
117-214/514

Principles of Software Construction: 
Objects, Design, and Concurrency

Responsibility Assignment

Bogdan Vasilescu Jonathan Aldrich



217-214/514

Lecture 7 Quiz
On Canvas: https://canvas.cmu.edu/courses/33548/quizzes/96756

https://canvas.cmu.edu/courses/33548/quizzes/96756


317-214/514

● HW1 grades out shortly
● Midterm 1 next week Thursday

○ Sample questions out shortly
○ Come to OH for help

● Homework 3 (Santorini game engine) out
○ Must start early

● Recitation this week: UML design diagrams

Administrative notes



417-214/514

User needs
(Requirements) CodeMiracle? 



517-214/514

Problem 
Space

(Domain Model)

Solution
Space

(Object Model)

● Real-world concepts
● Requirements, Concepts
● Relationships among concepts
● Solving a problem
● Building a vocabulary

● System implementation
● Classes, objects
● References among objects and 

inheritance hierarchies
● Computing a result
● Finding a solution



617-214/514

An object-oriented design process
Model / diagram the problem, define concepts

● Domain model (a.k.a. conceptual model), glossary

Define system behaviors

● System sequence diagram
● System behavioral contracts

OO Analysis:
Understanding 
the problem

Last Class



717-214/514

An object-oriented design process
Model / diagram the problem, define concepts

● Domain model (a.k.a. conceptual model), glossary

Define system behaviors

● System sequence diagram
● System behavioral contracts

Assign object responsibilities, define interactions

● Object interaction diagrams

Model / diagram a potential solution

● Object model

OO Analysis:
Understanding 
the problem

OO Design:
Defining a 
solution

Today



817-214/514

● UML in the Solution Space
○ Object diagrams: from concepts to classes
○ Interaction diagrams: interactions beyond the system boundary

● Making Design Decisions
○ Expand our vocabulary of principles, patterns, and heuristics
○ Apply GRASP patterns to assign responsibilities in designs
○ Reason about tradeoffs among designs
○ Discuss tradeoffs in terms of coupling and cohesion

Learning Goals



1417-214/514

Modeling Implementations 
with UML

Today



1517-214/514

A Word on UML
UML is a standard, established notation

Most software engineers can read it, many tools support it

Few practitioners use it rigorously

Commonly used informally for sketching, communication, 
documentation, wall art

In this course: Use UML for communication; follow notation 
somewhat rigorously, but won’t care about all details



1617-214/514

One possible domain 
model for the library 
system



1717-214/514

From concepts to objects
● How are domain concepts different from classes?

○ Should every concept become a class?
○ Does every class need to represent a concept?

id: int
lateFees: int

borrow(Book): bool
returnItem(Book)
payFees(int)

Library Account

accountID
lateFees

Book

title
author

borrow

1 *

LibraryAccount



1817-214/514

Object Diagrams
Objects/classes with 
fields and methods

Interfaces with 
methods

Associations, 
visibility, types



1917-214/514

Object Diagram Notation: Classes/Objects

LibraryAccount

id: int
lateFees: int

borrow(Book): bool
returnItem(Book)
payFees(int)

class LibraryAccount {

id: int;

lateFees: int;
boolean borrow(Book b) {…}

void returnItem(Book b) {…}

void payFees(int payment) {…}
}

Classname
(lowercase 
name of 
objects)

Fields

Methods



2017-214/514

Object Diagram Notation: Interfaces

LibraryAccount

borrow(Book): bool
returnItem(Book)
payFees(int)

interface LibraryAccount {

boolean borrow(Book b);

void returnItem(Book b);
void payFees(int payment);

}

Interface name

Methods



2117-214/514

Object Diagram Notation: Associations

LibraryAccount

id: int
lateFees: int

borrow(Book)

class LibraryAccount {

...

List<Book> borrowedBooks;
}

class Book {

...
LibraryAccount borrowedBy;

}

Book

author: Stringborrowed

*1



2217-214/514

Object Diagram Notation: Associations

LibraryAccount

id: int
lateFees: int

borrow(Book)

class LibraryAccount {

...

List<Book> borrowedBooks;
}

class Book {

...
}

Book

author: Stringborrowed

*1



2317-214/514

Object Diagram Notation: Associations

LibraryAccount

id: int
lateFees: int
borrowed: List<Book>

borrow(Book)

Book

author: String
borrowedBy: LibraryAccount

Don’t use fields instead or in 
addition to associations. Use 
fields only for basic types



2417-214/514

Class Diagram vs Object Diagram
Can model both classes and objects

Terms often used interchangeably

If specific objects should be modeled use “objectId: Class” notation

a: LibAccount

id: int
lateFees: int

borrow(Book)

account:

id: int
lateFees: int

borrow(Book)

: LibAccount

id: int
lateFees: int

borrow(Book)



2517-214/514

Class Diagrams and JavaScript/TypeScript
Even when not using classes, use the notation for 
representing the same idea: many objects sharing a shape

TypeScript interfaces match to class diagram notation
LibraryAccount

id: int
lateFees: int

borrow(Book): bool
returnItem(Book)
payFees(int)

function newLibraryAccount(id, lateFees) {

return {

borrow: function(book) {…},

returnItem: function(book) {…},

payFees: function(payment) {…}

}

}



2617-214/514

One object model for the library system



2717-214/514

Domain model (left) vs object model (right)



2817-214/514

We won’t be very picky on notation, but:

● Use boxes with 2 or 3 parts for fields, methods as appropriate 
for classes/objects, interfaces, concepts

● Include types for fields and methods
● Use associations, not fields, where appropriate
● Use association names and cardinalities (we don’t care much 

about arrow types, except “is-a”)

Object diagram notation requirements



2917-214/514

Modeling interactions past the system boundary
Use case scenario:  A library 
member should be able to use her 
library card to log in at a library 
system kiosk and borrow a book.  
After confirming that the member has 
no unpaid late fees, the library 
system should determine the book’s 
due date by adding its rental period 
to the current day, and record the 
book and its due date as a borrowed 
item in the member’s library account.



3017-214/514

Interaction Diagrams
Interactions between objects
Two common notations: sequence 
diagrams and communication 
diagrams
Sequence diagrams like system 
sequence diagrams, but depicting 
interactions between 
objects/classes



3117-214/514

always start with 
an initial method



3217-214/514

Interaction Diagram Practice: 
Use case scenario: …and borrow a book.  After confirming 
that the member has no unpaid late fees, the library system 
should determine the book’s due date by adding its loan 
period to the current day, and record the book and its due 
date as a borrowed item in the member’s library account.



3317-214/514



3417-214/514

Interaction diagrams help evaluate design 
alternatives

● Explicitly consider design alternatives
● For each, sketch the interactions implied by the design choice

○ Interactions correspond to the components' APIs



3517-214/514

Sys seq diag. (left) vs interaction diag. (right)



3617-214/514

Object-Level Design



3717-214/514

Considering the Library problem, which 
class should know which items have been 

borrowed by a user?
Which should compute late fees?



3817-214/514

Doing and Knowing Responsibilities
Responsibilities are related to the obligations of an object in terms of its 
behavior.
Doing responsibilities of an object include: 
● Doing something itself, such as creating an object or doing a calculation 
● Initiating action in other objects 
● Controlling and coordinating activities in other objects 

Knowing responsibilities of an object include: 
● Knowing about private encapsulated data    
● Knowing about related objects 
● Knowing about things it can derive or calculate 



3917-214/514

Doing and Knowing Responsibilities
● Object design is not as clear-cut as domain modeling

○ The challenge in domain modeling is being very precise
○ As we get closer to implementation, we need to make choices

■ Where to put data, methods.
■ Never quite 1-to-1 with the real-world concepts.

● Thinking about assigning responsibilities helps
○ We’ll rely on design principles and heuristics to guide us
○ Including most of GRASP, as in set of “General Responsibility 

Assignment Software Patterns/Principles”



4017-214/514

Design Principle: 
Low Representational Gap



4117-214/514

Low Representational Gap
Identified concepts provide inspiration for classes in the implementation

Classes mirroring domain concepts often 
intuitive to understand, rarely change 
(low representational gap)

Library Account

accountID
lateFees

Book

title
author

borrow

1 *

class Account {

id: Int;

lateFees: Int;

borrowed: List<Book>;

boolean borrow(Book) { … }

void save();

}

class Book { … }



4217-214/514

Low Representational Gap
Identified concepts provide inspiration for classes in the implementation

Classes mirroring domain concepts often 
intuitive to understand, rarely change 
(low representational gap)

Library Account

accountID
lateFees

Book

title
author

borrow

1 *

class LibraryDatabase {

Map<Int, List<Int>>

borrowedBookIds;

Map<Int, Int> 

lateFees;

Map<Int, String>

bookTitles;

}

class DatabaseRow { … }



4317-214/514

Designs with Low Representational Gap

● Create software class for each domain class, create 
corresponding relationships

● Design goal: Design for change
● This is only a starting point! 

○ Not all domain classes need software correspondence
○ Pure fabrications might be needed
○ Other principles often more important



4417-214/514

Design Goals, Principles, and Patterns
● Design Goals

○ Design for change, understanding, reuse, division of labor, …

● Design Principle
○ Low coupling, high cohesion
○ Low representational gap

● Design Heuristics 
○ Law of Demeter
○ Information expert
○ Creator
○ Controller

Goals

Heuristics Patterns

Principles



4517-214/514

DESIGN PRINCIPLE: 
LOW COUPLING



4617-214/514

Design Principle: Low Coupling
A module should depend on as few other modules as possible
● Enhances understandability (design for understanding)

○ Limited understanding of context, easier to understand in isolation

● Reduces the cost of change (design for change)
○ Little context necessary to make changes
○ When a module interface changes, few modules are affected (reduced rippling effects)

● Enhances reuse (design for reuse)
○ Fewer dependencies, easier to adapt to a new context



4717-214/514

Topologies with different coupling



4817-214/514

High Coupling is undesirable
● Element with low coupling depends on few other elements

○ Elements == classes, subsystems, …
○ “few" is context-dependent

● A class with high coupling relies on many other classes
○ Changes in related classes force local changes; changes in local 

class forces changes in related classes (brittle, rippling effects)
○ Harder to understand in isolation. 
○ Harder to reuse because requires additional presence of other 

dependent classes
○ Difficult to extend – changes in many places



4917-214/514 49

class Shipment {
private List<Box> boxes;
int getWeight() {

int w=0;
for (Box box: boxes)

for (Item item: box.getItems())
w += item.weight;

return w;
}
class Box {

private List<Item> items;
Iterable<Item> getItems() { return items;}

}
class Item {

Box containedIn;
int weight;

}

Which classes are coupled?
How can coupling be improved?



5017-214/514

Design Goals, Principles, and Patterns
● Design Goals

○ Design for change, understanding, reuse, division of labor, …

● Design Principle
○ Low coupling, high cohesion
○ Low representational gap

● Design Heuristics: promoting principle(s) in the system
○ Law of Demeter
○ Information expert
○ Creator
○ Controller

50

Goals

Heuristics Patterns

Principles



5117-214/514

Design Heuristic: Law of Demeter

● Each module should have only limited knowledge about other 
units: only units "closely" related to the current unit

● In particular: Don’t talk to strangers!
● For instance, no a.getB().getC().foo()

So don’t do this ^ !!

for (let i of shipment.getBox().getItems())
shipmentWeight += i.getWeight() …



5217-214/514

Coupling: Discussion
● High coupling to very stable elements is usually not problematic

○ A stable interface is unlikely to change, and likely well-understood
○ Prefer coupling to interfaces over coupling to implementations

● (Details next time:) Subclass/superclass coupling is particularly strong
○ Protected fields and methods are visible
○ Subclass is fragile to many superclass changes, e.g. change in method signatures, 

added abstract methods
○ Guideline: prefer composition to inheritance, to reduce coupling 

● Coupling is one principle among many
○ Consider cohesion, low repr. gap, and other principles



5317-214/514

Design Goals
● Explain how low coupling supports

○ Design for change
○ Design for understandability
○ Design for division of labor
○ Design for reuse
○ …



5417-214/514

Design Goals
● Design for change

○ Changes easier because fewer dependencies on fewer other objects
○ Changes are less likely to have rippling effects

● Design for understandability
○ Fewer dependencies to understand (e.g., a.getB().getC().foo())

● Design for division of labor
○ Smaller interfaces, easier to divide

● Design for reuse
○ Easier to reuse without complicated dependencies



5517-214/514

Design Heuristic: CONTROLLER
(also DESIGN PATTERN: FAÇADE )

55



5617-214/514

Controller (Design Heuristic)
● Problem: What object receives and coordinates a system 

operation (event)?

● Solution: Assign the responsibility to an object representing 
○ The overall system, device, or subsystem (façade controller), or

○ A use case scenario within which the system event occurs (use 
case controller)

● Process: Derive from system sequence diagram (key 
principles: Low representational gap and high cohesion)



5717-214/514

: Student : System
login(id)

checkout(bookid)

due date

logout()

receipt



5817-214/514

: Student : System
login(id)

checkout(bookid)

due date

logout()

receipt

CheckoutController

login(id: Int)
checkout(bid: Int)
logout()



5917-214/514

: Student : System
login(id)

checkout(bookid)

due date

logout()

receipt

Requirements Analysis Object-Level Design



6017-214/514

Controller: Discussion
● A Controller is a coordinator

○ Does not do much work itself 
○ Delegates to other objects

● Façade controllers suitable when not "too many" system events
○ -> One overall controller for the system

● Use case controller suitable when façade controller "bloated" with excessive 
responsibilities (low cohesion, high coupling)
○ -> Several smaller controllers for specific tasks

● Closely related to Façade design pattern (future lecture)



6117-214/514

Controller: Design Tradeoffs
Decreases coupling
● User interface and domain logic are decoupled from each other

○ Understandability: can understand these in isolation, leading to:
○ Evolvability: both the UI and domain logic are easier to change

● Both are coupled to the controller, which serves as a mediator, but this coupling is 
less harmful
○ The controller is a smaller and more stable interface
○ Changes to the domain logic affect the controller, not the UI
○ The UI can be changed without knowing the domain logic design

Supports reuse
● Controller serves as an interface to the domain logic
● Smaller, explicit interfaces support evolvability

But, bloated controllers increase coupling and decrease cohesion; split if applicable



6217-214/514

Controller in Flash Cards Project?



6317-214/514

DESIGN PRINCIPLE: 
HIGH COHESION
(OR SINGLE RESPONSIBILITY PRINCIPLE)



6417-214/514

Design Principle: Cohesion
A module should have a small set of related responsibilities
● Enhances understandability (design for understandability)

○ A small set of responsibilities is easier to understand

● Enhances reuse (design for reuse)
○ A cohesive set of responsibilities is more likely to recur in another 

application



6517-214/514



6617-214/514 66

class DatabaseApplication
public void authorizeOrder(Data data, User currentUser, ...){

// check authorization
// lock objects for synchronization
// validate buffer
// log start of operation
// perform operation
// log end of operation
// release lock on objects

}
public void startShipping(OtherData data, User currentUser, ...){

// check authorization
// lock objects for synchronization
// validate buffer
// log start of operation
// perform operation
// log end of operation
// release lock on objects

}
}



6717-214/514

Anti-Pattern: 
God Object

class Chat {

List<String> channels;

Map<String, List<Msg>> messages;

Map<String, String> accounts;

Set<String> bannedUsers;

File logFile;

File bannedWords;

URL serverAddress;

Map<String, Int> globalSettings;

Map<String, Int> userSettings;

Map<String, Graphic> smileys;

CryptStrategy encryption;

Widget sendButton, messageList;

}



6817-214/514

Anti-Pattern: 
God Object

class Chat {

List<String> channels;

Map<String, List<Msg>> messages;

Map<String, String> accounts;

Set<String> bannedUsers;

File logFile;

File bannedWords;

URL serverAddress;

Map<String, Int> globalSettings;

Map<String, Int> userSettings;

Map<String, Graphic> smileys;

CryptStrategy encryption;

Widget sendButton, messageList;

}

class Chat {
Content content;
AccountMgr accounts;
File logFile;
ConnectionMgr conns;

}
class ChatUI {

Chat chat;
Widget sendButton, …;

}
class AccountMgr {

… acounts, bannedUsr…
}



6917-214/514

Cohesion in Graph Implementations
class Graph {

Node[] nodes;
boolean[] isVisited;

}
class Algorithm {

int shortestPath(Graph g, Node n, Node m) {
for (int i; …)

if (!g.isVisited[i]) {
…
g.isVisited[i] =

true;
}

}
return v;

}
}

Is this a good 
implementation?



7017-214/514

Cohesion in Graph Implementations
class Graph {

Node[] nodes;
boolean[] isVisited;

}
class Algorithm {

int shortestPath(Graph g, Node n, Node m) {
for (int i; …)

if (!g.isVisited[i]) {
…
g.isVisited[i] =

true;
}

}
return v;

}
}

Probably “No”: Graph is tasked 
with not just data, but also
algorithmic responsibilities



7117-214/514

Monopoly
Example

class Player {
Board board;
/* in code somewhere… */ this.getSquare(n);
Square getSquare(String name) { // named monopoly 

squares
for (Square s: board.getSquares())

if (s.getName().equals(name))
return s;

return null;
}}class Player {

Board board;
/* in code somewhere… */ board.getSquare(n);

}
class Board{

List<Square> squares;
Square getSquare(String name) {

for (Square s: squares)
if (s.getName().equals(name))

return s;
return null;

}}

Which design has
higher cohesion?



7217-214/514

Hints for Identifying Cohesion
● Use one color per concept
● Highlight all code of that concept with the color
● => Classes/methods

should have few colors



7317-214/514

Hints for Identifying Cohesion
● There is no clear definition of what a “concept” is
● Concepts can be split into smaller concepts

○ Graph with search vs. Basic Graph + Search Algorithm vs. Basic Graph 
+ Search Framework + Concrete Search Algorithm etc

● Requires engineering judgment



7417-214/514

Cohesion: Discussion
Very Low Cohesion: A Class is solely responsible for many things in very different 
functional areas
Low Cohesion: A class has sole responsibility for a complex task in one functional area
High Cohesion: A class has moderate responsibilities in one functional area and 
collaborates with classes to fulfil tasks
Advantages of high cohesion
● Classes are easier to maintain 
● Easier to understand
● Often support low coupling
● Supports reuse because of fine grained responsibility

Rule of thumb: a class with high cohesion has relatively few methods of highly related 
functionality; does not do too much work



7517-214/514

Coupling vs Cohesion (Extreme cases)
All code in one class/method
● very low coupling, but very low cohesion

Every statement separated 
● very high coupling, but very high cohesion

Find good tradeoff; consider also other principles, e.g., 
low representational gap



7617-214/514

Cohesion in Flash Cards Project?



7717-214/514

Design Heuristic: 
INFORMATION EXPERT



7817-214/514

Information Expert (Design Heuristic)

● Heuristic:  Assign a responsibility to the class that has the 
information necessary to fulfill the responsibility

● Typically follows common intuition

● Software classes instead of Domain Model classes

○ If software classes do not yet exist, look in Domain Model for fitting 
abstractions (-> correspondence)

● Design process:  Derive from domain model (key principles:  
Low representational gap and low coupling)



7917-214/514

class Shipment {
private List<Box> boxes;
int getWeight() {

int w=0;
for (Box box: boxes)

for (Item item: box.getItems())
w += item.weight;

return w;
}
class Box {

private List<Item> items;
Iterable<Item> getItems() { return items;}

}
class Item {

Box containedIn;
int weight;

}

Which class has all the information 
to compute the shipment’s weight?



8017-214/514

???getTotal(…)

Register
Sale
LineItem
Product Descr.

Who should be responsible for 
knowing the grand total of a sale?



8117-214/514

Who should be responsible for 
knowing the grand total of a sale?



8217-214/514

Who should be responsible for 
knowing the grand total of a sale?



8317-214/514



8417-214/514

Information Expert → "Do It Myself Strategy"

● Expert usually leads to designs where a software object does 
those operations that are normally done to the inanimate 
real-world thing it represents
○ A sale does not tell you its total; it is an inanimate thing

● In OO design, all software objects are "alive" or "animated," 
and they can take on responsibilities and do things. 

● They do things related to the information they know. 



8517-214/514

Information Experts in 
FlashCards™©®?
Who knows the text on a card?
Who checks correctness of an answer?

Who processes command-line options?

Who stores past answers?

Who knows how to flip cards?
Who tracks which achievements have been achieved?



8617-214/514

Design Heuristic: CREATOR

86



8717-214/514

Creator (Design Heuristic)
Problem: Who creates an A?

Solution: Assign class responsibility of creating instance of class A to B if 

● B aggregates A objects, B contains A objects, B records instances of A 
objects, B closely uses A objects, B has the initializing data for creating A 
objects (the more the better)

● Where there is a choice, prefer B aggregates or contains A objects

Key idea: Creator needs to keep reference anyway and will frequently use the 
created object

Process: Extract from domain model, interaction diagrams (key principles:  Low 
coupling and low representational gap)



8817-214/514

Creator: Example

● Who is responsible for creating Beetle objects?



8917-214/514

Creator: Example

● Who is responsible for creating Beetle objects?
○ Creator pattern suggests Tree

● Interaction diagram:



9017-214/514

Creator (GRASP)

● Problem: Assigning responsibilities for creating objects
○ Who creates Nodes in a Graph?
○ Who creates instances of SalesItem?
○ Who creates Children in a simulation?
○ Who creates Tiles in a Monopoly game?

■ AI? Player? Main class? Board? Meeple (Dog)?



9117-214/514

Creator: Discussion of Design Goals/Principles
Promotes low coupling, high cohesion
● Class responsible for creating objects it needs to reference
● Creating the objects themselves avoids depending on another class to create the 

object
Promotes evolvability (design for change)
● Object creation is hidden, can be replaced locally
Contra: sometimes objects must be created in special ways
● Complex initialization
● Instantiate different classes in different circumstances
● Then cohesion suggests putting creation in a different object: see design patterns 

such as builder, factory method



9217-214/514

Creator in Flash Cards Project

Who creates cards?

Who creates a card deck?

Who creates achievements?



9417-214/514

Other Design Heuristics
In future lectures:
● Minimize mutability 
● Minimize conceptual weight
● Favor composition/delegation over inheritance 
● Use indirection to reduce coupling
● …



9517-214/514

Object-level artifacts of this design process
● Object interaction diagrams add methods to objects

○ Can infer additional data responsibilities
○ Can infer additional data types and architectural patterns

● Object model aggregates important design decisions
○ Is an implementation guide



9617-214/514



9717-214/514 97

Considering the Library problem, which class should 
know which items have been borrowed by a user?

Which should compute late fees?



9817-214/514

Take-Home Messages

Design is driven by quality attributes

● Evolvability, separate development, reuse, performance, …

Design principles provide guidance on achieving qualities

● Low coupling, high cohesion, high correspondence, …

GRASP design heuristics promote these principles

● Creator, Expert, Controller, …


