Principles of Software Construction:
Objects, Design, and Concurrency

Responsibility Assignment

Bogdan Vasilescu Jonathan Aldrich

ttttttttttttttttttt

17-214/514

1 [Gys3p

Lecture 7 Quiz

On Canvas: https://canvas.cmu.edu/courses/33548/quizzes/96756

17-214/514

https://canvas.cmu.edu/courses/33548/quizzes/96756

Administrative notes

e HWH1 grades out shortly

e Midterm 1 next week Thursday
o Sample questions out shortly
o Come to OH for help

e Homework 3 (Santorini game engine) out
o Must start early

e Recitation this week: UML design diagrams

17-214/514

3 [&)sS3n

-

User needs

\

(Requirements)

_

Miracle?

/

17-214/514

Code

4 @)SSD

Problem
Space

(Domain Model)

e Real-world concepts

e Requirements, Concepts

e Relationships among concepts
e Solving a problem

e Building a vocabulary

17-214/514

Solution

Space

(Object Model)

System implementation
Classes, objects

References among objects and
inheritance hierarchies

Computing a result
Finding a solution

s [3)s3D

An object-oriented design process

Model / diagram the problem, define concepts o LaSt Class
e Domain model (a.k.a. conceptual model), glossary OO Analysis:
Define system behaviors - UnderStanding
e System sequence diagram the prOblem
e System behavioral contracts

17-214/514 6 L&)S3D

An object-oriented design process

—

Model / diagram the problem, define concepts

e Domain model (a.k.a. conceptual model), glossary OO Analysis:
Define system behaviors - UnderStanding

e System sequence diagram the prOblem

e System behavioral contracts
Assign object responsibilities, define interactions - Today

e Object interaction diagrams 00 Design;
Model / diagram a potential solution o Defining a

e Object model solution

17-214/514 7 [&Hs3n

Learning Goals

« UML in the Solution Space

o Object diagrams: from concepts to classes

o Interaction diagrams: interactions beyond the system boundary
o Making Design Decisions

o Expand our vocabulary of principles, patterns, and heuristics

o Apply GRASP patterns to assign responsibilities in designs

o Reason about tradeoffs among designs

o Discuss tradeoffs in terms of coupling and cohesion

17-214/514

s [&sS3n

Modeling Implementations
with UML

17-214/514 14 [gys3D

A Word on UML

UML is a standard, established notation
Most software engineers can read it, many tools support it
Few practitioners use it rigorously

Commonly used informally for sketching, communication,
documentation, wall art

In this course: Use UML for communication; follow notation
somewhat rigorously, but won’t care about all details

17-214/514 15 Lg)s3D

\

‘ g,

Ll qur 3 has mqf\l\/ C.. ¥

\
1

[‘ a+{ Fee

rer\ﬁl peﬁbd(J

‘)

it

‘l:
H a;\\f B

Beok 5

I
has

-

J
\”{\“"

!WVW%

|

o

o | I

| \ || ibear Aot
LJ‘WZI«'

has g $or—
&r lake Fees Owed
l

One possible domain
model for the library
system

16 Ld)S3D

From concepts to objects

e How are domain concepts different from classes?
o Should every concept become a class?
o Does every class need to represent a concept?

Library Account

accountiD
lateFees

borrow

Book

17-214/514

title
author

-)

LibraryAccount

id; int
lateFees: int

borrow(Book): bool
returnltem(Book)

payFees(int)

3D

—_—
L”D(((‘7 gyf'l‘cm [

O bj e Ct D | ag rams curodSein: Librey B

+ login Memkee [by Gl ke
+ borrow { rhem }_.‘Lraryﬂ,,)
+ logmirmem\zd)

+ paflek Fee [corls: i)

Objects/classes with
fields and methods

Interfaces with

— m&s
methods
K \ _4_
- u L;LN WACWN}‘ \goff'b“"d_-['\‘q"‘ ;‘ h
h_/_‘——_———-
Associations, _,;%7 e 1, oyl e o8 -
. . g -,Qr; ane | gk\‘r@/ ~ (etured . Da :
visibility, types - s S + B Pl b

l

92,+ F)\r ;'}‘Mu‘ () 4 ﬂv‘%,

17-214/514

+ 15 Overdlre (mfreADklmf)
i b

ole <

18 [g)s3D

Object Diagram Notation: Classes/Objects

Classname
ggvr:]irg?se —~ | LibraryAccount class LibraryAccount {
objects) - int id: int;
Fields / |ai-;eFees; int lateFees: int;
boolean borrow(Book b) {...}
borrow(Book): bool void returnitem(Book b) {...}
Methods — 7 | returnltem(Book) .
payFees(int) void payFees(int payment) {...}
}

17-214/514 10 [g)s3D

Object Diagram Notation: Interfaces

Interface name — | LjbraryAccount interface LibraryAccount {

borrow(Book): bool boolean borrow(Book b);

Methods — | returnltem(Book) void returnltem(Book b);
payFees(int) void payFees(int payment);

17-214/514 20 [5)s3n

Object Diagram Notation: Associations

LibraryAccount

id; int
lateFees: int

borrowed

Book

borrow(Book)

17-214/514

1

*

author: String

class LibraryAccount {

List<Book> borrowedBooks;

}
class Book {

LibraryAccount borrowedBy;
}

21 [9)s3n

Object Diagram Notation: Associations

LibraryAccount

id; int
lateFees: int

borrowed

Book

borrow(Book)

17-214/514

1

author: String

class LibraryAccount {

}

class Book {

22 [9)s3n

Object Diagram Notation: Associations

LibraryAccount ook
id: int uthor: String
lateFees: int borrowedBYy: LibraryAccount

borrowed: List<Book>

borrow(Book)

Don’t use fields instead or in
addition to associations. Use
fields only for basic types

17-214/514 23 [9)s3n

Class Diagram vs Object Diagram

Can model both classes and objects
Terms often used interchangeably

If specific objects should be modeled use “objectld: Class” notation

a: LibAccount account: : LibAccount
id: int id: int id: int
lateFees: int lateFees: int lateFees: int
borrow(Book) borrow(Book) borrow(Book)

17-214/514

24 [9)s3n

Class Diagrams and JavaScript/TypeScript

Even when not using classes, use the notation for
representing the same idea: many objects sharing a shape

TypeScript interfaces match to class diagram notation

LibraryAccount function newLibraryAccount(id, lateFees) {
id: int return {
lateFees: int borrow: function(book) {..},

returnItem: function(book) {..},

borrow(Book): bool payFees: function(payment) {..}
returnltem(Book)

payFees(int)

17-214

One object model for the library system

17-214/514

l_i‘:)rqoj g7<4u"\
-C“W‘d\‘\ Se(;fmi L[Lﬁry A(:mn‘\‘

+ login Membee(Fbrey Mok
+ borrow { ihan: L;Lm/gm}

+ logou'\' Member ()

£ P“?LJ" Fee (ce&%? fr\ﬂ

~ foan Perind
~lake Fee

|

Bo(‘(‘owcd I‘\-q‘\'\

X
}’;L(“\/W/‘lcrm{(}’

& };L“ («d Nw\iz{: l‘n‘*
- ;s\rs-]-N ane | glm\,é/

= 1'0 '}‘N:&'— S{f,‘
= quFa,owu l\,ﬁ_

gt Rt () © Shag-

’___,__——A
—bo ﬁ’o\A&O\r‘\'ﬂﬁ\S O - d\;gD«‘}‘(% D...).{
= (e‘l“tﬁ\c&! A Da‘,‘(

+ gasBaanDewf): bk

+ 15 Oveschue (cutrent Dike: Dfe)
RN | boaécf\

26 L9)S3D

Domain model (left) vs object model (right)

R

\i\
\\ ‘\0% M u.f‘\hﬁ/-

17-214/514

| Ttem \

hag man

cental Poriodd
late Fee

| Book | | Movie
|
‘ i
\ [iber P econt
L/Wfﬁ}’

|
lr lake Fes Owed

hag
M'\Y

{ i,

i

,f' 6. ¥]

J X Gl \ !
| beacy Card M

B o m,wwl I 1L€(Y\
R

! AueDeke
l iHem

|

L\-br«»] S’]ﬂ"ct"\
—(’urr‘d\‘\' Sem‘m! L[Lf«‘—y Aam\“‘

+ login Mol (LboeyCod Mo]
+ barraw({{zm: L“Lrﬁry\'[}m}
+]ogou"r/"\em\zer()

% P*}'LJ“ Fee (ceﬂk‘n l‘f\w

K
LI})('«\/ WA((@N‘_

— i beacy Cerd Mumber: ot
= ;\\rr)-y“'e RS Y

-)qs‘)‘N: ¢« St
= J&Fee;'éwda ,\,:ai—

gt RO« Shy-

—bo G‘GWCO\I'\-G‘\S

0%

—dueD«“"(B D“J‘(

~ foun Pertod
—lake Fee

i

Borrowed Lem

- f@l‘kﬂcﬁ! \ Da‘)(

<M

+ 05 Ovcrat‘\-eb(cnrren#l)k‘- Dike)

27 ré)SSD

Object diagram notation requirements

We won't be very picky on notation, but:

e Use boxes with 2 or 3 parts for fields, methods as appropriate
for classes/objects, interfaces, concepts

e Include types for fields and methods

e Use associations, not fields, where appropriate

e Use association names and cardinalities (we don’t care much
about arrow types, except “is-a”)

17-214/514 28 [9)s3p

Modeling interactions past the system boundary

Use case scenario: A library
member should be able to use her
library card to log in at a library
system kiosk and borrow a book. oatn &
After confirming that the member has [fmw a book
no unpaid late fees, the library

system should determine the book’s

due date by adding its rental period

to the current day, and record the

book and its due date as a borrowed

item in the member’s library account.

17-214/514

Uge Case: /

AN !

. L”D(‘Of"/

7|
Syﬂ‘@’\

Joj " Membc(’(I.'b(‘qﬁy Gfd)7

P

borrow (book- ﬁLem\

3
7

PR E—
Vo e e e —

S \'cceSs’.’) alkeDc;’-c

20 [9)s3p

Interaction Diagrams =S| jnon] frcutin] [tota

— prepare () !
— |

. . Okxoct FL * prepare () | |
Interactions between objects ’ M? T Sy]
Two common notations: sequence | [e
diagrams and communication —tobcu
diagrams
Sequence diagrams like system e
sequence diagrams, but depicting — =
interactions between I I DI
objects/classes VR | | coator” ||

17-214/514 30 [&)S3D

always start with
an initial method

\ L brar7 S'y Ghem L: 5 éSS‘a};;nIiﬂqan }

lo \51\1'\ Mem‘nr (bear b C-t‘d\ 7’

com“ (“brﬁ(‘*y (&(vl z‘d N\\{I\LQA

re,“r:ewAC é

g

Gccw'{' 5
(R
ge} C&(TaA' (ess fm(QC(O‘*‘\’\‘\ ,

& - _ o o 1

R \

17-214/514 e

Interaction Diagram Practice:

Use case scenario: ...and borrow a book. After confirming

that the member has no unpaid late fees, the library system
should determine the book’s due date by adding its loan
period to the current day, and record the book and its due

date as a borrowed item in the member’s library account.

17-214/514 32 [9)S3D

(b 7 |

t
4
4

. N
bo(‘%‘*’(boek) '

e

E l c*_'i’{'x:{es :—'O__J
{oen Pec il ¥ ?}'&LO‘VA’ Perieo

o O

17-214/514

I

|
4 Bcc ’(i
1
f
)
{
f
{
}
'
N
[
f

33

Interaction diagrams help evaluate design
alternatives

e Explicitly consider design alternatives

e For each, sketch the interactions implied by the design choice
o Interactions correspond to the components' APls

17-214/514 34 [9)S3D

Sys seq diag. (left) vs interaction diag. (right)

I A__liiifij Bk |
- (| i |

\. l j

o \ ‘

oo fo\”(boe k'\}] | '

2’(”__—-—) ﬂ'l"C\,\(e@¥\€ Sl(, (W /\ ;———‘! }

E {

1 — L ,

| I< T accoant - ; ;

Cf> k g L{bmfﬂ/ {

. S f{‘(m ‘ig‘!{‘{F(éS o= S S
u$€ Case:
|09|\(\ 2

barrow a book

| lgMenber(iboey
i

A —

borrow (ork-item)

= —— o —
/——-/—___,A,‘-

S\'(ceSs e Doile

17-214/514

Object-Level Design

17-214/514 36 L9)S3D

T tem

\

i, has man O ¥
N el P
tc'}‘(Fee
_A =
%

Considering the Library problem, which
class should know which items have been
borrowed by a user?

Which should compute late fees?

F{\—\
l MOV'\{ l

Al

Yo
& lake Fees Owed

‘ [|
3 b
o \
\ | ibrec R L/ﬂw
us

\\ fd Nw\he/

!
\ |
S
17-214/514

37 [9)S3D

Doing and Knowing Responsibilities

Responsibilities are related to the obligations of an object in terms of its
behavior.
Doing responsibilities of an object include:
« Doing something itself, such as creating an object or doing a calculation
 Initiating action in other objects
« Controlling and coordinating activities in other objects
Knowing responsibilities of an object include:

» Knowing about private encapsulated data
» Knowing about related objects
» Knowing about things it can derive or calculate

17-214/514 38 [8)S3D

Doing and Knowing Responsibilities

e Object design is not as clear-cut as domain modeling
o The challenge in domain modeling is being very precise

o As we get closer to implementation, we need to make choices
m Where to put data, methods.
m Never quite 1-to-1 with the real-world concepts.

e Thinking about assigning responsibilities helps
o We'll rely on design principles and heuristics to guide us
o Including most of GRASP, as in set of “General Responsibility
Assignment Software Patterns/Principles”

17-214/514

39 [8)S3D

Design Principle:
Low Representational Gap

17-214/514 a0 [&S3D

Low Representational Gap

|dentified concepts provide inspiration for classes in the implementation

Classes mirroring domain concepts often
intuitive to understand, rarely change
(low representational gap)

Library Account

accountiD
lateFees

borrow

Book

17-214/514

*

title
author

class Account {
id: Int;
lateFees: Int;
borrowed: List<Book>;
boolean borrow(Book) { .. }

voild save();

}
class Book { .. }

a1 [&S3D

Low Representational Gap

|dentified concepts provide inspiration for classes in the implementation

Classes mirroring domain concepts often ¢1ass Librarybatabase {

intuitive to understand, rarely change Map<Int, List<Int>>
(low representational gap) borrowedBookIds;
Library Account Book Teroeie, e
accountlD borrow | tjtle lateFees;
lateFees 1 * | author Map<Int, String>
bookTitles;
}

17-214/514 . .42

Designs with Low Representational Gap

e Create software class for each domain class, create
corresponding relationships

e Design goal: Design for change

e This is only a starting point!
o Not all domain classes need software correspondence

o Pure fabrications might be needed
o Other principles often more important

17-214/514 a3 [&S3D

Design Goals, Principles, and Patterns

o Design Goals

o Design for change, understanding, reuse, division of labor, ...

o Design Principle
o Low coupling, high cohesion
o Low representational gap
o Design Heuristics
o Law of Demeter
o Information expert
o Creator
o Controller

17-214/514

Goals

1

Principles

N

Heuristics Patterns
44 @)330

DESIGN PRINCIPLE:
LOW COUPLING

17-214/514

a5 [&sS3D

Design Principle: Low Coupling

A module should depend on as few other modules as possible
® Enhances understandability (design for understanding)
O Limited understanding of context, easier to understand in isolation

® Reduces the cost of change (design for change)
O Little context necessary to make changes
O When a module interface changes, few modules are affected (reduced rippling effects)

® Enhances reuse (design for reuse)
O Fewer dependencies, easier to adapt to a new context

17-214/514 a6 L&)S3D

Topologies with different coupling

Types of module
interconnection
structures

(A) (B) (©)

17-214/514 a7 [&S3D

High Coupling is undesirable

e Element with low coupling depends on few other elements
o Elements == classes, subsystems, ...

o “few" is context-dependent

e A class with high coupling relies on many other classes

o Changes in related classes force local changes; changes in local
class forces changes in related classes (brittle, rippling effects)

o Harder to understand in isolation.

o Harder to reuse because requires additional presence of other
dependent classes

o Difficult to extend — changes in many places

17-214/514 as [&)S3D

class Shipment { Which classes are coupled?

private List<Box> boxes; H . .
: . ow can coupling be improved?
int getWeight() { piing P

int w=0;
for (Box box: boxes)
for (Item item: box.getItems())
w += item.weight;

return w;

}

class Box {
private List<Item> items;
Iterable<Item> getItems() { return items;}

}

class Item {
Box containedIn;
int weight;

)S3b

Design Goals, Principles, and Patterns

o Design Goals

O

Design for change, understanding, reuse, division of labor, ...

» Design Principle

O

O

Low coupling, high cohesion
Low representational gap

« Design Heuristics: promoting principle(s) in the system Goals
o Law of Demeter T
o Information expert Principles

O

o

17-214/514

Creator
Controller /\
Heuristics Patterns

>0 so Ld)S3D

Design Heuristic: Law of Demeter

e Fach module should have only limited knowledge about other
units: only units "closely” related to the current unit

e In particular: Don't talk to strangers!

e Forinstance, no a.getB().getC().foo()

for (let 1 of shipment.getBox().getItems())

shipmentWeight += i.getWeight() ..

So don’t do this A !l

17-214/514 51 Ld)S3D

Coupling: Discussion

® High coupling to very stable elements is usually not problematic
O A stable interface is unlikely to change, and likely well-understood
O Prefer coupling to interfaces over coupling to implementations

® (Details next time:) Subclass/superclass coupling is particularly strong
O Protected fields and methods are visible

O Subclass is fragile to many superclass changes, e.g. change in method signatures,
added abstract methods

O Guideline: prefer composition to inheritance, to reduce coupling
® Coupling is one principle among many
O Consider cohesion, low repr. gap, and other principles

17-214/514 52 Ld)S3D

Design Goals

® Explain how low coupling supports
O Design for change
O Design for understandability
O Design for division of labor

O Design for reuse
O ...

17-214/514 s3 Ld)S3D

Design Goals

® Design for change
O Changes easier because fewer dependencies on fewer other objects
O Changes are less likely to have rippling effects

® Design for understandability

O Fewer dependencies to understand (e.g., a.getB().getC().foo())
® Design for division of labor

O Smaller interfaces, easier to divide

® Design for reuse
O Easier to reuse without complicated dependencies

17-214/514 sa Ld)S3D

Design Heuristic: CONTROLLER

(also DESIGN PATTERN: FACADE)

17-214/514 55 5% S3D

Controller (Design Heuristic)

» Problem: What object receives and coordinates a system
operation (event)?

o Solution: Assign the responsibility to an object representing

o The overall system, device, or subsystem (fagcade controller), or

o A use case scenario within which the system event occurs (use
case controller)

o Process: Derive from system sequence diagram (key
principles: Low representational gap and high cohesion)

17-214/514 56 Ld)S3D

: Student : System
login(id) >
:<. due date ...
logout() »
DR receipt !

17-214/514 57 %SSD

: Student : System
login(id) >
:<. due date ...
logout() »
SR receipt !
17-214/514

CheckoutController

login(id: Int)
checkout(bid: Int)
logout()

sg Ld)S3D

Requirements Analysis

X

Student

login(id)

e duedate ...
logout() ,
P receipt]
17-214/514

Object-Level Design

1: Iogin(uid)~.[. CheckoutController

e
2: check(uid) {

1 . CheckoutController
checkout(bid)

3: setUser(uid) 1

A

. UserDB

= 4

3: b=findBook() |

uid=getUser() r
T~

4: setBorrowedBy(u

: Session

: BookDB

. Session

b: Book

so [d)S3D

Controller: Discussion

® A Controller is a coordinator
O Does not do much work itself
O Delegates to other objects

® Facade controllers suitable when not "too many" system events
O -> One overall controller for the system

® Use case controller suitable when facade controller "bloated" with excessive
responsibilities (low cohesion, high coupling)

O -> Several smaller controllers for specific tasks
® Closely related to Facade design pattern (future lecture)

17-214/514 60 L&)S3D

Controller: Design Tradeoffs

Decreases coupling

o User interface and domain logic are decoupled from each other
o Understandability: can understand these in isolation, leading to:
o Evolvability: both the Ul and domain logic are easier to change
» Both are coupled to the controller, which serves as a mediator, but this coupling is
less harmful
o The controller is a smaller and more stable interface
o Changes to the domain logic affect the controller, not the Ul
o The Ul can be changed without knowing the domain logic design

Supports reuse

o Controller serves as an interface to the domain logic
o Smaller, explicit interfaces support evolvability

But, bloated controllers increase coupling and decrease cohesion; split if applicable

17-214/514 61 L&)S3D

Controller in Flash Cards Project?

17-214/514 62 L9)S3D

DESIGN PRINCIPLE:
HIGH COHESION

(OR SINGLE RESPONSIBILITY PRINCIPLE)

17-214/514 63 L9)S3D

Design Principle: Cohesion

A module should have a small set of related responsibilities
e Enhances understandability (design for understandability)

O A small set of responsibilities is easier to understand

e Enhances reuse (design for reuse)

O A cohesive set of responsibilities is more likely to recur in another
application

17-214/514

64 L&)S3D

=

Y

class DatabaseApplication

public void
//
//
//
//
//
//
//

}

public void
//
//
//
//
//
//
//

authorizeOrder(Data data, User currentUser,
check authorization

lock objects for synchronization

validate buffer

log start of operation

perform operation

log end of operation

release lock on objects

startShipping(OtherData data, User currentUser,
check authorization

lock objects for synchronization

validate buffer

log start of operation

perform operation

log end of operation

release lock on objects

SO

SO

e S3D

_class Chat {

Anti-Pattern: List<String> channels;
GOd ObJeCt Map<String, List<Msg>> messages;

Map<String, String> accounts;
Set<String> bannedUsers;

File logFile;

File bannedWords;

URL serverAddress;

Map<String, Int> globalSettings;
Map<String, Int> userSettings;
Map<String, Graphic> smileys;
CryptStrategy encryption;

Widget sendButton, messagelist;

17-214/514 }

17-21

Anti-Pattern:
God Object

class Chat {
Content content;
AccountMgr accounts;
File logFile;
ConnectionMgr conns;

}
class ChatUI {

Chat chat;

Widget sendButton, ..;
}

class AccountMgr {
. acounts, bannedUsr..

}

_class Chat {

List<String> channels;
Map<String, List<Msg>> messages;
Map<String, String> accounts;
Set<String> bannedUsers;

File logFile;

File bannedWords;

URL serverAddress;

Map<String, Int> globalSettings;
Map<String, Int> userSettings;
Map<String, Graphic> smileys;
CryptStrategy encryption;

Widget sendButton, messagelist;

Cohesion in Graph Implementations

class Graph {
Node[] nodes;

Is this a good
' ion?
boolean[] isVisited:; implementation”
}

class Algorithm {
int shortestPath(Graph g, Node n, Node m) {
for (int 1; ..)
if (!'g.isVisited[i]) {

g.isVisited[i] =
true;

}
}

return v;

69 L8)S3D

Cohesion in Graph Implementations

class Graph {

lowell] neaEss with not just data, but also
boolean[] isVisited;

) algorithmic responsibilities
class Algorithm {
int shortestPath(Graph g, Node n, Node m) {
for (int 1; ..)
if (!'g.isVisited[i]) {

Probably “No”: Graph is tasked

g.isVisited[i] =
true;

}
}

return v;

70 [&s3p

class Player {

MOHOpOly Board board;

/* in code somewhere.. */ this.getSquare(n);

Example Square getSquare(String name) { // named monopoly

squares
for (Square s: board.getSquares())
if (s.getName().equals(name))
return s;

Which design has return null;

higher cohesion?

class Player {
Board board;
/* in code somewhere.. */ board.getSquare(n);

}

class Board{
List<Square> squares;
Square getSquare(String name) {
for (Square s: squares)
if (s.getName().equals(name))
return s;

R T S R T

i=
H
G | 6|

17-214/514

return null;
Ela)

Hints for ldentifying Cohesion

® Use one color per concept
® Highlight all code of that concept with the color

® => Classes/methods
should have few colors

17-214/514

Hints for ldentifying Cohesion

® There is no clear definition of what a “concept” is

® Concepts can be split into smaller concepts

O Graph with search vs. Basic Graph + Search Algorithm vs. Basic Graph
+ Search Framework + Concrete Search Algorithm etc

® Requires engineering judgment

17-214/514

Cohesion: Discussion

Very Low Cohesion: A Class is solely responsible for many things in very different
functional areas

Low Cohesion: A class has sole responsibility for a complex task in one functional area

High Cohesion: A class has moderate responsibilities in one functional area and
collaborates with classes to fulfil tasks

Advantages of high cohesion

o Classes are easier to maintain

» Easier to understand

o Often support low coupling

e Supports reuse because of fine grained responsibility

Rule of thumb: a class with high cohesion has relatively few methods of highly related
functionality; does not do too much work

17-214/514 74 [3)s3p

Coupling vs Cohesion (Extreme cases)

All code in one class/method

e Vvery low coupling, but very low cohesion
Every statement separated

o Vvery high coupling, but very high cohesion

Find good tradeoff; consider also other principles, e.qg.,
low representational gap

17-214/514 75 L9)s3p

Cohesion in Flash Cards Project?

17-214/514 76 L9)S3D

Design Heuristic:
INFORMATION EXPERT

17-214/514

Information Expert (Design Heuristic)

o Heuristic: Assign a responsibility to the class that has the
information necessary to fulfill the responsibility

o Typically follows common intuition

o Software classes instead of Domain Model classes

o If software classes do not yet exist, look in Domain Model for fitting
abstractions (-> correspondence)

Design process: Derive from domain model (key principles:

Low representational gap and low coupling)
17-214/514 78 L9)s3p

class Shipment {
private List<Box> boxes;
int getWeight() {
int w=0;
for (Box box: boxes)
for (Item item: box.getItems())
w += item.weight;

Which class has all the information
to compute the shipment’s weight?

return w;

}

class Box {
private List<Item> items;
Iterable<Item> getItems() { return items;}

}

class Item {
Box containedIn;
int weight;

)S3b

Who should be responsible for
knowing the grand total of a sale?

]] u . 07/20/02 10:40 AN
RETURN BEFQRE 10718702

L AN]

| GIVIKG A GIFT? Include ® 317t receirt!
A receipt detad vithin 50 dovs is
required for ell returne § exchanses

_getTotal(...)

TO1 21246034 GENERAL MILL PN 2 B9

202 071100015 RITZ CRCMERS FN 2 5¢

20N 212480045 PILLSBURY PN 1 29

204 212140335 BC CHKN HLPR FN 169

305 071100009 WHEAT THINS FN 1 39

206 203700125 DCEAN SPRRY FN 1.89

n 00T 212080143 ¥ BONE ORSMG FN 1.5
Re Iste r 006 204010136 DICIORNO PN 2.54
009 03060057 DAUN ToLss

010 071090122 CHIPS AHGY FH 2.54

SUBTOTAL 21,18

Te 5.000% TAx 18

ale

Lineltem
Product Descr.

17-214/514 so L&)S3D

Who should be responsible for
knowing the grand total of a sale?

Sale _Captured-on Register © TARGET

7720702 10:40 AR
RETURN BEFORE 10/18/02

time id | JO DO O 1000 0 0

| GIVING A GIFT? Include » 2:7¢ receirt!

P a d by A receipt detad ulfhin 50 davs is

reqired for il refurne § exchonses

Cu stomer TOT 21246034! GENERAL MILL PN 2 B9

202 071100015 RIT2 CRCMERS FN 2 5¢
20N 212480045 PILLSBLRY PN 1 29

304 212140335 BC CHKN HLPR BN 1 65

CO nt aln S 205 071100039 WHEAT THINS FN 193
206 203700125 DCEAN SPRAY FN 1.89

name 00T 212080143 w BONE DRSNS FN 175

006 204010136 DICIORN PN 2.54

009 003060057 DAUN T

* 010 071090122 CHIPS AHGY FH 2.54

1 SUdTOTRL 21,18
.. Te 5,0008 TAX 16
Product TOTAL 2.5

Sales Description

Lineltem * Described-by 1

description
quantity price

itemID

17-214/514 g1 [&)S3D

Who should be responsible for
knowing the grand total of a sale?

Sale _Captured-on Register © TARGET

07/20/02 10-40 AN
RETURN BEFORE 10/18/02

time id | JO DO O 1000 0 0

L ! GIVING A GIFT? Include ® 317t receirt!
Pa d by A receipt dotad vifhin 50 devs is
reqired for il refurne § exchonses

Cu stomer TOT 21246034! GENERAL MILL PN 2 B9

202 071100015 RIT2 CRCMERS FN 2 5¢
203 212480045 PILLSBLSY N 129
CO ntains 204 212140336 BC CHKN HLPR FN 169
205 071100009 WHEAT THINS FN 19

06 203700129 DCEAN SPRAY FN 1.89
00T 212080143 ¥ BONE DRSNG FN 1%
08 204010136 DIOIORNO N 254
. s Ay 009 003060057 DAUN 1 1.95
Design Class Responsibility 0 0TI 00122 CHIPS WY K 2.5
SUBTOTAL 2,18

Te 5.000% TAx 16

ToTAL .25

Sale knows sale total

Sales

Linelte |SalesLineltem knows line item subtotal

quantity | |ProductSpecification knows product price

17-214/514 82 [&)S3D

— -

t =getTotal

17-214/514

: Sale

—

1* st =getSubtotal

Sale

1.1: p :=getPrice()

lineltems[i]:
SalesLineltem

time

getTotal()

SalesLineltem

:Product
Description

quantity

getSubtotal()

New method T ,,,,,,,,,,,,,,,,,,,,,,,,,

Product
Description

description
price
itemlD

getPrice()

83 [&)S3D

Information Expert — "Do It Myself Strategy”

e Expert usually leads to designs where a software object does
those operations that are normally done to the inanimate

real-world thing it represents
o A sale does not tell you its total; it is an inanimate thing

e |n OO design, all software objects are "alive" or "animated,"
and they can take on responsibilities and do things.
e They do things related to the information they know.

17-214/514 84 [&)S3D

Information Experts in
FlashCards ™®©®?

no knows the text on a card?
no checks correctness of an answer?
No processes command-line options?

no stores past answers?

= = = = =

no knows how to flip cards?

=

no tracks which achievements have been achieved?

17-214/514 g5 [&)S3D

Design Heuristic: CREATOR

86 S(fé) S3D

Creator (Design Heuristic)

Problem: Who creates an A?
Solution: Assign class responsibility of creating instance of class A to B if

o B aggregates A objects, B contains A objects, B records instances of A
objects, B closely uses A objects, B has the initializing data for creating A
objects (the more the better)

 Where there is a choice, prefer B aggregates or contains A objects

Key idea: Creator needs to keep reference anyway and will frequently use the
created object

Process: Extract from domain model, interaction diagrams (key principles: Low
coupling and low representational gap)

17-214/514 g7 L&S3D

Creator: Example

e \Who is responsible for creating Beetle objects?

17-214/514

O_

Simulation Tree
size
O—contains— age
grow()
step() isinfested()
simulates
Ranger
harvest()

infested
by

Beetle

step()

sg [&)S3D

Creator: Example

e \Who is responsible for creating Beetle objects?
o Creator pattern suggests Tree

e Interaction diagram:

12 init)—s : Simulation 2: createlnfected() s - Tree

cregte()

b: Beetle

17-214/514 g9 [&)S3D

Creator (GRASP)

® Problem: Assigning responsibilities for creating objects
O Who creates Nodes in a Graph?
O Who creates instances of Salesltem?
O Who creates Children in a simulation?

O Who creates Tiles in a Monopoly game?
m Al? Player? Main class? Board? Meeple (Dog)?

17-214/514 90 [&)S3D

Creator: Discussion of Design Goals/Principles

Promotes low coupling, high cohesion
e Class responsible for creating objects it needs to reference

e Creating the objects themselves avoids depending on another class to create the
object

Promotes evolvability (design for change)

e Object creation is hidden, can be replaced locally
Contra: sometimes objects must be created in special ways
e Complex initialization

e [nstantiate different classes in different circumstances

e Then cohesion suggests putting creation in a different object. see design patterns
such as builder, factory method

17-214/514 91 [&)S3D

Creator in Flash Cards Project

Who creates cards?
Who creates a card deck?

Who creates achievements?

17-214/514 92 [5)S3n

Other Design Heuristics

In future lectures:

e Minimize mutability

Minimize conceptual weight

Favor composition/delegation over inheritance
Use indirection to reduce coupling

17-214/514 94 [5)S3D

Object-level artifacts of this design process

e Object interaction diagrams add methods to objects
o Can infer additional data responsibilities
o Can infer additional data types and architectural patterns

e Object model aggregates important design decisions

o Is an implementation guide

17-214/514 95 [8)S3D

(b 7 |

t
4
4

. N
bo(‘%‘*’(boek) '

e

E l c*_'i’{'x:{es :—'O__J
{oen Pec il ¥ ?}'&LO‘VA’ Perieo

o O

17-214/514

I

|
4 Bcc ’(i
1
f
)
{
f
{
}
'
N
[
f

96

T tem

(’Q"\'\‘ﬁ‘ Pe(lbﬂ{
tc'}‘(Fee

P
L//ﬁ E
; (}*Lf &{“QQAJF(

N
\ - \. 1 -1
\‘ \ l_‘;‘_\b\jej- CC\(‘(/{ ww J ey
\Yl ‘0) " 14/
\ 5 Considering the Library problem, which class should
W

know which items have been borrowed by a user?
o7 Which should compute late fees?

17-214/514 97 S

Take-Home Messages

Design is driven by quality attributes

o Evolvability, separate development, reuse, performance, ...
Design principles provide guidance on achieving qualities

« Low coupling, high cohesion, high correspondence, ...
GRASP design heuristics promote these principles

o Creator, Expert, Controller, ...

17-214/514 98 [&)S3D

