can be underspecified
● Test implementation, but not to the point that it cannot change
● Use testing strategies that leverage both

○ There is a fair bit of overlap; e.g., BVA yields useful branch coverage

8517-214/514

Further Testing Strategies

Many more aspects, some later in this course:

● Stubbing/Mocking, to avoid testing dependencies
○ We’ll loop back to this

● Integration testing: scenarios that span units
○ With unit testing one should not test for an expected usage scenario

■ e.g., in HW2: that everything gets called from Main
○ This lets one make some simplifying assumptions

■ e.g., that every card is seen equally often
● Beyond correctness: performance, security

8617-214/514

Summary

Testing comprehensively is hard

● Tailor to your task: specification vs. structural testing
○ Do not assume unstated specifications for HW 2; spend your energy wisely

● Pick a strategy, or a few
○ Be systematic; defend your decisions

● Tomorrow’s recitation covers:
○ Unit test best practices
○ Test organization
○ Running tests, coverage

