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Reading Quiz Canvas
Lecture 10 Quiz, password “patterns”
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Midterm Review
● Thoughts/Opinions?

Some reflections:

● Is OO required for encapsulation?
● Github Actions can run tests, but tests can only show incorrect

code.
● Drawing control-flow diagrams for coverage helps
● Interaction diagrams: think about the actual code.

○ E.g., you can’t skip a class when returning a value.
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Today: Patterns, anti-patterns, and refactoring
● Patterns: using and choosing between them.
● Antipatterns and refactoring

○ Sidequest on equals, toString, typecasting
● Several other useful patterns
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Refactoring: Any functionality-preserving 
rewrite or restructure.
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Refactoring
● Any functionality-preserving restructuring

○ That is, the semantics of the program do not change, but the syntax does
○ Why might this be useful?
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Refactoring
● Any functionality-preserving restructuring

○ That is, the semantics of the program do not change, but the syntax does
○ Why might this be useful?

■ What was the problem again? How would you fix it?

class Player {
Board board;
/* in code somewhere… */ this.getSquare(n);
Square getSquare(String name) { // named monopoly squares

for (Square s: board.getSquares())
if (s.getName().equals(name))

return s;
return null;

}}
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Refactoring and Anti-Patterns
● Often, all the functionality is correct, but the organization is bad

○ High coupling, high redundancy, poor cohesion, god classes, …
● Refactoring is the principal tool to improve structure

○ Automated refactorings even guarantee correctness
○ A series of refactorings is usually enough to introduce design patterns
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Refactoring and Anti-Patterns
● Often, all the functionality is correct, but the organization is bad

○ High coupling, high redundancy, poor cohesion, god classes, …
● Refactoring is the principal tool to improve structure

○ Automated refactorings even guarantee correctness
○ A series of refactorings is usually enough to introduce design patterns

● In an upcoming recitation, you’ll analyze such a system and 
making primarily refactoring changes
○ “primarily”, because sometimes you do need to alter things slightly.
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Refactoring: IDE Support
● Many IDEs offer automated refactoring

○ Have you used any?
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Refactoring: IDE Support
● Many IDEs offer automated refactoring

○ Rename class, method, variable
○ Extract method/inline method
○ Extract interface
○ Move method (up, down, laterally)
○ Replace duplicates
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Anti-patterns
Anti-patterns are common forms of bad/no-design

● Can you think of examples?
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Anti-patterns
● We have talked a fair bit about bad design heuristics

○ High coupling, low cohesion, law of demeter, …
● You will see a much larger vocabulary of related issues

○ Commonly called code/design “smells”
○ Worthwhile reads:

■ A short overview: https://refactoring.guru/refactoring/smells
■ Wikipedia: https://en.wikipedia.org/wiki/Anti-pattern#Software_engineering
■ Book on the topic (no required reading): Refactoring for Software Design Smells: 

Managing Technical Debt, Suryanarayana, Samarthyam and Sharma
● S.O. summary: https://stackoverflow.com/a/27567960

https://refactoring.guru/refactoring/smells
https://en.wikipedia.org/wiki/Anti-pattern#Software_engineering
https://stackoverflow.com/a/27567960
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Anti-patterns
Anti-patterns are common forms of bad/no-design

● Where do they come from?
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Anti-patterns
Anti-patterns are common forms of bad/no-design

● Where do they come from?
● Two common causes:

○ Design issues that manifest as bad/unmaintainable code
○ Poorly written/evolved code that leads to bad design
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Let’s See a Few Examples (in VSCode)
● Frogger

○ As a system grows, refactoring can help preserve cohesion
○ Refactoring: move method

● PersonRecords
○ Introducing new constructs in the face of growing complexity
○ Refactorings: extract methods, create class, rename
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While we’re on the subject of 
objects and equality.



1817-214/514

The Java class hierarchy
● The root is Object (all non-primitives are objects)
● All classes except Object have one parent class

○ Specified with an extends clause
class Guitar extends Instrument { ... }

○ If extends clause omitted, defaults to Object
● A class is an instance of all its superclasses

Object
ToyInstrument

YoyoGuitar
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Methods common to all objects
● How do collections know how to test objects for equality?

○ Why did this work:
for(Person p: this.records) {

if(p.equals(newP)) {
…

● How do they know how to hash and print them?
● The relevant methods are all present on Object

○ equals - returns true if the two objects are “equal”
○ hashCode - returns an int that must be equal for equal objects, and is likely to 

differ on unequal objects
○ toString - returns a printable string representation (default is gross: Type and 

hashcode)
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Comparing values
x == y compares x and y “directly”:

primitive values: returns true if x and y have the same value
objects references: returns true if x and y refer to same object

x.equals(y) typically compares the values of the objects referred 
to by x and y*

* Assuming it makes sense to do so for the objects in question
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True or false?

int i = 5;

int j = 5;

System.out.println(i == j);

---------------------------



2217-214/514

True or false?

int i = 5;

int j = 5;

System.out.println(i == j);

---------------------------

true

5j

i 5
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True or false?

int i = 5;

int j = 5;

System.out.println(i == j);

---------------------------

true

String s = "foo";

String t = s;

System.out.println(s == t);

---------------------------

5j

i 5
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True or false?

int i = 5;

int j = 5;

System.out.println(i == j);

---------------------------

true

String s = "foo";

String t = s;

System.out.println(s == t);

---------------------------

true

5j

i 5

"foo"

t
s
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True or false?

int i = 5;

int j = 5;

System.out.println(i == j);

---------------------------

true

String s = "foo";

String t = s;

System.out.println(s == t);

---------------------------

true

String u = "iPhone";
String v = u.toLowerCase();
String w = "iphone";
System.out.println(v == w);
---------------------------

5j

i 5

"foo"

t
s
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True or false?

int i = 5;

int j = 5;

System.out.println(i == j);

---------------------------

true

String s = "foo";

String t = s;

System.out.println(s == t);

---------------------------

true

String u = "iPhone";
String v = u.toLowerCase();
String w = "iphone";
System.out.println(v == w);
---------------------------

false (in practice)

5j

"foo"

t

v

u

w

"iPhone"
si 5

"iphone"

"iphone"
?
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The moral
● Always use .equals to compare object refs!

○ (Except for enums, which are special)

○ The == operator can fail silently and unpredictably when applied to 
object references

○ Same goes for the != operator
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Overriding Object implementations
● No need to override equals and hashCode if you want identity 

semantics
○ When in doubt, don't override them
○ It's easy to get it wrong
○ ‘record’ in Java gives you equals for free, neato!

● Nearly always override toString
○ println invokes it automatically
○ Why settle for ugly?
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Overriding toString is easy and beneficial
final class PhoneNumber {

private final short areaCode;
private final short prefix;
private final short lineNumber;
...

@Override public String toString() {
return String.format("(%03d) %03d-%04d",

areaCode, prefix, lineNumber);
}

}

Number jenny = ...;
System.out.println(jenny);
Prints: (707) 867-5309
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Typescript notes.
There is also a toString.

Equality is a funny thing: == (equality) vs === (strict equality)

● Typescript requires that you compare things that are the same type, so 
this distinction is SLIGHTLY less important.

● Javascript lets you do 10 == ‘10’ // true

● Style guideline: always use ===, avoid surprises!

Equivalent behavior for, say, Collections, is a bit trickier (no off-the-shelf 
equivalent of equals, but many ways to get it). 
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Back to anti-patterns/refactoring
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Anti-patterns
● Kind of like the evil twins of design patterns
● Similar to the design hierarchy on the right,   →

we want to think of both:
○ The design principles they run against
○ The low-level “heuristics” to detect them in code

■ Including many “code smells”

● As before, a pattern language helps
○ Many of these can be (re)paired with a correct pattern

Goals

Heuristics Patterns

Principles



3317-214/514

Anti-patterns
What defeats good principles?

● Bad encapsulation violates ______
● Bad modularization violates ______
● Bad abstraction violates ______
● Bad inheritance/hierarchy violates ______
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Anti-patterns
What defeats good principles?

● Bad encapsulation violates information hiding
● Bad modularization violates coupling
● Bad abstraction violates cohesion
● Bad inheritance/hierarchy violates representational gap
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Anti-patterns
What heuristics give it away?

● Bad encapsulation, violates information hiding
○ public fields should be private; interface leaks implementation details; lack of 

interface
● Bad modularization, violates coupling

○ related methods in different places, or vice versa; very large interface; “god” 
class

● Bad abstraction, violates cohesion
○ Not exposing relevant functionality; near-identical classes; too many 

responsibilities
● Bad inheritance/hierarchy

○ Violating behavioral subtyping; unnecessary inheritance; very large 
hierarchies (too wide or too deep)
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Code Smells
Not necessarily bad, but worthwhile indicators to check. If problematic, 
these often point to design problems

● Long methods, large classes. Suggests bad abstraction
○ Tend to evolve over time; requires restructuring

● Inheritance despite low coupling (“refused bequest”)
○ Replace with delegation, or rebalance hierarchy

● ‘instanceof’ (or ‘switch’) instead of polymorphism
● Overly similar classes, hierarchies
● Any change requires lots of edits

○ High coupling across classes (“shotgun surgery”), or heavily entangled 
implementation (intra-class)
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Code Smells
More code smells:
● Excessive, unused hierarchies
● Operations posing as classes
● Data classes

○ Tricky: not always bad, but ideally distinguish from regular classes (e.g., 
‘record’), and assign responsibilities if any exist (think: FlashCard did equality 
checking)

● Heavy usage of one class’ data from another (“feature envy”, 
“inappropriate intimacy”; poor coupling)

● Long chains of calls needed to do anything (law of demeter)
● A class that only delegates work
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Anti-patterns
● You can detect them from either side

○ Pick a design principle, look for violations
○ Identify “weird” code and figure out the design flaw
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Anti-patterns
● You can detect them from either side

○ Pick a design principle, look for violations
○ Identify “weird” code and figure out the design flaw

● All fairly easy to spot on their own
○ But multiple anti-patterns can be tangled up
○ How do you approach that?
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Refactoring and Anti-patterns
Identifying multiple design problems

● Make a list
○ Read the code, record anything that stands out

■ Pay attention to class names and their (apparent) interfaces
■ Make note of repetitive code (esp. across methods)

○ Draw a diagram, using a tool or by hand
■ Spot duplication, (lack of) interfaces, strange inheritance

○ This takes practice
● Don’t solve every problem

○ Many issues are orthogonal
■ Or, at least, you can improve things somewhat

○ When issues intersect, prioritize fixing interfaces
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Refactoring
So where is “refactoring” in all this?

● It’s what comes next.
● Most design issues can be resolved with one or more 

functionality-preserving transformation(s)
○ Too many parameters? Merge relevant ones into object and/or replace 

with method calls.
○ Two near-identical classes? Find the common interface

■ Then merge their signatures using renamings, parameterization
■ Then, delete one if useless, or extract a shared super-class, or compose both with 

shared object
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More useful patterns!  Remember 
that long parameter list?
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Fluent APIs / Cascade Pattern
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Setting up Complex Objects
Long constructors, lots of optional parameters, long lists of 
statements

client.getItem('user-table')
.setHashKey('userId', 'userA')
.setRangeKey('column', '@')
.execute()
.then(function(data) {

...

})

Option find = OptionBuilder
.withArgName("file")
.hasArg()
.withDescription("search..." )
.create("find");
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Liquid APIs
Each method changes 
state, then returns this

(Immutable version: 
Return modified copy)

class OptBuilder {
private String argName = "";
private boolean hasArg = false;
...
OptBuilder withArgName(String n) {

this.argName = n;
return this;

}
OptBuilder hasArg() {

this.hasArg = true;
return this;

}
...
Option create() {

return new Option(argName,
hasArgs, ...)

}
}
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Python: Named parameters

parser = argparse.ArgumentParser(description='Process some integers.')
parser.add_argument('integers', metavar='N', type=int, nargs='+',

help='an integer for the accumulator')
parser.add_argument('--sum', dest='accumulate', action='store_const',

const=sum, default=max,

help='sum the integers (default: find the max)')
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JavaScript: JSON Objects
var argv = require('yargs/yargs')(process.argv.slice(2))

.option('size', {

alias: 's',

describe: 'choose a size',

choices: ['xs', 's', 'm', 'l', 'xl']

})

.argv

Notice the combination of cascading and complex JSON parameters
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Under the Hood: Builder Pattern
When creating many variations of a complex object:

● Assign assembling work to a Builder object
○ When cascading, the builder returns itself,

modified on every update
○ Offers a method that generates the

resulting object
● Direct clients to only use the Builder

○ E.g., hide the constructor

https://refactoring.guru/design-patterns/builder
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Fluent APIs: Discussion and Tradeoffs
Problem: Complex initialization and configuration

Advantages: 

● Fairly readable code
● Can check individual arguments
● Avoid untyped complex arguments

Disadvantages:

● Runtime error checking of constraints and mandatory arguments
● Extra complexity in implementation
● Not always obvious how to terminate
● Possibly harder to debug
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Iterator Pattern & Streams
(what’s up with for(Person p : this.records)?)
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Traversing a collection
● Since Java 1.0:

Vector arguments = …;
for (int i = 0; i < arguments.size(); ++i) {

System.out.println(arguments.get(i));
}

● Java 1.5:  enhanced for loop
List<String> arguments = …;
for (String s : arguments) {
System.out.println(s);

}

● Works for every implementation of Iterable
public interface Iterable<E> {
public Iterator<E> iterator();

}
public interface Iterator<E> {
boolean hasNext();
E next();
void remove();

}

● In JavaScript (ES6)
let arguments = …
for (const s of arguments) {

console.log(s)
}

● Works for every implementation with a “magic”
function @@Iterator (written as [Symbol.iterator])
providing an iterator (interface simplified):
interface Iterator<T> {

next(): IteratorResult<T>;
}

interface IteratorReturnResult<T> {
done: boolean;
value: T?;

}
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The Iterator Idea
Iterate over elements in arbitrary data structures (lists, sets, trees) 
without having to know internals

Typical interface:

interface Iterator<E> {

boolean hasNext();

E next();

}

(in Java also remove)
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Using an iterator
Can be used explicitly

List<String> arguments = …;

for (Iterator<String> it = arguments.iterator(); it.hasNext(); ) {

String s = it.next();

System.out.println(s);

}

Often used with magic syntax: 
for (String s : arguments)
for (const s of arguments)
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Java: Getting an Iterator
public interface Collection<E> extends Iterable<E> {
boolean add(E e);
boolean addAll(Collection<? extends E> c);
boolean remove(Object e);
boolean removeAll(Collection<?> c);
boolean retainAll(Collection<?> c);
boolean contains(Object e);
boolean containsAll(Collection<?> c);
void clear();
int size();
boolean isEmpty();
Iterator<E> iterator();
Object[] toArray()
<T> T[] toArray(T[] a);
…

}

Defines an interface for creating 
an Iterator,
but allows Collection 
implementation to decide
which Iterator to create.
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Iterators for everything
public class Pair<E> {
private final E first, second;
public Pair(E f, E s) { first = f; second = s; }

}

Pair<String> pair = new Pair<String>("foo", "bar");
for (String s : pair) { … }
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public class Pair<E> implements Iterable<E> {
private final E first, second;
public Pair(E f, E s) { first = f; second = s; }
public Iterator<E> iterator() {
return new PairIterator();

}
private class PairIterator implements Iterator<E> {
private boolean seenFirst = false, seenSecond = false;
public boolean hasNext() { return !seenSecond; }
public E next() {
if (!seenFirst) { seenFirst = true; return first; }
if (!seenSecond) { seenSecond = true; return second; }
throw new NoSuchElementException();

}
public void remove() {
throw new UnsupportedOperationException();

}
}

}

An Iterator implementation for Pairs

Pair<String> pair = new Pair<String>("foo", "bar");
for (String s : pair) { … }
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Iterator design pattern
● Problem:  Clients need uniform strategy to access all elements 

in a container, independent of the container type
○ Order is unspecified, but access every element once

● Solution:  A strategy pattern for iteration 
● Consequences:

○ Hides internal implementation of underlying container
○ Easy to change container type
○ Facilitates communication between parts of the program
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Streams
Stream ~ Iterator – a sequence of objects

● Typically provide operations to produce new stream from old 
stream (map, flatMap, filter) and operations on all elements 
(fold, sum) – using higher-order functions/strategy
○ Often provide efficient/parallel implementations (subtype polymorphism)

● Built-in in Java since Java 8; basics in Node libraries in 
JavaScript
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List<String>results = stream.map(Object::toString)
.filter(s -> pattern.matcher(s).matches())
.collect(Collectors.toList());

int sum = numbers.parallelStream().reduce(0, Integer::sum);

Stream(people).filter({age: 23}).flatMap("children").map("firstName")
.distinct().filter(/a.*/i).join(", ");
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Summary
● Practice recognizing anti-patterns, applying design patterns

○ Read lots of code, think about alternatives
● Learn a vocabulary of anti-patterns

○ Think about both (what goes against) design principles and lower-level 
heuristics

○ Practice, practice, practice
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