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We have done: a backend with no explicit 
interaction
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Scanner input = new Scanner(System.in);
while (questions.hasNext()) {
   Question q = question.next();
   System.out.println(q.toString());
   String answer = input.nextLine();
   q.respond(answer);
}

Interaction with CLI
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How do you wait?

while (true) {
if (isKeyDown(“Alt+Q”)

break;
if (isKeyDown(“F1”)

openHelp();
if (isMouseDown(10 …)

startMovingWindow();
...

}



517-214/514

How do you GUI? Multiplayer?

https://www.cloudsavvyit.com/2586/how-to-build-your-multiplayer-games-server-architecture/

while (true) {
if (player === “player1”) {

hasWon = play(“player1”);
if (hasWon) break;
player = “player2”;

} else (player === “player2”) {
hasWon = play(“player2”)
if (hasWon) break;
player = “player1”;

}
}
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Potential issue: Blocking interactions with users

blocking execution
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Interactions with users through events
● Do not block waiting for user response

● Instead, react to user events
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Event-based programming

Style of programming where control-flow is driven by (usually 
external) events

public void performAction(ActionEvent e) {
    List<String> lst = Arrays.asList(bar);
    foo.peek(42)
}

public void performAction(ActionEvent e) {
    bigBloatedPowerPointFunction(e);
    withANameSoLongIMadeItTwoMethods(e);
    yesIKnowJavaDoesntWorkLikeThat(e);
}

public void performAction(ActionEvent e) {
    List<String> lst = Arrays.asList(bar);
    foo.peek(40)
}



917-214/514

Event-based GUIs
//static public void main…
JFrame window = …
window.setDefaultCloseOperation(
      WindowConstants.EXIT_ON_CLOSE);
window.setVisible(true);

//on add-button click:
String email = emailField.getText();
emaillist.add(email);

//on remove-button click:
int pos = emaillist.getSelectedItem();
if (pos>=0) emaillist.delete(pos);
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So, what about a frontend?
…in fact, let’s start with basically just a 
frontend without an explicit backend.

(and we’ll come back to that backend later.)
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How To Make 
This Happen?
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GUI Design: what do we want?
● Nested Elements
● Style Vocabulary
● Interactivity
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GUI Design: what do we want?
● Nested Elements

○ HTML
● Style Vocabulary

○ CSS
● Interactivity

○ JavaScript
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Anatomy of an HTML Page
Predefined elements Root/‘document’*

Header

Body

Technically, ‘document’ is the root with HTML as its only child
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Anatomy of an HTML Page
Nested elements
● Sizing
● Attributes
● Text
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A few Tags
● <html>

○ The root of the visible page
● <head>

○ Stores metadata, imports
● <p>

○ A paragraph
● <button>

○ Attributes include `name`, `type`, `value`
● <div>

○ Generic section -- very useful
● <table>

○ The obvious
● Many more; dig into a real page!

https://www.w3schools.com/tags/tag_button.asp
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Anatomy of an HTML Page
Nested elements
● Sizing
● Attributes
● Text

You can write these out 
directly, or compose and 
modify them 
programmatically!
● Or, both! (we’ll see 

in a minute). 
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Anatomy of a GUI/HTML Page
GUIs are typically trees
● Nested elements, recursively
● Some fixed positions (html, body)

How to implement this?

https://en.wikipedia.org/wiki/Document_Object_Model

JFrame

JPanel

JTextField

…
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The composite pattern
● Problem: Collection of objects has behavior similar to the 

individual objects
● Solution: Have collection of objects and individual objects 

implement the same interface
● Consequences:

○ Client code can treat collection as if it were an individual object
○ Easier to add new object types
○ Design might become too general, interface insufficiently useful
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Composite
● Elements can contain elements

○ With restrictions
○ Need to deal with style, interaction

● In JS: HTMLElement
○ With child-classes e.g. HTMLDivElement, HTMLBodyElement
○ Navigation:

■ getElement*: locate by tag name, id, class, etc.
■ next/prev(Element)Sibling
■ childNodes, parent
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Let’s start with a very simple example.
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Style: not only leaf-nodes have appearance.
Note the column, here. 
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Style
Tags come with inherent & customizable style

● Inherent:
○ <div> is a `block` (full-width, with margin)
○ <span> is in-line
○ <h1> is large

● Customizable: add and override styles
○ Change font-styles, margins, widths
○ Modify groups of elements
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Style: CSS
● Cascading Style Sheets

○ Reuse: styling rules for tags, classes, types
○ Reuse: not just at the leafs!

<span style="font-weight:bold">Hello again!</span>

vs.

<style type="text/css">
            span {
                font-family: arial
            }

</style>
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Style: CSS
● Cascading Style Sheets

○ Reuse: styling rules for tags, classes, types
○ Reuse: not just at the leafs!

● What if there are conflicts?
<div style="font-weight:normal">
  <span style="font-weight:bold">Hello again!</span>
</div>

○ Innermost element wins*

*Technically, there’s a whole scoring system
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Style: CSS
What is happening here?
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Style: CSS
● Cascading Style Sheets

○ Reuse: styling rules for tags, classes, types
○ Reuse: not just at the leafs!

● What if there are no conflicts?
<div style="font-family:arial">
  <span style="font-weight:bold">Hello again!</span>
</div>

○ How would you implement this?
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Decorator
What is happening here?

● To compute the style of an element:
○ Apply its tag-default style
○ Wrap in added style rules (tag-specific or general)

■ Text: font-family, weight, etc.
○ Inherit parents’ style

■ Conflicts lead to overrides

● Makes themes really powerful
Technically, HTML is streamed top-to-bottom; CSS works bottom-up
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CSS: classes
Let’s not repeat custom style

● Use any nr. of class label(s)
● Class styles get added
● Facilitates reuse
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Interactivity: A GUI is more than just a document
● How do we make it “work”?
● This is a two-part answer: (1) we can attach scripts to elements, 

but (2) …how? [Design question!]
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That’s extremely simple, let’s try something 
slightly more complicated.

Consider: TicTacToe
(note that this is NOT the same code you’ll see in recitation next week, 

but the game itself will look basically the same.)
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DECOUPLING THE GUI
A design challenge
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GUI design challenge
● Consider TicTacToe or Blackjack game, implemented by Game class:

○ Player clicks a space, expects it to update; clicks “hit” and expects a new card

○ When should the GUI update the screen?

play(     )
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A GUI design challenge, extended

● What if we want to show the points won?
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Game updates GUI?
● What if points change for reasons not started by the GUI?

(or computations take a long time and should not block)



3617-214/514

Game updates GUI?
● Let the Game tell the GUI that something happened
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Game updates GUI?
● Let the Game tell the GUI that something happened

Problem:  This couples the World to the GUI implementation.
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Core implementation vs. GUI
● Core implementation:  Application logic

○ Computing some result, updating data
● GUI

○ Graphical representation of data
○ Source of user interactions

● Design guideline: Avoid coupling the GUI with core application
○ Multiple UIs with single core implementation
○ Test core without UI
○ Design for change, design for reuse, design for division of labor; low 

coupling, high cohesion
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Decoupling with the Observer pattern
● Let the Game tell all interested components about updates
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Recall the Observer

https://refactoring.guru/design-patterns/observer
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Observer Pattern
● Manages publishers and subscribers

○ Here, button publishes its ‘click’ events
○ `buttonClicked` subscribes to 1+ updates

● Flexibility and Reuse
○ Multiple observers per element
○ Shared observers across elements
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Actions: JavaScript
● Key: event listeners/the Observer Pattern
● (frontend) JS is highly event-driven

○ Respond to window `onLoad` event, content loads (e.g., ads)
○ Respond to clicks, moves

● This is what happened with our simple button!
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What does this look like in TicTacToe?
Let’s go look!

Important note! just because TTT is implemented in a static web 
page all in the frontend, does not mean that the GUI and the Game 
are hopelessly entangled or that we’re violating the design principle 
to keep them separate!
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An event-based GUI with a GUI framework

● Setup phase
○ Describe how the GUI window should look
○ Register observers to handle events

● Execution
○ Framework gets events from OS, processes 

events
■ Your code is mostly just event handlers

GUI
Framework

OS

Application

get
event

drawing
commands

next
event

event—
mouse, key,
redraw, … 
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Static Web Pages
● Delivered as-is, final

○ Consistent, often fast
○ Cheap, only storage needed

● “Static” a tad murky with JavaScript
○ We can still have buttons, interaction
○ But it won’t “go” anywhere -- the server is mum

https://developer.mozilla.org/en-US/docs/Learn/Server-side/First_steps/Client-Server_overview#anatomy_of_a_dynamic_request
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Static Web Pages
● Delivered as-is, final

○ Consistent, often fast
○ Cheap, only storage needed

● Can be maintained with static website generators
○ Or you’ll be doing a lot of copying
○ Coupled with themes => rapid development, deployment
○ Quite popular, e.g. hosting on GH Pages
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Static Web Pages
● But …

○ No data from elsewhere (where does your email come from?)
○ No persistence (at least, not obviously)
○ No customizability (e.g., accounts)
○ No communication (payment, chat, etc)
○ Realistically, no intensive jobs
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Dynamic Web Pages
● Client/Server

○ Someone needs to answer the website’s calls
■ Doesn’t need to be us!

○ Host a webserver
■ Serves pages, handles calls
■ For static pages too!

● We’ll show you more in recitation tomorrow (Wednesday)
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Web Servers
Dynamic sites can do more work 

https://developer.mozilla.org/en-US/docs/Learn/Server-side/First_steps/Client-Server_overview#anatomy_of_a_dynamic_request
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Web Servers
● Communicate via HyperText Transfer Protocol

○ URL (the address)
○ Method:

■ GET: retrieve data. Parameters in URL `...?key=value&key2=value2` and message body
■ POST: store/create data. Parameters in request body
■ Several more, rarely used

○ Responses:
■ Status Code: 

● We probably all know 404. 
● 2XX family is OK.

■ And possible data. E.g., entire HTML page.
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Web Servers
● Communicate via HyperText Transfer Protocol

○ URL (the address)
○ Method:

■ GET: retrieve data. Parameters in URL `...?key=value&key2=value2` and message body
■ POST: store/create data. Parameters in request body
■ Several more, rarely used

○ Responses:
■ Status Code. We all know 404. 2XX family is OK.
■ And possible data. E.g., entire HTML page.

○ POST makes no sense for static sites!
○ As do GETs with parameters
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We can implement TicTacToe this way, too! 

Let’s go see. 

(network tab of inspect will show us messages!)
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But notice we’ve begun to more explicitly 
separate out the HTML from the logic.
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An architectural pattern: 
Model-View-Controller (MVC)

Manage inputs from user: 
mouse, keyboard, menu, etc.

Manage display of 
information on the screen

Manage data related to the 
application domain
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Model-View-Controller (MVC)
Passive model

Active model

http://msdn.microsoft.com/en-us/library/ff649643.aspx
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Model View Controller Dependencies
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MVC is ubiquitous
Separates:

● Model: data organization
○ Interface to the database

● View: visual representation (typically HTML)
○ Often called templates in web-dev; “view” is a bit overloaded

● Controller: intermediary between client and model/view
○ Typically asks model for data, view for HTML
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How to Web App?
● Let’s avoid generating HTML from scratch on every call

○ Map requests to handler code
■ Fetch data, process

○ Generate and return HTML
● Historically: PHP

○ Modifies HTML pages server-side on request; strong ties to SQL
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Summary
● GUIs are full of design patterns

○ Helpful for reuse, delegation in complex environments
● Covered the basics of HTML, CSS, JS, servers

○ Needed for dynamic web pages
○ Decouple the GUI; architect your backend
○ A lot more to learn (security, performance, privacy), but this will do

● You will build this
○ At a small scale


