
117-214/514

Principles of Software Construction:
Objects, Design, and Concurrency

Refactoring & Anti-patterns

Bogdan Vasilescu Jonathan Aldrich

217-214/514

Reading Quiz Canvas
Lecture 10 Quiz, password “patterns”

317-214/514

Midterm Review
● Thoughts/Opinions?

Some reflections:

● Is OO required for encapsulation?
● Github Actions can run tests, but tests can only show incorrect

code.
● Drawing control-flow diagrams for coverage helps
● Interaction diagrams: think about the actual code.

○ E.g., you can’t skip a class when returning a value.

417-214/514

Today: Patterns, anti-patterns, and refactoring
● Patterns: using and choosing between them.
● Antipatterns and refactoring

○ Sidequest on equals, toString, typecasting
● Several other useful patterns

517-214/514

Refactoring: Any functionality-preserving
rewrite or restructure.

617-214/514

Refactoring
● Any functionality-preserving restructuring

○ That is, the semantics of the program do not change, but the syntax does
○ Why might this be useful?

717-214/514

Refactoring
● Any functionality-preserving restructuring

○ That is, the semantics of the program do not change, but the syntax does
○ Why might this be useful?

■ What was the problem again? How would you fix it?

class Player {
Board board;
/* in code somewhere… */ this.getSquare(n);
Square getSquare(String name) { // named monopoly squares

for (Square s: board.getSquares())
if (s.getName().equals(name))

return s;
return null;

}}

817-214/514

Refactoring and Anti-Patterns
● Often, all the functionality is correct, but the organization is bad

○ High coupling, high redundancy, poor cohesion, god classes, …
● Refactoring is the principal tool to improve structure

○ Automated refactorings even guarantee correctness
○ A series of refactorings is usually enough to introduce design patterns

917-214/514

Refactoring and Anti-Patterns
● Often, all the functionality is correct, but the organization is bad

○ High coupling, high redundancy, poor cohesion, god classes, …
● Refactoring is the principal tool to improve structure

○ Automated refactorings even guarantee correctness
○ A series of refactorings is usually enough to introduce design patterns

● In an upcoming recitation, you’ll analyze such a system and
making primarily refactoring changes
○ “primarily”, because sometimes you do need to alter things slightly.

1017-214/514

Refactoring: IDE Support
● Many IDEs offer automated refactoring

○ Have you used any?

1117-214/514

Refactoring: IDE Support
● Many IDEs offer automated refactoring

○ Rename class, method, variable
○ Extract method/inline method
○ Extract interface
○ Move method (up, down, laterally)
○ Replace duplicates

1217-214/514

Anti-patterns
Anti-patterns are common forms of bad/no-design

● Can you think of examples?

1317-214/514

Anti-patterns
● We have talked a fair bit about bad design heuristics

○ High coupling, low cohesion, law of demeter, …
● You will see a much larger vocabulary of related issues

○ Commonly called code/design “smells”
○ Worthwhile reads:

■ A short overview: https://refactoring.guru/refactoring/smells
■ Wikipedia: https://en.wikipedia.org/wiki/Anti-pattern#Software_engineering
■ Book on the topic (no required reading): Refactoring for Software Design Smells:

Managing Technical Debt, Suryanarayana, Samarthyam and Sharma
● S.O. summary: https://stackoverflow.com/a/27567960

https://refactoring.guru/refactoring/smells
https://en.wikipedia.org/wiki/Anti-pattern#Software_engineering
https://stackoverflow.com/a/27567960

1417-214/514

Anti-patterns
Anti-patterns are common forms of bad/no-design

● Where do they come from?

1517-214/514

Anti-patterns
Anti-patterns are common forms of bad/no-design

● Where do they come from?
● Two common causes:

○ Design issues that manifest as bad/unmaintainable code
○ Poorly written/evolved code that leads to bad design

1617-214/514

Let’s See a Few Examples (in VSCode)
● Frogger

○ As a system grows, refactoring can help preserve cohesion
○ Refactoring: move method

● PersonRecords
○ Introducing new constructs in the face of growing complexity
○ Refactorings: extract methods, create class, rename

1717-214/514

While we’re on the subject of
objects and equality.

1817-214/514

The Java class hierarchy
● The root is Object (all non-primitives are objects)
● All classes except Object have one parent class

○ Specified with an extends clause
class Guitar extends Instrument { ... }

○ If extends clause omitted, defaults to Object
● A class is an instance of all its superclasses

Object
ToyInstrument

YoyoGuitar

1917-214/514

Methods common to all objects
● How do collections know how to test objects for equality?

○ Why did this work:
for(Person p: this.records) {

if(p.equals(newP)) {
…

● How do they know how to hash and print them?
● The relevant methods are all present on Object

○ equals - returns true if the two objects are “equal”
○ hashCode - returns an int that must be equal for equal objects, and is likely to

differ on unequal objects
○ toString - returns a printable string representation (default is gross: Type and

hashcode)

2017-214/514

Comparing values
x == y compares x and y “directly”:

primitive values: returns true if x and y have the same value
objects references: returns true if x and y refer to same object

x.equals(y) typically compares the values of the objects referred
to by x and y*

* Assuming it makes sense to do so for the objects in question

2117-214/514

True or false?

int i = 5;

int j = 5;

System.out.println(i == j);

2217-214/514

True or false?

int i = 5;

int j = 5;

System.out.println(i == j);

true

5j

i 5

2317-214/514

True or false?

int i = 5;

int j = 5;

System.out.println(i == j);

true

String s = "foo";

String t = s;

System.out.println(s == t);

5j

i 5

2417-214/514

True or false?

int i = 5;

int j = 5;

System.out.println(i == j);

true

String s = "foo";

String t = s;

System.out.println(s == t);

true

5j

i 5

"foo"

t
s

2517-214/514

True or false?

int i = 5;

int j = 5;

System.out.println(i == j);

true

String s = "foo";

String t = s;

System.out.println(s == t);

true

String u = "iPhone";
String v = u.toLowerCase();
String w = "iphone";
System.out.println(v == w);

5j

i 5

"foo"

t
s

2617-214/514

True or false?

int i = 5;

int j = 5;

System.out.println(i == j);

true

String s = "foo";

String t = s;

System.out.println(s == t);

true

String u = "iPhone";
String v = u.toLowerCase();
String w = "iphone";
System.out.println(v == w);

false (in practice)

5j

"foo"

t

v

u

w

"iPhone"
si 5

"iphone"

"iphone"
?

2717-214/514

The moral
● Always use .equals to compare object refs!

○ (Except for enums, which are special)

○ The == operator can fail silently and unpredictably when applied to
object references

○ Same goes for the != operator

2817-214/514

Overriding Object implementations
● No need to override equals and hashCode if you want identity

semantics
○ When in doubt, don't override them
○ It's easy to get it wrong
○ ‘record’ in Java gives you equals for free, neato!

● Nearly always override toString
○ println invokes it automatically
○ Why settle for ugly?

2917-214/514

Overriding toString is easy and beneficial
final class PhoneNumber {

private final short areaCode;
private final short prefix;
private final short lineNumber;
...

@Override public String toString() {
return String.format("(%03d) %03d-%04d",

areaCode, prefix, lineNumber);
}

}

Number jenny = ...;
System.out.println(jenny);
Prints: (707) 867-5309

3017-214/514

Typescript notes.
There is also a toString.

Equality is a funny thing: == (equality) vs === (strict equality)

● Typescript requires that you compare things that are the same type, so
this distinction is SLIGHTLY less important.

● Javascript lets you do 10 == ‘10’ // true

● Style guideline: always use ===, avoid surprises!

Equivalent behavior for, say, Collections, is a bit trickier (no off-the-shelf
equivalent of equals, but many ways to get it).

3117-214/514

Back to anti-patterns/refactoring

3217-214/514

Anti-patterns
● Kind of like the evil twins of design patterns
● Similar to the design hierarchy on the right, →

we want to think of both:
○ The design principles they run against
○ The low-level “heuristics” to detect them in code

■ Including many “code smells”

● As before, a pattern language helps
○ Many of these can be (re)paired with a correct pattern

Goals

Heuristics Patterns

Principles

3317-214/514

Anti-patterns
What defeats good principles?

● Bad encapsulation violates ______
● Bad modularization violates ______
● Bad abstraction violates ______
● Bad inheritance/hierarchy violates ______

3417-214/514

Anti-patterns
What defeats good principles?

● Bad encapsulation violates information hiding
● Bad modularization violates coupling
● Bad abstraction violates cohesion
● Bad inheritance/hierarchy violates representational gap

3517-214/514

Anti-patterns
What heuristics give it away?

● Bad encapsulation, violates information hiding
○ public fields should be private; interface leaks implementation details; lack of

interface
● Bad modularization, violates coupling

○ related methods in different places, or vice versa; very large interface; “god”
class

● Bad abstraction, violates cohesion
○ Not exposing relevant functionality; near-identical classes; too many

responsibilities
● Bad inheritance/hierarchy

○ Violating behavioral subtyping; unnecessary inheritance; very large
hierarchies (too wide or too deep)

3617-214/514

Code Smells
Not necessarily bad, but worthwhile indicators to check. If problematic,
these often point to design problems

● Long methods, large classes. Suggests bad abstraction
○ Tend to evolve over time; requires restructuring

● Inheritance despite low coupling (“refused bequest”)
○ Replace with delegation, or rebalance hierarchy

● ‘instanceof’ (or ‘switch’) instead of polymorphism
● Overly similar classes, hierarchies
● Any change requires lots of edits

○ High coupling across classes (“shotgun surgery”), or heavily entangled
implementation (intra-class)

3717-214/514

Code Smells
More code smells:
● Excessive, unused hierarchies
● Operations posing as classes
● Data classes

○ Tricky: not always bad, but ideally distinguish from regular classes (e.g.,
‘record’), and assign responsibilities if any exist (think: FlashCard did equality
checking)

● Heavy usage of one class’ data from another (“feature envy”,
“inappropriate intimacy”; poor coupling)

● Long chains of calls needed to do anything (law of demeter)
● A class that only delegates work

3817-214/514

Anti-patterns
● You can detect them from either side

○ Pick a design principle, look for violations
○ Identify “weird” code and figure out the design flaw

3917-214/514

Anti-patterns
● You can detect them from either side

○ Pick a design principle, look for violations
○ Identify “weird” code and figure out the design flaw

● All fairly easy to spot on their own
○ But multiple anti-patterns can be tangled up
○ How do you approach that?

4017-214/514

Refactoring and Anti-patterns
Identifying multiple design problems

● Make a list
○ Read the code, record anything that stands out

■ Pay attention to class names and their (apparent) interfaces
■ Make note of repetitive code (esp. across methods)

○ Draw a diagram, using a tool or by hand
■ Spot duplication, (lack of) interfaces, strange inheritance

○ This takes practice
● Don’t solve every problem

○ Many issues are orthogonal
■ Or, at least, you can improve things somewhat

○ When issues intersect, prioritize fixing interfaces

4117-214/514

Refactoring
So where is “refactoring” in all this?

● It’s what comes next.
● Most design issues can be resolved with one or more

functionality-preserving transformation(s)
○ Too many parameters? Merge relevant ones into object and/or replace

with method calls.
○ Two near-identical classes? Find the common interface

■ Then merge their signatures using renamings, parameterization
■ Then, delete one if useless, or extract a shared super-class, or compose both with

shared object

4217-214/514

More useful patterns! Remember
that long parameter list?

4317-214/514

Fluent APIs / Cascade Pattern

4417-214/514

Setting up Complex Objects
Long constructors, lots of optional parameters, long lists of
statements

client.getItem('user-table')
.setHashKey('userId', 'userA')
.setRangeKey('column', '@')
.execute()
.then(function(data) {

...

})

Option find = OptionBuilder
.withArgName("file")
.hasArg()
.withDescription("search...")
.create("find");

4517-214/514

Liquid APIs
Each method changes
state, then returns this

(Immutable version:
Return modified copy)

class OptBuilder {
private String argName = "";
private boolean hasArg = false;
...
OptBuilder withArgName(String n) {

this.argName = n;
return this;

}
OptBuilder hasArg() {

this.hasArg = true;
return this;

}
...
Option create() {

return new Option(argName,
hasArgs, ...)

}
}

4617-214/514

Python: Named parameters

parser = argparse.ArgumentParser(description='Process some integers.')
parser.add_argument('integers', metavar='N', type=int, nargs='+',

help='an integer for the accumulator')
parser.add_argument('--sum', dest='accumulate', action='store_const',

const=sum, default=max,

help='sum the integers (default: find the max)')

4717-214/514

JavaScript: JSON Objects
var argv = require('yargs/yargs')(process.argv.slice(2))

.option('size', {

alias: 's',

describe: 'choose a size',

choices: ['xs', 's', 'm', 'l', 'xl']

})

.argv

Notice the combination of cascading and complex JSON parameters

4817-214/514

Under the Hood: Builder Pattern
When creating many variations of a complex object:

● Assign assembling work to a Builder object
○ When cascading, the builder returns itself,

modified on every update
○ Offers a method that generates the

resulting object
● Direct clients to only use the Builder

○ E.g., hide the constructor

https://refactoring.guru/design-patterns/builder

4917-214/514

Fluent APIs: Discussion and Tradeoffs
Problem: Complex initialization and configuration

Advantages:

● Fairly readable code
● Can check individual arguments
● Avoid untyped complex arguments

Disadvantages:

● Runtime error checking of constraints and mandatory arguments
● Extra complexity in implementation
● Not always obvious how to terminate
● Possibly harder to debug

5017-214/514

Iterator Pattern & Streams
(what’s up with for(Person p : this.records)?)

5117-214/514

Traversing a collection
● Since Java 1.0:

Vector arguments = …;
for (int i = 0; i < arguments.size(); ++i) {

System.out.println(arguments.get(i));
}

● Java 1.5: enhanced for loop
List<String> arguments = …;
for (String s : arguments) {
System.out.println(s);

}

● Works for every implementation of Iterable
public interface Iterable<E> {
public Iterator<E> iterator();

}
public interface Iterator<E> {
boolean hasNext();
E next();
void remove();

}

● In JavaScript (ES6)
let arguments = …
for (const s of arguments) {

console.log(s)
}

● Works for every implementation with a “magic”
function @@Iterator (written as [Symbol.iterator])
providing an iterator (interface simplified):
interface Iterator<T> {

next(): IteratorResult<T>;
}

interface IteratorReturnResult<T> {
done: boolean;
value: T?;

}

5217-214/514

The Iterator Idea
Iterate over elements in arbitrary data structures (lists, sets, trees)
without having to know internals

Typical interface:

interface Iterator<E> {

boolean hasNext();

E next();

}

(in Java also remove)

5317-214/514

Using an iterator
Can be used explicitly

List<String> arguments = …;

for (Iterator<String> it = arguments.iterator(); it.hasNext();) {

String s = it.next();

System.out.println(s);

}

Often used with magic syntax:
for (String s : arguments)
for (const s of arguments)

5417-214/514

Java: Getting an Iterator
public interface Collection<E> extends Iterable<E> {
boolean add(E e);
boolean addAll(Collection<? extends E> c);
boolean remove(Object e);
boolean removeAll(Collection<?> c);
boolean retainAll(Collection<?> c);
boolean contains(Object e);
boolean containsAll(Collection<?> c);
void clear();
int size();
boolean isEmpty();
Iterator<E> iterator();
Object[] toArray()
<T> T[] toArray(T[] a);
…

}

Defines an interface for creating
an Iterator,
but allows Collection
implementation to decide
which Iterator to create.

5517-214/514

Iterators for everything
public class Pair<E> {
private final E first, second;
public Pair(E f, E s) { first = f; second = s; }

}

Pair<String> pair = new Pair<String>("foo", "bar");
for (String s : pair) { … }

5617-214/514

public class Pair<E> implements Iterable<E> {
private final E first, second;
public Pair(E f, E s) { first = f; second = s; }
public Iterator<E> iterator() {
return new PairIterator();

}
private class PairIterator implements Iterator<E> {
private boolean seenFirst = false, seenSecond = false;
public boolean hasNext() { return !seenSecond; }
public E next() {
if (!seenFirst) { seenFirst = true; return first; }
if (!seenSecond) { seenSecond = true; return second; }
throw new NoSuchElementException();

}
public void remove() {
throw new UnsupportedOperationException();

}
}

}

An Iterator implementation for Pairs

Pair<String> pair = new Pair<String>("foo", "bar");
for (String s : pair) { … }

5717-214/514

Iterator design pattern
● Problem: Clients need uniform strategy to access all elements

in a container, independent of the container type
○ Order is unspecified, but access every element once

● Solution: A strategy pattern for iteration
● Consequences:

○ Hides internal implementation of underlying container
○ Easy to change container type
○ Facilitates communication between parts of the program

5917-214/514

Streams
Stream ~ Iterator – a sequence of objects

● Typically provide operations to produce new stream from old
stream (map, flatMap, filter) and operations on all elements
(fold, sum) – using higher-order functions/strategy
○ Often provide efficient/parallel implementations (subtype polymorphism)

● Built-in in Java since Java 8; basics in Node libraries in
JavaScript

6017-214/514

List<String>results = stream.map(Object::toString)
.filter(s -> pattern.matcher(s).matches())
.collect(Collectors.toList());

int sum = numbers.parallelStream().reduce(0, Integer::sum);

Stream(people).filter({age: 23}).flatMap("children").map("firstName")
.distinct().filter(/a.*/i).join(", ");

6117-214/514

Summary
● Practice recognizing anti-patterns, applying design patterns

○ Read lots of code, think about alternatives
● Learn a vocabulary of anti-patterns

○ Think about both (what goes against) design principles and lower-level
heuristics

○ Practice, practice, practice

	Principles of Software Construction: Objects, Design, and Concurrency��Refactoring & Anti-patterns��Bogdan Vasilescu 	Jonathan Aldrich
	Reading Quiz Canvas
	Midterm Review
	Today: Patterns, anti-patterns, and refactoring
	Refactoring: Any functionality-preserving rewrite or restructure.
	Refactoring
	Refactoring
	Refactoring and Anti-Patterns
	Refactoring and Anti-Patterns
	Refactoring: IDE Support
	Refactoring: IDE Support
	Anti-patterns
	Anti-patterns
	Anti-patterns
	Anti-patterns
	Let’s See a Few Examples (in VSCode)
	While we’re on the subject of objects and equality.
	The Java class hierarchy
	Methods common to all objects
	Comparing values
	True or false?
	True or false?
	True or false?
	True or false?
	True or false?
	True or false?
	The moral
	Overriding Object implementations
	Overriding toString is easy and beneficial
	Typescript notes.
	Back to anti-patterns/refactoring
	Anti-patterns
	Anti-patterns
	Anti-patterns
	Anti-patterns
	Code Smells
	Code Smells
	Anti-patterns
	Anti-patterns
	Refactoring and Anti-patterns
	Refactoring
	More useful patterns! Remember that long parameter list?
	Fluent APIs / Cascade Pattern
	Setting up Complex Objects
	Liquid APIs
	Python: Named parameters
	JavaScript: JSON Objects
	Under the Hood: Builder Pattern
	Fluent APIs: Discussion and Tradeoffs
	Iterator Pattern & Streams
(what’s up with for(Person p : this.records)?)
	Traversing a collection
	The Iterator Idea
	Using an iterator
	Java: Getting an Iterator
	Iterators for everything
	An Iterator implementation for Pairs
	Iterator design pattern
	Streams
	Slide Number 60
	Summary

