
117-214/514

Principles of Software Construction:
Objects, Design, and Concurrency

Introduction to GUIs

Jonathan Aldrich Bogdan Vasilescu

217-214/514

We have done: a backend with no explicit
interaction

317-214/514

Scanner input = new Scanner(System.in);
while (questions.hasNext()) {
 Question q = question.next();
 System.out.println(q.toString());
 String answer = input.nextLine();
 q.respond(answer);
}

Interaction with CLI

417-214/514

How do you wait?

while (true) {
if (isKeyDown(“Alt+Q”)

break;
if (isKeyDown(“F1”)

openHelp();
if (isMouseDown(10 …)

startMovingWindow();
...

}

517-214/514

How do you GUI? Multiplayer?

https://www.cloudsavvyit.com/2586/how-to-build-your-multiplayer-games-server-architecture/

while (true) {
if (player === “player1”) {

hasWon = play(“player1”);
if (hasWon) break;
player = “player2”;

} else (player === “player2”) {
hasWon = play(“player2”)
if (hasWon) break;
player = “player1”;

}
}

617-214/514

Potential issue: Blocking interactions with users

blocking execution

717-214/514

Interactions with users through events
● Do not block waiting for user response

● Instead, react to user events

817-214/514

Event-based programming

Style of programming where control-flow is driven by (usually
external) events

public void performAction(ActionEvent e) {
 List<String> lst = Arrays.asList(bar);
 foo.peek(42)
}

public void performAction(ActionEvent e) {
 bigBloatedPowerPointFunction(e);
 withANameSoLongIMadeItTwoMethods(e);
 yesIKnowJavaDoesntWorkLikeThat(e);
}

public void performAction(ActionEvent e) {
 List<String> lst = Arrays.asList(bar);
 foo.peek(40)
}

917-214/514

Event-based GUIs
//static public void main…
JFrame window = …
window.setDefaultCloseOperation(
 WindowConstants.EXIT_ON_CLOSE);
window.setVisible(true);

//on add-button click:
String email = emailField.getText();
emaillist.add(email);

//on remove-button click:
int pos = emaillist.getSelectedItem();
if (pos>=0) emaillist.delete(pos);

1017-214/514

So, what about a frontend?
…in fact, let’s start with basically just a
frontend without an explicit backend.

(and we’ll come back to that backend later.)

1117-214/514

How To Make
This Happen?

1217-214/514

GUI Design: what do we want?
● Nested Elements
● Style Vocabulary
● Interactivity

1317-214/514

GUI Design: what do we want?
● Nested Elements

○ HTML
● Style Vocabulary

○ CSS
● Interactivity

○ JavaScript

1417-214/514

Anatomy of an HTML Page
Predefined elements Root/‘document’*

Header

Body

Technically, ‘document’ is the root with HTML as its only child

1517-214/514

Anatomy of an HTML Page
Nested elements
● Sizing
● Attributes
● Text

1617-214/514

A few Tags
● <html>

○ The root of the visible page
● <head>

○ Stores metadata, imports
● <p>

○ A paragraph
● <button>

○ Attributes include `name`, `type`, `value`
● <div>

○ Generic section -- very useful
● <table>

○ The obvious
● Many more; dig into a real page!

https://www.w3schools.com/tags/tag_button.asp

1717-214/514

Anatomy of an HTML Page
Nested elements
● Sizing
● Attributes
● Text

You can write these out
directly, or compose and
modify them
programmatically!
● Or, both! (we’ll see

in a minute).

1817-214/514

Anatomy of a GUI/HTML Page
GUIs are typically trees
● Nested elements, recursively
● Some fixed positions (html, body)

How to implement this?

https://en.wikipedia.org/wiki/Document_Object_Model

JFrame

JPanel

JTextField

…

1917-214/514

The composite pattern
● Problem: Collection of objects has behavior similar to the

individual objects
● Solution: Have collection of objects and individual objects

implement the same interface
● Consequences:

○ Client code can treat collection as if it were an individual object
○ Easier to add new object types
○ Design might become too general, interface insufficiently useful

2017-214/514

Composite
● Elements can contain elements

○ With restrictions
○ Need to deal with style, interaction

● In JS: HTMLElement
○ With child-classes e.g. HTMLDivElement, HTMLBodyElement
○ Navigation:

■ getElement*: locate by tag name, id, class, etc.
■ next/prev(Element)Sibling
■ childNodes, parent

2117-214/514

Let’s start with a very simple example.

2217-214/514

Style: not only leaf-nodes have appearance.
Note the column, here.

2317-214/514

Style
Tags come with inherent & customizable style

● Inherent:
○ <div> is a `block` (full-width, with margin)
○ is in-line
○ <h1> is large

● Customizable: add and override styles
○ Change font-styles, margins, widths
○ Modify groups of elements

2417-214/514

Style: CSS
● Cascading Style Sheets

○ Reuse: styling rules for tags, classes, types
○ Reuse: not just at the leafs!

Hello again!

vs.

<style type="text/css">
 span {
 font-family: arial
 }

</style>

2517-214/514

Style: CSS
● Cascading Style Sheets

○ Reuse: styling rules for tags, classes, types
○ Reuse: not just at the leafs!

● What if there are conflicts?
<div style="font-weight:normal">
 Hello again!
</div>

○ Innermost element wins*

*Technically, there’s a whole scoring system

2617-214/514

Style: CSS
What is happening here?

2717-214/514

Style: CSS
● Cascading Style Sheets

○ Reuse: styling rules for tags, classes, types
○ Reuse: not just at the leafs!

● What if there are no conflicts?
<div style="font-family:arial">
 Hello again!
</div>

○ How would you implement this?

2817-214/514

Decorator
What is happening here?

● To compute the style of an element:
○ Apply its tag-default style
○ Wrap in added style rules (tag-specific or general)

■ Text: font-family, weight, etc.
○ Inherit parents’ style

■ Conflicts lead to overrides

● Makes themes really powerful
Technically, HTML is streamed top-to-bottom; CSS works bottom-up

2917-214/514

CSS: classes
Let’s not repeat custom style

● Use any nr. of class label(s)
● Class styles get added
● Facilitates reuse

3017-214/514

Interactivity: A GUI is more than just a document
● How do we make it “work”?
● This is a two-part answer: (1) we can attach scripts to elements,

but (2) …how? [Design question!]

3117-214/514

That’s extremely simple, let’s try something
slightly more complicated.

Consider: TicTacToe
(note that this is NOT the same code you’ll see in recitation next week,

but the game itself will look basically the same.)

3217-214/514

DECOUPLING THE GUI
A design challenge

3317-214/514

GUI design challenge
● Consider TicTacToe or Blackjack game, implemented by Game class:

○ Player clicks a space, expects it to update; clicks “hit” and expects a new card

○ When should the GUI update the screen?

play()

3417-214/514

A GUI design challenge, extended

● What if we want to show the points won?

3517-214/514

Game updates GUI?
● What if points change for reasons not started by the GUI?

(or computations take a long time and should not block)

3617-214/514

Game updates GUI?
● Let the Game tell the GUI that something happened

3717-214/514

Game updates GUI?
● Let the Game tell the GUI that something happened

Problem: This couples the World to the GUI implementation.

3817-214/514

Core implementation vs. GUI
● Core implementation: Application logic

○ Computing some result, updating data
● GUI

○ Graphical representation of data
○ Source of user interactions

● Design guideline: Avoid coupling the GUI with core application
○ Multiple UIs with single core implementation
○ Test core without UI
○ Design for change, design for reuse, design for division of labor; low

coupling, high cohesion

3917-214/514

Decoupling with the Observer pattern
● Let the Game tell all interested components about updates

4017-214/514

Recall the Observer

https://refactoring.guru/design-patterns/observer

4117-214/514

Observer Pattern
● Manages publishers and subscribers

○ Here, button publishes its ‘click’ events
○ `buttonClicked` subscribes to 1+ updates

● Flexibility and Reuse
○ Multiple observers per element
○ Shared observers across elements

4217-214/514

Actions: JavaScript
● Key: event listeners/the Observer Pattern
● (frontend) JS is highly event-driven

○ Respond to window `onLoad` event, content loads (e.g., ads)
○ Respond to clicks, moves

● This is what happened with our simple button!

4317-214/514

What does this look like in TicTacToe?
Let’s go look!

Important note! just because TTT is implemented in a static web
page all in the frontend, does not mean that the GUI and the Game
are hopelessly entangled or that we’re violating the design principle
to keep them separate!

4417-214/514

An event-based GUI with a GUI framework

● Setup phase
○ Describe how the GUI window should look
○ Register observers to handle events

● Execution
○ Framework gets events from OS, processes

events
■ Your code is mostly just event handlers

GUI
Framework

OS

Application

get
event

drawing
commands

next
event

event—
mouse, key,
redraw, …

4517-214/514

Static Web Pages
● Delivered as-is, final

○ Consistent, often fast
○ Cheap, only storage needed

● “Static” a tad murky with JavaScript
○ We can still have buttons, interaction
○ But it won’t “go” anywhere -- the server is mum

https://developer.mozilla.org/en-US/docs/Learn/Server-side/First_steps/Client-Server_overview#anatomy_of_a_dynamic_request

4617-214/514

Static Web Pages
● Delivered as-is, final

○ Consistent, often fast
○ Cheap, only storage needed

● Can be maintained with static website generators
○ Or you’ll be doing a lot of copying
○ Coupled with themes => rapid development, deployment
○ Quite popular, e.g. hosting on GH Pages

4717-214/514

Static Web Pages
● But …

○ No data from elsewhere (where does your email come from?)
○ No persistence (at least, not obviously)
○ No customizability (e.g., accounts)
○ No communication (payment, chat, etc)
○ Realistically, no intensive jobs

4817-214/514

Dynamic Web Pages
● Client/Server

○ Someone needs to answer the website’s calls
■ Doesn’t need to be us!

○ Host a webserver
■ Serves pages, handles calls
■ For static pages too!

● We’ll show you more in recitation tomorrow (Wednesday)

4917-214/514

Web Servers
Dynamic sites can do more work

https://developer.mozilla.org/en-US/docs/Learn/Server-side/First_steps/Client-Server_overview#anatomy_of_a_dynamic_request

5017-214/514

Web Servers
● Communicate via HyperText Transfer Protocol

○ URL (the address)
○ Method:

■ GET: retrieve data. Parameters in URL `...?key=value&key2=value2` and message body
■ POST: store/create data. Parameters in request body
■ Several more, rarely used

○ Responses:
■ Status Code:

● We probably all know 404.
● 2XX family is OK.

■ And possible data. E.g., entire HTML page.

5117-214/514

Web Servers
● Communicate via HyperText Transfer Protocol

○ URL (the address)
○ Method:

■ GET: retrieve data. Parameters in URL `...?key=value&key2=value2` and message body
■ POST: store/create data. Parameters in request body
■ Several more, rarely used

○ Responses:
■ Status Code. We all know 404. 2XX family is OK.
■ And possible data. E.g., entire HTML page.

○ POST makes no sense for static sites!
○ As do GETs with parameters

5217-214/514

We can implement TicTacToe this way, too!

Let’s go see.

(network tab of inspect will show us messages!)

5317-214/514

But notice we’ve begun to more explicitly
separate out the HTML from the logic.

5417-214/514

An architectural pattern:
Model-View-Controller (MVC)

Manage inputs from user:
mouse, keyboard, menu, etc.

Manage display of
information on the screen

Manage data related to the
application domain

5517-214/514

Model-View-Controller (MVC)
Passive model

Active model

http://msdn.microsoft.com/en-us/library/ff649643.aspx

5617-214/514

Model View Controller Dependencies

5717-214/514

MVC is ubiquitous
Separates:

● Model: data organization
○ Interface to the database

● View: visual representation (typically HTML)
○ Often called templates in web-dev; “view” is a bit overloaded

● Controller: intermediary between client and model/view
○ Typically asks model for data, view for HTML

5817-214/514

How to Web App?
● Let’s avoid generating HTML from scratch on every call

○ Map requests to handler code
■ Fetch data, process

○ Generate and return HTML
● Historically: PHP

○ Modifies HTML pages server-side on request; strong ties to SQL

5917-214/514

Summary
● GUIs are full of design patterns

○ Helpful for reuse, delegation in complex environments
● Covered the basics of HTML, CSS, JS, servers

○ Needed for dynamic web pages
○ Decouple the GUI; architect your backend
○ A lot more to learn (security, performance, privacy), but this will do

● You will build this
○ At a small scale

